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Summary 

T-cell-engaging immunotherapies have improved the treatment of nodal B-cell lymphoma, 

but responses vary highly. Future improvements of such therapies require better 

understanding of the variety of lymphoma-infiltrating T-cells. We employed single-cell RNA 

and T-cell receptor sequencing alongside quantification of surface proteins, flow cytometry 

and multiplexed immunofluorescence on 101 lymph nodes from healthy controls, and patients 

with diffuse large B-cell, mantle cell, follicular, or marginal zone lymphoma. This multimodal 

resource revealed entity-specific quantitative and spatial aberrations of the T-cell 

microenvironment. Clonal PD1+ TCF7- but not PD1+ TCF7+ cytotoxic T-cells converged into 

terminally exhausted T-cells, the proportions of which were variable across entities and linked 

to inferior prognosis. In follicular and marginal zone lymphoma, we observed expansion of 

follicular helper and IKZF3+ regulatory T-cells, which were clonally related and inversely 

associated with tumor grading. Overall, we portray lymphoma-infiltrating T-cells with 

unprecedented comprehensiveness and decipher both beneficial and adverse dimensions of T-

cell response.  
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Introduction 

Nodal B-cell non-Hodgkin lymphomas (B-NHL) represent a heterogeneous group of indolent 

and aggressive malignancies that grow mainly in the lymph node (LN). Extensive genetic and 

transcriptomic profiling has revealed disease-specific mutational signatures and pathway 

dependencies, paving the way for targeted molecular therapy [1-8]. However, in recent years, 

T-cell-engaging immunotherapies, such as bispecific antibodies or chimeric antigen receptor 

(CAR) T-cells, have emerged among the leading treatment options for refractory and relapsed 

B-NHL patients [9-12]. Tailoring these treatment approaches to different B-NHL entities and 

identifying the vulnerabilities of their microenvironment requires systematic investigation of 

the variety and functions of tumor-infiltrating T-cells – analogously to studying the genetic 

and transcriptomic makeup of tumor cells as a prerequisite for tailoring targeted therapies.  

Traditionally, T-cell phenotyping studies have been based on immunohistochemistry or flow 

cytometry, and have established a fundamental understanding of the T-cell microenvironment 

in nodal B-NHL [13]. In recent years, single-cell RNA sequencing (scRNA-seq) emerged as a 

powerful tool to capture the heterogeneity of tumor-infiltrating T-cells and consequently 

became an integral part of T-cell phenotyping efforts [14, 15]. We and others have pioneered 

the investigation of transcriptional heterogeneity of LN-derived T-cells in B-NHL, but with 

the limitation of low sample sizes or having focused only on follicular lymphoma (FL, 

indolent) [16-18]. Stand-alone scRNA-seq studies additionally face the problem to align gene 

expression profiles with known T-cell subsets that have been defined for decades based on 

surface epitopes and transcription factors [19]. 

Here, we employed cellular indexing of transcriptomes and epitopes by sequencing (CITE-

seq), which simultaneously captures transcript and surface epitope abundances at single-cell 

resolution, and thus enables a multimodal identification of T-cell phenotypes [20, 21]. 

Moreover, we took a substantially wider view by collecting more than 100 LN patient 

samples and by including, besides FL, other B-NHL entities with only little or no prior 

groundwork: diffuse large B-cell lymphoma (DLBCL, aggressive), marginal zone lymphoma 

(MZL, indolent), and mantle cell lymphoma (MCL, mixed). We identified and quantitated 

fine-grained T-cell subsets and determined their clonality using full-length single-cell T-cell 

receptor sequencing. We further assessed the ability of multicolor flow cytometry and highly 

multiplexed immunofluorescence to reproduce the quantification of these T-cell subsets and 

to localize them within the tumor microenvironment. Based on these data, we created a 
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spatially resolved reference map for LN-derived T-cells in nodal B-NHL and identified entity-

specific patterns of T-cell infiltration.  
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Results 

Study and sample overview 

We collected 101 LN samples (Supplementary Figure 1A) from patients with DLBCL 

(n = 28), FL (n = 30), MZL (n = 15), MCL (n = 15), or from patients without evidence of 

malignancy (tumor-free / reactive LN [rLN], n = 13). LN samples from 38 patients were 

collected at initial diagnosis, while 50 LN samples were collected from patients who had 

received one or more prior lines of systemic treatment (Supplementary Figure 1A). To 

minimize potential effects on T-cell infiltration patterns, relapse samples were collected at 

least 3 months after cessation of the preceding systemic treatment. T-cell proportions of 

malignant LN samples determined by flow cytometry showed a broad variation 

(Supplementary Figure 1A) but were not significantly associated with pre-treatment status, 

sex, age, or B-NHL entity (Supplementary Figure 1B-E). Patient characteristics are 

summarized in Supplementary Table 1. 

 

Lymph node-derived T-cells can be divided into fourteen multimodally defined subsets  

We used CITE-seq, a droplet-based single-cell sequencing technology that measures the 

transcriptome and selected cell surface proteins, to profile T-cells from 51 LN patient 

samples. Surface proteins were detected using 70 oligonucleotide-tagged antibodies 

(Supplementary Table 2). After quality control and in-silico sorting, we obtained data for 

74,112 T-cells with a median of 1,190 T-cells per patient sample. Unsupervised clustering 

based on a weighted combination of transcriptome and epitope similarities (weighted-nearest-

neighbor, WNN) [22] grouped the T-cells into proliferating (TPr), conventional helper (TH) 

and follicular helper (TFH), regulatory (TREG), cytotoxic (TTOX), and double negative T-cells 

(TDN, Figure 1A). Differentially expressed genes and proteins (Figure 1B, C) were associated 

with lineage (CD4, CD8), functional specialization (e.g., FOXP3, ASCL2), cytotoxicity (e.g., 

GZMA, GZMK) or proliferation (e.g., MKI67). These groups could be further partitioned into 

CD4+ and CD8+ naïve T-cells, central memory (CM1, CM2) TH cells, central memory (CM1, 

CM2) and effector memory (EM1, EM2) TREG cells, and effector memory (EM1, EM2, EM3) 

TTOX cells. At this level of granularity, differentially expressed markers (Figure 1B, C) were 

linked to differentiation (e.g., CD45RA, CD45RO, CD62L), homing and migration (e.g., 

KLF2, CCR7), activation (e.g., CD69, CD38, CD278), and inhibition (e.g., PD1, TIM3, 

LAG3). This high-granularity classification was supported by a gene regulatory network 

analysis [23], which highlighted differential activities of specific transcription factors (e.g., 
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KLF2 [24], TCF7 [25], FoxP3 [26], ASCL2 [27], Figure 1D). Based on that, we compiled 

profiles of the most discriminating and biologically interpretable surface proteins, genes and 

transcription factors that facilitate the distinction of all fourteen T-cell subsets (Figure 1E). 

Further extended profiles, for instance to identify T-cell subsets in scRNA-seq data using 

previously published scoring approaches [28], are provided in Supplementary Table 3.  

