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Abstract 31 

Neuromodulatory nuclei that are part of the ascending arousal system (AAS) play a crucial role in regulating 32 

cortical state and optimizing task performance. Pupil diameter, under constant luminance conditions, is 33 

increasingly used as an index of activity of these AAS nuclei. Indeed, task-based functional imaging studies in 34 

humans have begun to provide evidence of stimulus-driven pupil-AAS coupling. However, whether there is such 35 

a tight pupil-AAS coupling during rest is not clear. To address this question, we examined simultaneously acquired 36 

resting-state fMRI and pupil-size data from 74 participants, focusing on six AAS nuclei: the locus coeruleus, 37 

ventral tegmental area, substantia nigra, dorsal and median raphe nuclei, and cholinergic basal forebrain. 38 

Activation in all six AAS nuclei was optimally correlated with pupil size at 0- to 2-second lags, suggesting that 39 

spontaneous pupil changes were almost immediately followed by corresponding BOLD-signal changes in the AAS. 40 

These results suggest that spontaneous changes in pupil size that occur during states of rest can be used as a 41 

noninvasive general index of activity in AAS nuclei. Importantly, the nature of pupil-AAS coupling during rest 42 

appears to be vastly different from the relatively slow canonical hemodynamic response function that has been 43 

used to characterize task-related pupil-AAS coupling. 44 

 45 
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Introduction 50 

Neuromodulatory brainstem, midbrain, and basal forebrain nuclei that together form the core of the 51 

ascending arousal system (AAS) are situated deep in the brain. They have widespread projections to the cortex, 52 

making them ideally suited to alter cortical states and optimize task performance (Bunzeck & Düzel, 2006; de 53 

Gee et al., 2017; Shine et al., 2021; Thiele & Bellgrove, 2018). Pupil diameter, under constant luminance 54 

conditions, has vastly been used as a proxy for activity of these subcortical nuclei (Joshi & Gold, 2020). Indeed, 55 

task-related activity of these nuclei is accompanied by changes in pupil size and its first-order derivative (i.e., rate 56 

of change), as evidenced by animal studies and functional magnetic resonance imaging (fMRI) studies in humans 57 

(Cazettes et al., 2021; de Gee et al., 2017; Murphy et al., 2014; Varazzani et al., 2015; Yang et al., 2021). Animal 58 

studies have also found pupil-AAS coupling of spontaneous fluctuations during rest (Joshi et al., 2016; Reimer et 59 

al., 2016). However, it is still largely unclear whether similar coupling can be found between resting-state 60 

fluctuations of pupil size and blood oxygen level-dependent (BOLD) signals in the human AAS. Assessing if and 61 

how activity in neuromodulatory brainstem, midbrain, and basal forebrain nuclei can be inferred from pupil size 62 

measurements is relevant for promoting our scientific and clinical understanding of AAS function. 63 

A small number of human resting-state fMRI studies have investigated the brain activity associated with 64 

fluctuations in pupil size (Breeden et al., 2016; Mäki-Marttunen & Espeseth, 2021; Murphy et al., 2014; Yellin et 65 

al., 2015) and pupil derivative (DiNuzzo et al., 2019; Schneider et al., 2016). Their results with respect to a 66 

coupling between pupil size and AAS activity are inconclusive, with most studies not reporting evidence for such 67 

a relationship. However, the majority of these studies did not focus on the AAS, Moreover, they did not include 68 

specific localization methods to delineate AAS regions-of-interest (ROIs) or correct for physiological sources of 69 

noise, such as cardiac and respiratory fluctuations. These approaches are important for reliable measurements 70 

in these subcortical nuclei (Brooks et al., 2013; Matt et al., 2019). To date, only Murphy et al. (2014) specifically 71 

investigated the relationship between pupil size and one AAS nucleus, namely the locus coeruleus (LC). The 72 

authors found a positive coupling between fluctuations in pupil size and activation in the LC during rest. To our 73 

knowledge, there have been no human fMRI studies so far that have reported a relationship between pupil size 74 

and other AAS nuclei during rest, despite the growing evidence from animal studies (Joshi et al., 2016; Reimer et 75 

al., 2016) speaking for such a relationship. Therefore, in the current study, we aimed to investigate whether pupil 76 

size (and the pupil derivative) can be used as an index of activity in neuromodulatory AAS nuclei during rest.  77 