 

Multicolor flow cytometry reproduces multimodally defined T-cell subsets  

Having used CITE-seq to discover and characterize the T-cell subsets, we employed flow 

cytometry to enable their rapid and cost-effective quantification in large sample numbers. We 

built gradient boosting classifiers [29] to identify the most discriminatory surface markers 

between multimodally defined subsets (Figure 2A). While this yielded accurate results for 

most T-cell subsets (Supplementary Figure 2A), the distinction among TREG and the detection 

of TPr cells could be improved by additional intracellular markers that were selected based on 

their accessibility by flow cytometry and the signature profiles above (Ki67, FoxP3, IKZF3, 

Supplementary Figure 2B). After removal of redundant (e.g., CD95, CD127) and less 

important markers, we thus compiled a 12- and 13-plex flow cytometry panel (Supplementary 

Table 4) and established gating strategies supported by the hypergate algorithm [30], which 

enabled classification of all 14 multimodally defined T-cells subsets (Supplementary Figures 

2C, 3). We correlated the subset proportions determined by CITE-seq and flow cytometry 

across a total of 13 LN samples and observed a median Pearson coefficient of 0.92 across all 

subsets (Figure 2B). We then applied these panels to an independent cohort of 50 LN 

samples, which was then used for further quantitative analysis of T-cell infiltration patterns.  

 

Nodal B-NHL entities have characteristic quantitative patterns of T-cell infiltration  

To provide a systematic and high-resolution analysis of the T-cell microenvironment in B-

NHL, we combined CITE-seq and flow cytometry data, determined the proportion of each 

subset per sample, and compared each B-NHL entity with tumor-free LN samples (Figure 

3A). B-NHL LN were characterized by a lack of CD69- CM1 and CD69+ CM2 TH cells, and 

CD4+ / CD8+ naive T-cells (Figure 3A). Conversely, PD1+ TIM3- TTOX EM2 and PD1+ TIM3+ 

EM3 TTOX cells, TPr cells, and CD69+ TREG CM2 cells were significantly enriched in B-NHL 

LN (Figure 3A). FL and MZL were additionally characterized by significant enrichment of 

TFH and IKZF3+ TREG EM2 cells (Figure 3A). We also noted a significant increase of CD69+ 

TREG CM2 cells in MCL, FL, and MZL, whereas TFH cells were depleted in DLBCL (Figure 
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3A). To gain a broader overview of these differences across all B-NHL entities, we used 

principal component analysis (PCA) on the table of subset proportions (Figure 3B). Based on 

the first two principal components (PC), we identified three major groups (I-III) represented 

by tumor-free (I), DLBCL and MCL (II), and FL and MZL LN (III, Figure 3B). PC1 (Figure 

3C) and PC2 (Figure 3D) had high loadings on the characteristic T-cell subsets highlighted in 

Figure 3A: CD4+ and CD8+ naïve T-cells, and PD1+ TIM3+ TTOX EM3 cells (PC1), and TFH 

and IKZF3+ TREG EM2 cells (PC2).  

To further explore to what extent T-cell composition is distinctive for different B-NHL 

entities and tumor-free LN, we built classifiers using LASSO-regularized multinomial logistic 

regression and estimated classification accuracy using nested leave-one-out cross-validation 

(Figure 3E, Supplementary Figure 4A). Accuracy was best for distinguishing between tumor-

free and malignant LN (balanced accuracy of 74.5 %); moreover, DLBCL and MCL could be 

differentiated with similar accuracy (Figure 3E). A third, well distinguishable group was 

formed by FL and MZL (Figure 3E). These results indicate that different entities have distinct 

patterns of T-cell infiltration (Supplementary Figure 4A), though – based on our current data 

– classification does not provide diagnostic accuracy, which might be the consequence of 

inter- and/or intra-tumor heterogeneity [16].  

To explore the potential role of patient-inherent characteristics, we fit multivariate linear 

models using sex, age, treatment status, and cell-of-origin (only DLBCL) as covariates, and 

the proportion of each T-cell subset as dependent variable (Supplementary Figure 4B). We 

found that pre-treatment (Figure 3G, p < 0.001) and higher age (Figure 3H, p = 0.04) were 

associated with a lower proportion of naïve CD4+ T-cells. Pre-treatment was also linked to a 

lower proportion of CD69+ TH CM2 cells (Figure 3I, p < 0.001) and a higher proportion of 

CD69+ TREG CM2 cells (Figure 3J, p < 0.001), while we observed no statistically significant 

impact on the T-cell composition for sex and cell-of-origin (Supplementary Figure 4B). 

Larger sample sizes might be necessary to detect less strong associations; but overall, patient 

characteristics had only a moderate impact on the T-cell composition compared to entity-

specific differences. 

 

Entity-specific T-cell compositions result from differential clonal expansion of CD4+ and 

CD8+ T-cell subsets  

To investigate if the enrichment of T-cell subsets results from their clonal expansion, we 

performed full-length single T-cell receptor (scTCR) sequencing alongside 5’ scRNA-seq in a 
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representative subset of patient samples (n = 11, Supplementary Figure 1A, Supplementary 

Table 1). After quality control, 5’ scRNA and full-length TCR data were available for 30,198 

T-cells with a median of 2,892 cells per patient sample. We mapped the 5’ scRNA onto the 

CITE-seq reference data above, indicating high consistency of the inferred subset proportions 

between both modalities with a median correlation coefficient of R = 0.92 (Supplementary 

Figure 5A). Then, we compiled the scTCR data to clonotypes based on their 

complementarity-determining regions (CDRs) [31] and projected them onto the reference 

UMAP (Figure 4A). We found that clonally expanded TTOX EM1 cells were present across all 

entities and in tumor-free LN (Figure 4A), while clonally expanded PD1+ TIM3+ TTOX EM3 

were limited to DLBCL, FL and MZL (Figure 4A). Clonality of TTOX cells was not restricted 

to CD8+ but included – albeit to lower extent – also CD4+ TTOX cells (Supplementary 

Figure 5B-C). In addition, TFH and IKZF3+ TREG EM2 cells were clonally expanded 

exclusively in FL and MZL (Figure 4A). Consequently, the TCR diversity was substantially 

reduced in DLBCL, FL, and MZL samples compared to tumor-free and MCL samples 

(Supplementary Figure 5D-F).  

We further used scTCR data to track the original identity of TPr cells, that is at the time of 

sample collection temporarily masked by an S or G2M phase-dependent gene expression 

signature [32]. Apart from MCL and tumor-free LN, which both harbored very low 

proportions of TPr cells (Figure 4A, B), we identified groups of shared clonotypes in DLBCL, 

FL, and MZL predominantly between TPr and PD1+ TIM3+ TTOX EM3 cells (Figure 4B). To a 

lower extent, TCR clonotypes were also shared between TPr and TFH cells, and between TPr 

and IKZF3+ TREG EM2 cells in FL and MZL (Figure 4B). Overall, this analysis highlights that 

altered T-cell microenvironment is a result from active proliferation and differential 

expansion of specific T-cell subsets. 

 

PD1+ TCF7- TTOX cells converge into terminally exhausted T-cells with variable proportions 

within and across entities 

Ongoing antigen exposure and clonal expansion, as in cancer or chronic infection, can 

ultimately result in T-cell exhaustion and loss of anti-tumor activity [33]. To unveil the 

process of T-cell exhaustion across B-NHL entities in more detail, we performed a trajectory 

analysis [34] of TTOX cells based on the CITE-seq data. We identified two paths: (I) one from 

naïve to PD1+ TIM3- TTOX EM2 cells, and (II) another one from naïve to PD1+ TIM3+ TTOX 

EM3 cells (Figure 5A). Apart from TIM3, both expression (Figure 5B) and inferred 
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transcription factor activity [23] of TCF7 was an important discriminator between trajectory I 

and II (Figure 1D). TCF1 (encoded by TCF7) is a hallmark of stemness and longevity and its 

presence (trajectory I) or absence (trajectory II) indicates maintained or impaired self-renewal 

capacity, respectively [35], thereby suggesting that only trajectory II converges into 

terminally exhausted T-cells. 

To further resolve gradual changes along trajectory II, we applied pseudotime analysis [34] 

and ranked the cells starting from naive TTOX cells (Figure 5A). We found that pseudotime 

was strongly linked to a continuously increasing expression of both differentiation and 

activation markers, such as CD45RO, CD69, CD38, ICOS, and inhibitory molecules, such as 

PD1, TIM3, LAG3, TIGIT and CD39 (Figure 5C). Cells with the highest levels of inhibitory 

receptors had reduced RNA expression levels of effector molecules, particularly of GZMA 

and GZMH, and reduced protein levels of CD244, which mediates non-MHC cytotoxicity 

[36] (Figure 5C). Likewise, the inferred activity [23] of the transcription factors PRDM1, 

BATF, IRF4 and EOMES, which have previously been associated with T-cell exhaustion [37-

40], were strongest in TTOX cells at the end of the trajectory (highest pseudotime), whereas the 

inferred transcription factor activity of TCF7 was lowest in these cells (Figure 5C). Based on 

that, we established an signature profile (Supplementary Table 5), to facilitate the 

identification of terminally exhausted T-cells in scRNA-seq data, for instance using a 

previously described scoring algorithm [28] (Supplementary Figure 6A).  

Plotting the proportion of TTOX cells by sample and pseudotime revealed that terminally 

exhausted T-cells were most abundant in DLBCL and FL, most variable in MZL, and lowest 

in MCL (Figure 5D). Clonality analysis based on scTCR data supported this finding by 

demonstrating that the expansion of PD1+ TIM3+ TTOX EM3 cells was a key feature of the 

tumor microenvironment of DLBCL, FL and MZL, while MCL and tumor-free LN were 

predominantly characterized by clonal PD1- TTOX EM1 cells (Figure 4A).  

 

T-cell exhaustion is associated with adverse prognosis in FL and DLBCL 

To investigate if T-cell exhaustion is associated with clinical outcome in B-NHL, we 

extracted a transcriptional signature (see Method section) from terminally exhausted T-cells 

of our data and applied digital cytometry [41] to bulk RNA data from two large independent 

retrospective DLBCL cohorts [2, 4]. We found that a higher proportion of terminally 

exhausted TTOX cells was associated with inferior progression-free survival in both cohorts 

(Figure 5E, p = 0.003, Figure 5F, p = 0.011). Moreover, the cohort from Schmitz et al. [4] 
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harbored higher proportions of exhausted T-cells in ABC- than GCB-subtype DLBCL 

(Supplementary Figure 6B), which is in line with a recent flow cytometry-based study [42]. 

However, there was no difference between ABC- and GCB-subtype DLBCL in our data 

(Supplementary Figure 4B) or in the cohort from Chapuy et al. [2] (Supplementary Figure 

6C). Neither of the genetic subtypes defined in these cohorts were associated with the 

proportion of exhausted TTOX cells (Supplementary Figure 6B, C). We also evaluated 

individual somatic mutations (e.g., MYD88), amplifications (e.g., BCL2), deletions (e.g., 17p), 

and structural variants (e.g., BCL6), which were used to define genetic subtypes by Chapuy et 

al. [2]. After correction for multiple testing using the Benjamini-Hochberg procedure, none of 

the genetic aberrations were associated with the proportion of exhausted TTOX cells 

(Supplementary Figure 6E-H).  

We performed a similar analysis using bulk RNA-seq data of a prospective FL cohort of the 

GALLIUM trial (NCT01332968) [43, 44], and again a higher proportion of exhausted T-cells 

was associated with inferior survival (Figure 5G, p = 0.04). Overall, these results suggest that 

T-cell exhaustion is linked to inferior patient outcomes across different B-NHL entities but 

not clearly associated with cell-of-origin or genetic subtypes.  

 

IKZF3+ TREG EM2 are clonally related to TFH cells and associated with grading of FL 

In FL and MZL samples, not only TTOX cells but also TFH and TREG EM2 cells were clonally 

expanded (Figure 4A) and significantly enriched (Figure 6A). While TFH cells are well-

characterized and known to promote the growth of malignant B-cells in FL [45], the role of 

LN-derived TREG cells in nodal B-NHL has not been investigated systematically. Aiming to 

characterize TREG EM2 cells, we compared protein and gene expression profiles of TREG EM2 

and TREG EM1 cells, which were evenly distributed across entities. We found that TREG EM2 

cells were characterized by high protein levels of CD69, ICOS, CD38, PD1, and TIGIT 

(Figure 6B). At the gene expression level, TREG EM2 cells showed high expression of IKZF3, 

CXCL13, and ASCL2, but low expression of KLF2 and IKZF2 (Figure 6C). We used flow 

cytometry to confirm the presence of IKZF3 on protein level (Supplementary Figure 7A) and 

the enrichment of IKZF3+ TREG cells in MZL and FL using an independent cohort of 24 LN 

samples (Supplementary Figure 7B). IKZF2, alias Helios, is well-studied as a marker of 

natural TREG cells [46], but only few studies have explored the role of IKZF3, alias Aiolos, in 

TREG cells. A previous study suggested that IKZF3+ TREG cells usually lack IKZF2 and 

represent an inducible rather than natural TREG subset with potent suppressive 
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capacity [47]. Based on this, we intended to identify potential populations related to TREG 

EM2 cells using scTCR data. We found that TREG EM2 cells share a substantial proportion of 

clonotypes with TFH cells (Figure 6D), whereas this was not the case for other TREG cell 

populations (Supplementary Figure 7C). Based on these aspects, TREG cells could resemble 

follicular regulatory (Tfr) T-cells, although the latter are reported to express CXCR5 to 

similar extent as TFH cells [48]. 

We further investigated if the proportion of TREG EM2 cells was associated with clinical 

parameters. Lower grade (1/2) FL had a higher proportion of TREG EM2 cells (Figure 6E, 

p = 0.002), whereas higher grade FL (3A) had a higher proportion of TFH cells (Figure 6F, 

p = 0.03). We applied digital cytometry [41] on the GALLIUM cohort [43, 44] to estimate the 

proportion of TREG EM2 and TFH cells, and to investigate if these subsets were associated with 

progression-free survival. Indeed, there was a trend towards inferior prognosis in patients with 

higher proportions of TFH cells (p = 0.05, Supplementary Figure 7D), while no association 

was found for TREG EM2 cells (p = 0.17, Supplementary Figure 7E).  

 

Highly multiplexed immunofluorescence identifies major T-cell populations within the tumor 

microenvironment 

To localize T-cell subsets in their spatial context and to identify further entity-discriminating 

features, we used highly multiplexed immunofluorescence in formalin-fixed paraffin-

embedded (FFPE) LN tissues using co-detection by indexing (CODEX) [49]. We established 

a panel of 50 antibodies and two nuclear stains (Supplementary Table 6) and imaged 35 FFPE 

biopsy cores derived from 19 patient samples (Supplementary Figure 1A, Supplementary 

Table 1). By clustering marker expression profiles of segmented single cells and validation in 

high-dimensional fluorescence microscopy images, we identified B-, T-, natural killer (NK), 

NK T-, mast (MC), plasma (PC), dendritic (DC), follicular dendritic (FDC), and stromal cells, 

as well as macrophages and granulocytes (Supplementary Figure 8A-C). Among a total of 

around 5.5 million processed cells, we detected a median of approximately 45,000 T-cells per 

tissue core (Supplementary Figure 8D), which we further divided into 8 different 

subpopulations including naïve CD4+ and CD8+ T-cells (CD45RA+), TFH cells (CD45RO+, 

PD1+, CXCR5+), TREG cells (FoxP3+), memory CD4+ cells (CD45RO+), memory CD8+ TTOX 

cells (CD45RO+), exhausted TTOX cells (CD45RO+, PD1+, TIM3+) and TPr cells (Ki67+, 

Supplementary Figure 8A, C). A high-granularity classification of T-cell subsets, as possible 

with the CITE-seq and flow cytometry data, was hampered by lower signal-to-noise ratio 
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(e.g., CD62L, CD69) or reduced sensitivity of available antibodies (e.g., IKZF3). To enable a 

common perspective, we aligned the low-granularity T-cell subpopulations detected by 

multiplexed immunofluorescence with the 14 high-granularity T-cell subsets identified by 

CITE-seq (Supplementary Figure 8A). For all 19 LN samples that were analyzed by both 

approaches, we correlated the proportions for each of the T-cell subsets and observed a 

median Pearson coefficient of 0.71 across all subpopulations (Supplementary Figure 8E). 

 

B-NHL disrupts the healthy LN architecture and generates entity-specific microenvironmental 

patterns  

In-situ mapping of the above-mentioned cell types and T-cell subpopulations enabled an 

intuitive visualization of tumor-free or malignant LN structure (Figure 7A, Supplementary 

Figure 9). To capture spatial organization quantitatively as a means for systematic comparison 

between tumor-free and malignant LN, we identified the 25 nearest neighbors of each cell by 

a sliding window approach and tabulated the frequencies of cell types and T-cell subsets in 

each window. We used k-means clustering on the neighbor frequency tables to identify 10 

recurrent neighborhoods (N1-N10, Figure 7B) and PCA to identify the cell types most 

important for distinguishing N1 to N10 (Figure 7C). This captured important elements of 

intact LN architecture, including B-cell follicles (N1) with TFH- and FDC-rich germinal 

centers (N2), follicle-surrounding mantle zones (N5), inter-follicular T-cell zones 

(N6, N7, N9), and sinuses (N10) harboring predominantly stromal cells, macrophages, mast 

cells, granulocytes, and NK cells (Figure 7A-C). Importantly, this characterization 

emphasizes the specialized role of TFH cells as they were mostly separated from other T-cell 

subsets and instead co-localized with FDC and B-cells. 

The described pattern was preserved in all tumor-free tissue cores (Supplementary Figure 

10A) but largely disrupted in B-NHL LN (Figure 7D, Supplementary Figure 10B-E). LN-

derived tissue cores infiltrated by DLBCL had the least degree of structure and exhibited a 

diffuse excess of a neighborhood (N4) harboring exhausted T-cells, macrophages and tumor 

cells, whereas neighborhoods (N7, N8) rich in naïve and memory TH and TTOX cells were 

absent (Figure 7D-F, Supplementary Figure 10B). Tissue cores from LN infiltrated by FL 

were characterized by expansion of germinal center-like areas (N2) containing high numbers 

of (clonal) TFH cells and FDC, surrounded by areas (N6, N9) containing TREG, memory TH, 

memory and exhausted TTOX, but also B-cells (Figure 7D-F, Supplementary Figure 10D). In 

tissue cores infiltrated by MCL, we found a significant predominance of follicle-like B-cell 
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areas (N1, Figure 7F), where TFH cells and germinal centers were absent (Figure 7D-E, 

Supplementary Figure 10C). In contrast to DLBCL and FL, B-cell areas in MCL were well-

separated and barely infiltrated by T-cells (Figure 7D, Supplementary Figure 9), resulting in 

only little contact surface in the transition areas (N6, Figure 7D-E). Entity-specific 

neighborhood patterns imply different cell-to-cell contacts. To identify interaction partners of 

B-cells based on spatial proximity, we determined the nearest neighbor of each B-cell and 

ranked them by frequency (Figure 7G). This analysis suggested strikingly different interaction 

partner across entities: While B-cells derived from FL, MCL and tumor-free LN were in 

closest contact to varying T-cell subsets, for instance TREG and TFH cells in FL, we observed 

that B-cells derived from DLBCL were mostly surrounded by macrophages, stromal and 

exhausted T-cells (Figure 7G).  

In summary, while CITE-seq resolved T-cell heterogeneity quantitatively at a higher 

granularity, multiplexed immunofluorescence data added a new perspective for studying the 

LN microenvironment, particularly regarding spatial organization and potential interaction of 

T-cells with tumor and other immune cells.   
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Discussion 

Our study provides an in-depth and systematic reference map of LN-derived T-cells in 

DLBCL, FL, MCL, MZL, and tumor-free samples. Based on more than 100 LN samples, we 

identified 14 T-cell subsets including their transcriptomic and surface protein signatures, 

entity-specific abundances, clonality patterns, and a flow cytometry gating strategy. In 

addition, we employed highly multiplexed immunofluorescence, which resolved T-cell 

heterogeneity at lower granularity but facilitated us to uncover entity-specific spatial patterns 

of T-cell infiltration.  

Across all entities, malignant LN were characterized by loss of CD4+ and CD8+ naive T-cells, 

as well as CD69- TH CM1 and CD69+ CM2 cells, but to variable extents harbored clonally 

expanded CD4+ and CD8+ PD1+ TIM3+ TTOX cells. The latter were part of a cellular trajectory 

that continuously converged into terminally exhausted T-cells. Beside high expression of 

various inhibitory receptors (PD1, TIM3, LAG3, TIGIT, CD39) and reduced expression of 

effector molecules (GZMA, GZMH), these cells had lost TCF7 transcription factor activity, 

which is considered a crucial and early event towards terminal T-cell exhaustion [50]. Higher 

proportions of these cells were not significantly linked to cell-of-origin or genetic subtypes in 

DLBCL but instead associated with inferior survival in FL and DLBCL patients. These results 

are in line with previous studies that used TIM3 or LAG3 as surrogate markers to estimate T-

cell exhaustion in DLBCL [51] or FL patients [52]. PD1+ TIM3+ TTOX cells were located 

within several spatial neighborhoods, thereby allowing for contact with various types of 

immune cells. Specifically in LN infiltrated by DLBCL, PD1+ TIM3+ TTOX cells were 

strongly co-localized with tumor cells and macrophages, which have recently been shown to 

be attracted by exhausted T-cells and inversely, to reinforce T-cell exhaustion [53]. This 

observation might explain why DLBCL harbored the highest proportions of PD1+ TIM3+ 

TTOX and why higher numbers of macrophages are associated with inferior outcome in 

DLBCL patients [54, 55]. While DLBCL was also characterized by the least degree of 

structure, we observed that LN infiltrated by MCL exhibited a rather strict separation of 

tumor and T-cell areas, resulting in less possibility for direct cellular interaction. As ongoing 

antigen presence is a prerequisite of T-cell exhaustion [50], the remarkably low proportions of 

PD1+ TIM3+ TTOX cells might be the consequence of such maintained compartmentation. 

Further effort is needed to investigate how these distinct spatial patterns are formed and how 

specific cellular interactions, for instance with macrophages, may impact on re-directed T-

cells. 
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While the majority of clonal TTOX cells in B-NHL could be assigned to the TCF7- trajectory, 

we identified a second trajectory that was characterized by expression of PD1, absence of 

TIM3 and other inhibitory receptors, but maintained transcription factor activity of TCF7. 

Previous work suggested that both subsets play opposite roles, as, for instance, only 

TCF7+ PD1+ T-cells can be reinvigorated upon checkpoint inhibition, whereas terminally 

exhausted TCF7- T-cells cannot be restored [56, 57]. This observation is of particular interest 

because immune-checkpoint blockade is remarkably ineffective in nodal B-NHL [58, 59], 

which might be – in the light of our study – due to the predominance of terminally exhausted 

T-cells. Indeed, also Zheng et al. found that B-NHL seem to harbor higher levels of terminally 

exhausted T-cells than most other cancer entities [60]. However, we speculate that B-NHL 

patients harboring high levels of PD1+ TIM3- TTOX cells could represent a subgroup that 

benefits most from combining T-cell engaging immunotherapies and immune checkpoint 

blockade.  

Beyond clonal TTOX cells, we found that both FL and MZL were characterized by clonal 

expansion of TFH and IKZF3+ TREG EM2 cells, and overall had a similar pattern of T-cell 

infiltration. Whereas TFH cells have been extensively studied and are known to support the 

growth of malignant B-cells in FL [45], an enrichment of IKZF3+ TREG EM2 cells has, to our 

knowledge, neither been described in FL nor MZL. Even recent scRNA-seq studies of FL 

have not captured such a subset, possibly because the heterogeneity of TREG cells was not 

investigated in detail or because FL was not compared to other B-NHL entities [18, 61]. We 

observed higher proportions of IKZF3+ TREG EM2 cells in low-graded FL patients, suggesting 

that this T-cell subset could modulate the proliferation capacity of malignant B-cells. 

IKZF3+ TREG EM2 cells are suggested to bear strong suppressive capacity and represent an 

induced TREG phenotype [47]. Indeed, we demonstrated that IKZF3+ TREG EM2 cells and TFH 

cells carry a substantial proportion of identical TCR clonotypes, which implies that 

IKZF3+ TREG EM2 cells most likely derive from TFH cells. The close relation of both subsets is 

further substantiated by the fact that, on the one hand, TFH cells express IKZF3 constitutively 

[62] and, on the other hand, IKZF3+ TREG EM2 cells express high levels of PD1, CXCL13 and 

ASCL2 – known marker genes and proteins of TFH cells [27, 63]. The induction of FoxP3, or 

more generally, the conversion of T (follicular) helper cells into TREG cells can be mediated 

by augmented stimulation or auto-inflammatory conditions and has been previously described 

for B-NHL derived T-cells [64-66]. More mechanistically oriented studied are needed to 
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clarify whether IKZF3+ TREG indeed derive from TFH cells and whether they can be leveraged 

to beneficially affect the course of disease.  

While highly multiplexed immunofluorescence provides insights that cannot be obtained by 

suspension-based single cell assays [67], its application in larger patient cohorts and 

achieving a more fine-grained resolution of certain cell subsets are still challenging. 

Particularly in FFPE tissue, which is routinely used for diagnostic samples, development of 

antibody panels requires labor-intensive optimization and validation, and certain markers may 

not be detectable due to loss of antigenic reactivity. More importantly, current computational 

approaches represent a bottleneck, as significant manual operation is needed to annotate and 

validate cell types, which is particularly relevant when handling large tissue areas with 

millions of cells. Further improvements of computational approaches will enable a broader 

application of highly multiplexed immunofluorescence across large clinical cohorts [68-70].   

In summary, our work refines previous knowledge of lymphoma-infiltrating T-cells by 

employing recent technological advances and offers a new perspective on different B-NHL 

entities, which have previously not been studied. This broader yet more detailed view 

revealed that different B-NHL entities shape their T-cell microenvironment in distinct 

manners, which could not be readily detected in studies investigating only single entities. We 

generated a multimodal resource that facilitated deciphering both beneficial and adverse 

directions of T-cell response in nodal B-NHL and will thus contribute to improving T-cell 

engaging treatment approaches. 
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Material and Methods 

Lymph node samples 

Our study was approved by the Ethics Committee of the University of Heidelberg (S-

254/2016). Informed consent of all patients was obtained in advance. LN patient samples 

were processed and frozen until further analysis as previously described [71]. Samples from 

patients after allogeneic stem cell transplantation, CAR T-cell or bispecific antibody therapy 

were not used in this study to minimize treatment-associated effects on the T-cell 

microenvironment. For the same reason, samples were collected earliest 3 months after 

cessation of the last treatment.  

 

Single-cell 3’ RNA-seq and epitope expression profiling 

Cells were thawed and immediately washed to remove DMSO. In order to prevent entity-

associated batch effects, samples were processed in batches of four to five containing at least 

three different entities. After thawing, we applied a dead cell removal kit (Miltenyi Biotec) to 

all samples to reach a viability of at least 85 to 90 %. Samples not reaching a viability above 

85 % were excluded. Then, 5 x 105 viable cells were stained by a pre-mixed cocktail of 

oligonucleotide-conjugated antibodies (Supplementary Table 2) and incubated at 4 °C for 30 

minutes. Cells were washed three times with ice-cold washing buffer and each time 

centrifuged at 4 °C for 5 minutes. After completion, cells were counted and viability was 

determined again. Samples not reaching a viability above 85 % were excluded. The 

preparation of the bead-cell suspensions, synthesis of complementary DNA and single-cell 

gene expression and antibody-derived tag (ADT) libraries were performed using a Chromium 

single-cell v3.1 3� kit (10x Genomics) according to the manufacturer’s instructions.  

 

Single-cell 5’ RNA-seq and T-cell receptor repertoire profiling 

Apart from epitope staining, sample processing was identical to 3’ scRNA-seq. The 

preparation of the bead-cell suspensions, synthesis of complementary DNA and single-cell 

gene expression and TCR libraries were performed using a Chromium single-cell v2 5� and 

human TCR amplification kit (both 10x Genomics) according to the manufacturer’s 

instructions. 
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Single-cell library sequencing and data processing 

3’ gene expression and ADT libraries were pooled in a ratio of 3:1 aiming for 40,000 reads 

(gene expression) and 15,000 reads per cell (ADT), respectively. Sequencing was performed 

on a NextSeq 500 (Illumina). 5’ gene expression libraries were sequenced on a NextSeq 2000 

(Illumina) aiming for 50,000 reads per cell. TCR libraries were sequenced on a NextSeq 500 

(Illumina) aiming for a minimum of 5,000 reads per cell. After sequencing, the Cell Ranger 

(10x Genomics, v6.1.1) function cellranger mkfastq was used to demultiplex and to align raw 

base-call files to the reference genome (hg38). For 3’ gene and epitope expression libraries, 

the obtained FASTQ files were counted by the cellranger count command, whereas 

cellranger multi was used for 5’ gene expression and TCR libraries. As reference for TCR 

libraries, the VDJ ensembl reference (hg38, v5.0.0) was used. If not otherwise indicated 

default settings were used for all functions.  

 

Analysis and integration of CITE-seq data 

The R package Seurat (v4.1.0) was used to perform data quality control, filtering, and 

normalization. Gene counts per cell, ADT counts per cell and percentages of mitochondrial 

reads were computed using the built-in functions. Principal component analysis, shared 

nearest neighbor (SNN) based clustering and UMAP were done based on the combined 

transcriptome and epitope data. After mapping the CD3 and CD19 epitope expression, non-T-

cell clusters and doublets were removed. For data integration across the different preparation 

batches, we used the IntegrateData function of the Seurat package. For multimodal clustering 

based on gene and epitope expression, the weighted nearest neighbor approach was used 

[22]. To estimate the proportion of positive cells for each surface marker, we calculated the 

denoised protein expression using the totalVI python package [72].  

 

Inferring transcription factor activity based on single-cell gene expression 

We used the SCENIC (Single-Cell rEgulatory Network Inference and Clustering) package 

[23] to infer gene regulatory networks and transcription factor activity based on scRNA-seq 

data. Functions were used according to publicly available vignettes.  
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Surface and intracellular flow cytometry staining 

LN-derived cells were thawed and stained for viability using a fixable viability dye e506 

(Thermo Fisher Scientific) and for different surface markers depending on the experimental 

set-up. The following surface antibodies were used: anti-CD3-PerCP-Cy5.5, anti-CD4-PE-

Dazzle, anti-CD8-APC-Cy7, anti-CD45RA-FITC, anti-CD25-BV421, anti-CD31-BV605, 

anti-CXCR5-BV711, anti-TIM3-BV711, anti-CD278-BV605, anti-PD1-PE-Cy7, anti-CD69-

AF700, anti-CD244-BV421 (all BioLegend). For subsequent intracellular staining, cells were 

fixed and permeabilized with the intracellular fixation/permeabilization buffer set (Thermo 

Fisher Scientific) and stained with anti-Ki67-BV785, anti-FoxP3-AF647, anti-IKZF3-PE or 

adequate isotype controls (Thermo Fisher Scientific, BD Biosciences). Then, cells were 

analyzed using an LSR Fortessa (BD Biosciences) and FACSDiva (BD Biosciences, version 

8). For analysis and gating of flow cytometry data FlowJo (v10.8.0) was used.  

 

Multinomial classification of T-cell subpopulations 

First, we evaluated whether multimodally defined T-cell subsets can be distinguished in 

general by using surface markers only. Therefore, we trained gradient boosting models 

(“xgbTree”) [29] on the basis of surface marker expression of single-cell data. To reduce data 

load, only 30 % of all cells were used. 10-fold cross-validation was employed to optimize the 

model. Since surface marker were not sufficient to reach sufficient accuracy, additional 

models were trained using surface marker plus gene expression of MKI67, IKZF3, and 

FoxP3, since these genes were differentially expressed between T-cell subsets that could not 

be sufficiently predicted using only surface proteins. Finally, markers were ranked and 

selected by their variable importance to build flow cytometry panels. In case two or more 

markers deliver similar information (e.g., CD95 and CD45RA), only one was selected. Gating 

strategies were built using the R package hypergate [30] and optimized in an iterative process. 

The final gating strategy for all multimodally defined T-cell subsets is illustrated in 

Supplementary Figure 2C and 3.  

 

Prediction of B-NHL entity from T-cell proportions 

To assess feasibility of predicting B-NHL entity or tumor-free condition based on the 

proportions of all T-cell subsets and overall T-cell frequency, we trained classifiers based on 

multivariate regression with L1 penalty (LASSO) implemented in the R package glmnet 

(v4.1) [73]. The hyperparameter lambda was determined using cv.glmnet with balanced folds 
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and weights inversely proportional to class size. The confusion matrix was computed using 

leave-one-out cross-validation. 

 

Analysis of T-cell receptor diversity 

To estimate the diversity of the TCR repertoire based on single-cell TCR profiling, we 

employed the R package immunarch (v0.8.0) [74] on the output files of the cellranger 

pipeline. TCR diversity across samples was compared using a rarefraction analysis. 

Therefore, the function repDiversity with method = "raref" was applied.  

 

Mapping of 5’ scRNA-seq data onto CITE-seq reference data 

To evaluate scTCR data in the context of multimodally defined T-cell subsets, 5’ scRNA-seq 

data were mapped onto the CITE-seq reference data, using the built-in functions 

FindTransferAnchors and MapQuery of the Seurat package (v4.1.0). The mapping accuracy 

was evaluated by comparing the T-cell subset proportion of 5’ and 3’ data of the identical 

patient sample.  

 

Pseudotime analysis and exhaustion signature 

Pseudotime analysis based on gene expression profiles of TTOX cells was performed using the 

monocle3 package [75, 76]. Briefly, the Seurat object was converted into a cell data set. 

Trajectory and pseudotime analysis were performed using the functions learn_graph and 

order_cells, respectively. As root cells, naive CD8+ T-cells were selected. Minimal branch 

length was set to 10, otherwise default settings were used.  

To define a transcriptional module for T-cell exhaustion, differentially expressed genes of 

terminally exhausted T-cells, meaning TTOX cells with highest levels of inhibitory receptors 

and decreasing expression of effector molecules (Figure 5C), were determined 

(Supplementary Table 5). The UCell package (v1.3.1) [28], which is based on the Mann-

Whitney U statistic, was then applied to calculate an exhaustion score for each cell.  

 

Deconvolution of bulk RNA sequencing data 

Deconvolution of bulk RNA-seq data was performed using the interactive web application 

(https://cibersortx.stanford.edu/) developed by Newman and colleagues [41]. First, a signature 

matrix was created based on the scRNA-seq data and the cluster annotation as cell types. 
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Minimum expression was set to zero and 200 replicates were used. Otherwise, default settings 

were applied to create a signature matrix. Second, cell fractions were imputed using bulk 

RNA-seq data and signature matrix as input. S-mode batch correction and absolute mode was 

used for each analysis.  

Survival analysis 

Survival data were only obtained from previously published data or studies [2, 4, 43]. 

Analysis of the progression-free survival probability was performed in combination with the 

estimated cell type proportions using deconvolution of bulk RNA-seq data. To divide the data 

into two groups (low, high), we determined a cut-off based on the maximized p value of a 

log-rank test using the maxstat R package (v0.7.25). Kaplan-Meier curves were drawn using 

the survminer R package (v0.4.9).  

 

Tissue microarray and coverslip preparation 

Representative tumor or tumor-free lymph node areas in archival FFPE tissue blocks from 19 

patients (Supplementary Figure 1A, Supplementary Table 1) were selected by board-certified 

pathologists of the Tissue Bank of the National Center for Tumor Diseases and Institute of 

Pathology at the University Hospital Heidelberg. Tissue microarrays (TMA) containing two 

4.5 mm cores per patient were generated. TMA sections (4 μm) were mounted onto 

Vectabond-precoated 25 x 25 mm coverslips and coated in paraffin for storage until staining 

[77]. 

 

Antibody conjugation, validation and titration 

Multicolor immunofluorescence was performed using the co-detection by indexing (CODEX) 

approach [49]. Antibodies used for CODEX experiments are summarized in Supplementary 

Table 6. Purified, carrier-free antibodies (50-100 μg per reaction) were reduced with Tris(2-

carboxyethyl)phosphine (TCEP) and conjugated at 1:2 weight/weight ratio to maleimide-

modified CODEX DNA oligonucleotides, which were purchased from TriLink 

Biotechnologies and deprotected via retro-Diels-Alder reaction. Conjugated antibodies were 

first evaluated in CODEX singleplex stains on tonsil and/or lymphoma tissue by comparison 

with online databases (The Human Protein Atlas, Pathology Outlines), immunohistochemical 

reference stains and/or published literature under the supervision of a board-certified 

pathologist. Staining patterns were validated in multiplex experiments in the presence of 
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positive and negative control antibodies and the appropriate dilution of each antibody was 

titrated starting from 1:100 to optimize signal-to-noise ratio.  

 

Multiplex tissue staining and fixation 

Coverslips were deparaffinized, rehydrated and submitted to heat-induced epitope retrieval at 

pH9 (Dako target retrieval solution, #S236784-2, Agilent) and 97°C for 10 min in a Lab 

Vision PT module (Thermo Fisher). After blocking of non-specific binding with CODEX 

FFPE blocking solution, coverslips were stained overnight with the full antibody panel at the 

dilutions given in Supplementary Table 6 in CODEX FFPE blocking solution [78] in a sealed 

humidity chamber at 4 °C on a shaker. Coverslips were then fixed with 1.6% 

paraformaldehyde, followed by methanol and BS3 fixative (Thermo Fisher) before storage in 

CODEX buffer S4 until imaging [78]. 

 

Multicycle Imaging 

Stained coverslips were mounted onto custom acrylic plates (Pololou Corporation) with 

mounting gaskets (Qintay), thereby creating a flow cell with a surface area of 19 x 19 mm 

above the tissue for fluid exchange. Acrylic plates were inserted into a Keyence BZ-X710 

inverted fluorescence microscope equipped with a CFI Plan Apo λ 20x/0.75 objective (Nikon) 

using custom adapters. For each core an area of 7x7 fields of view (30% overlap between 

tiles) and an adequate number of z planes (10-14) required to capture the best focal plane 

across the imaging area were selected. Multicycle imaging was performed using a CODEX 

microfluidics device and CODEX driver software v1.29.0.1 (Akoya Biosciences). Exposure 

times and assignment of markers to imaging cycles and fluorescent channels are provided in 

Supplementary Table 6. After completion of multicycle imaging, coverslips were stained with 

hematoxylin/eosin and the same areas were imaged in brightfield mode.  

 

Image processing 

Raw TIFF images were processed using the RAPID pipeline [79] in Matlab (version R2020a) 

with the following settings: nCyc=51, nReg= number of regions imaged (depending on 

TMA), nTil=49, nZ= number of z-planes imaged (depending on TMA), nCh=[1,4], 

nTilRow=7, nTilCol=7, overlapRatio=0.3, reg_range=1:nReg, cyc_range=1:nCyc, 

til_range=1:nTil, cpu_num=depending on computer system used, neg_flag=1, 

gpu_id=depending on number of GPUs available, cyc_bg=1. After deconvolution (two 
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iterations), best focal plane selection, lateral drift compensation, stitching of individual 

images and background subtraction, processed images were concatenated to hyperstacks. All 

tissue cores were checked visually for staining quality of each antibody in ImageJ/Fiji 

(version 1.53q).  

 

Cell segmentation and cell type annotation 

Individual nuclei were segmented based on the Hoechst stain (cycle 1), derived nuclear masks 

were dilated, and cellular marker expression levels were quantified using a modified version 

of the Mask region-convolutional neural network (R-CNN) based CellSeg software [80] run 

on the full resolution RAPID stitched images with the following parameters: 

GROWTH_PIXELS_PLANE = 1.0, output_adjacency_quant = True, BOOST = 1, 

OVERLAP = 80, MIN_AREA = 80, INCREASE_FACTOR = 4.0, 

AUTOBOOST_PERCENTILE = 99.98. A threshold based on the intensity of the nuclear 

markers Hoechst and DRAQ5 was used to exclude non-cellular events and remove cells from 

tissue areas of low image quality. Marker expression levels compensated for lateral spillover 

were used for further analysis and the range of each marker was z normalized per imaging 

run. A total of n=5,690,284 cells were submitted to an initial round of Leiden-based clustering 

(n_neighbors=10, resolution=2) on key phenotypic markers (CD11b, CD11c, CD14, CD15, 

CD16, CD163, CD20, CD206, CD21, CD25, CD3, CD31, CD34, CD38, CD4, CD45, CD5, 

CD56, CD57, CD68, CD7, CD79a, CD8, CD90, FOXP3, HLA-DR, kappa light chain, 

lambda light chain, MCT, PAX5, PDPN) using the scanpy Python package [81], as previously 

described [82]. Each of the resulting clusters (n = 55) was assessed for purity of its cell type 

composition based on marker expression and overlays of the cells in each cluster onto image 

hyperstacks using CODEX scripts for ImageJ/Fiji (available at 

https://github.com/bmyury/CODEX-fiji-scripts). Clusters were merged, split, and/or further 

subclustered as appropriate to define broad cell types (e.g., T-cells, B cells, etc.). This process 

was repeated within these cell types using additional markers as appropriate to annotate more 

granular cell subsets. Briefly, marker combinations used for cell typing of non-T-cells include 

CD16, CD68, CD163, CD206 and HLA-DR (macrophages); CD11c, CD68 and HLA-DR 

(DC); CD15 (granulocytes); MCT and GRZB (mast cells); CD34, CD31, CD90 and PDPN 

(stromal cells); PDPN and CD21 (FDC); CD56 (NK and NKT-cells); CD38, CD31, and 

kappa and lambda light chain (plasma cells); PAX5, CD20 and CD79a (B-cells). Further, T-

cell subsets were derived based on key subset markers (CD45, CD45RA, CD45RO, CD3, 

CD5, CD7, CD4, CD8, FOXP3, CXCR5, CXCL13, PD1, TIM3, CD31, and Ki67) and were 
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validated using expression of additional T-cell markers in the panel and overlays onto image 

hyperstacks.  

 

Neighborhood and nearest neighbor analysis 

Neighborhood analysis was modified based on a previously described approach [49]. For each 

cell of the joint highly multiplexed immunofluorescence data, the 25 nearest neighbors were 

determined based on their Euclidean distance of the X and Y coordinates, resulting in one 

‘window’ of cells per individual cell. Next, these windows were grouped using k-means 

clustering based on the cell type proportions within each window. Finally, each cell was 

annotated by the neighborhood of its surrounding ‘window’. K = 10 was selected based on the 

overlays of the neighborhood assignments with the original fluorescent and H&E-stained 

images. Higher values of k did not result in an improved biologically interpretable number of 

neighborhoods.  

 

Interactive browsing of highly multiplexed immunofluorescence data 

All tissue cores imaged in this study including staining of 52 different markers are available 

for interactive browsing at http://45.88.80.128:8765.  

 

Data availability 

All single-cell gene expression, epitope and TCR data will be available in the HeiData 

database (https://heidata.uni-heidelberg.de) under accession number 0SNSFB upon 

publication. Highly multiplexed immunofluorescence images are available in the BioStudies 

database (https://www.ebi.ac.uk/biostudies/) under accession number S-BIAD565 [83] upon 

publication. 

 

Code availability 

The computational codes, in the form of Rmarkdown documents, for reproducing all main 

and supplementary figures will be available at github.com upon publication.  
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Figure 2. Multicolor flow cytometry reproduces multimodally defined T-cell subsets. 
A) Most important features to distinguish multimodally defined T-cell subsets using a gradient boosting classifier. Only features that are routinely
accessible by flow cytometry were considered for the model. B) Percentages of all T-cell subsets determined by flow cytometry (x axis) and CITE-
seq (y axis) were correlated for n = 13 biologically independent samples. X axis title indicates the applied gating strategy. The symbol U indicates
merging of two populations. Pearson’s correlation coefficient is given for each panel (R).
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Figure 3. Nodal B-NHL entities have characteristic quantitative patterns of T-cell infiltration.
A) T-cell subset proportions determined by CITE-seq or flow cytometry are illustrated in box plots (n = 101). Outliers are shown as individual dots.
Each entity and subset were tested versus tumor-free samples (rLN) using the Wilcoxon-test. P values were corrected for multiple testing using the
Benjamini-Hochberg procedure. Dashed lines indicate the median of rLN. B-D) Principal component analysis based on the subset and overall T-cell
proportions (B) including the top four loadings of principal component 1 (C) and 2 (D) are shown. Dashed lines (B) highlight three groups (I-III) of
samples. E) Confusion matrix based on a LASSO-regularized multinomial logistic regression model and estimated classification accuracy using
leaving-one-out cross validation based on subset and overall T-cell proportions. F-I) Patient characteristics were evaluated in a multivariate model
regarding their impact on the proportions of all 14 T-cell subsets. Shown are the four most significant associations. P values and/or correlation
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Figure 4. Entity-specific T-cell compositions result from differential clonal expansion of CD4+ and CD8+ T-cell subsets.
5’ scRNA alongside full-length TCR repertoire data were mapped to the CITE-seq reference dataset. In grey, all cells with 5’ scRNA data are
shown, whereas colored cells belong to samples derived from specific entities (A) or samples (B), as indicated. A) Circles represent the number of
cells with identical TCR clonotype within the same subpopulation. B) Shown are mapped cells from five representative samples. Lines connect all
proliferating cells with any other cell given that both have identical TCR clonotypes. TCR: T-cell receptor.
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Figure 5. PD1+ TCF7− cytotoxic T-cells converge to terminally exhausted T-cells with variable proportions within and across entities. 
A) Combined trajectory and pseudotime analysis were performed using CITE-seq expression profiles of TTOX cells starting from naive CD8+ T-cells.
Arrows illustrate trajectories, while cells are colored by pseudotime. B) Volcano plot illustrating differentially expressed genes and proteins between
PD1+ TIM3+ TTOX EM3 and PD1+ TIM3- TTOX EM2 cells. C) Protein expression (first and second column), gene expression (third column) or inferred
TF activity (fourth column) are illustrated along binned pseudotime, as shown in panel A. Values were scaled between 0 and 1. Dashed line in
GZMA plot indicates threshold when T-cells were considered terminally exhausted. D) Shown is the density of cells for each single patient along
pseudotime. Number indicates median percentage of terminally exhausted T-cells across all LN patient samples for each entity. E-G) Bulk RNA-seq
data from DLBCL (E, F) and FL (G) patients were deconvoluted based on a gene expression signature of terminally exhausted T-cells. Kaplan-
Meier plots with p values of corresponding log-rank test. LN: Lymph node. TF: Transcription factor.
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Figure 6. IKZF3+ TREG EM2 are clonally related to TFH cells and associated with grading of FL. 
A) Proportions of TREG EM2 and TFH cells determined by CITE-seq are illustrated as box plots (n = 51). All entities were tested for significance using
the two-sided Wilcoxon-test with rLN as reference. B) Dot plot showing the expression of important phenotypic proteins. Size and color of the dots
indicate the percentage of positive cells and scaled protein expression, respectively. Values were scaled between 0 and 1. C) Volcano plot
illustrating differentially expressed genes between TREG EM2 and EM1 cells. D) 5’ scRNA alongside full-length TCR repertoire data were mapped to
the CITE-seq reference data. Lines connect all TREG EM2 cells with any other cell given that both T-cells have the same TCR clonotype.
Percentages indicate shares of overlapping clonotypes for TFH, TPr, and TTOX cells. Analysis is based on n = 11 biologically independent patient
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