To address this aim, we systematically examined simultaneous measurements of resting-state fMRI and 78 

pupil size from a large sample of healthy adults (N=74). We monitored BOLD signal from a number of subcortical 79 

nuclei part of the AAS and implicated in the control of cortical arousal levels: the LC, the ventral tegmental area 80 

(VTA), dopaminergic substantia nigra (SN), the dorsal (DR) and median (MR) raphe nuclei and the nucleus basalis 81 

of Meynert in the cholinergic basal forebrain (BF). Due to their size and location in the brain, studying these small 82 

nuclei using fMRI comes with a unique set of challenges (Forstmann et al., 2017; Liu et al., 2017a; Matt et al., 83 

2019). Here, we mitigated these challenges by implementing a number of methods, including multi-echo imaging 84 

to increase signal-to-noise ratio in subcortical structures (Miletić et al., 2020; Puckett et al., 2018; Turker et al., 85 

2021), neuromelanin-weighted T1 imaging for delineation of the LC (Clewett et al., 2016; Keren et al., 2015; Mäki-86 
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Marttunen & Espeseth, 2021; Priovoulos et al., 2018), optimized brainstem co-registration (ANTs SyN; Ewert et 87 

al., 2019), physiological noise regression to suppress respiratory and cardiac artifacts (Glover et al., 2000; Harvey 88 

et al., 2008), and no spatial smoothing of fMRI data (de Gee et al., 2017). 89 

As a first analysis, we intended to reproduce the analyses from two previous studies that did (Murphy 90 

et al., 2014) and did not (Schneider et al., 2016) find AAS correlates of pupil size during rest. The analyses in these 91 

studies were performed under the assumption that the relationship between pupil size and resting-state BOLD 92 

activity in AAS nuclei is governed by the canonical hemodynamic response function (HRF). As we could not 93 

replicate previous findings, we reasoned it is possible that during rest, when there is no external stimulus driving 94 

neural activity, the temporal relation between pupil dilation and AAS activity does not follow an HRF-like 95 

waveform. Therefore, we began examining the temporal relationship between pupil time series and AAS-BOLD 96 

activation using various transfer functions based on the canonical HRF, taking into account that subcortical 97 

structures have been characterized by faster time-to-peak (TTP) of the HRF than the cortex (Lau et al., 2011; 98 

Lewis et al., 2018; Yen et al., 2011). It is possible that the HRF does not provide an adequate model of the 99 

relationship between resting-state fluctuations in pupil size and AAS BOLD activity. We therefore also explored 100 

cross-correlations between AAS BOLD activity and the unconvolved pupil time series, systematically varying the 101 

forward and backward lag between the two measures. Together, these analyses offer new insights into the use 102 

of pupil size as an index of activity in AAS regions. 103 

 104 

Results  105 

The Results section is organized as follows. We first report a couple of verification analyses aimed to 106 

ensure that we could replicate the resting-state correlations between pupil size and whole-brain BOLD patterns 107 

reported in previous studies, and to assess the signal quality within the subcortical nuclei. Then, we attempt to 108 

reproduce the pupil-LC coupling that was reported in Murphy et al. (2014) by applying their convolution approach 109 

and LC localization method, as well as by interrogating the signal within our group LC ROI. After this, we move 110 

on to report three key analyses of pupil-AAS coupling aimed at understanding the temporal relationship between 111 

the two as well as the nature of this relationship: (i) an analysis in which we account for region- and participant-112 

specific HRF differences in the convolution approach of the pupil time series; (ii) an analysis in which we explore 113 

pupil-AAS coupling while systematically adjusting the TTP of the HRF; and (iii) a cross-correlation analysis and 114 

cross spectral power density analysis in which we explore the possibility that, during rest, the temporal 115 

relationship between pupil size and AAS BOLD patterns is not mediated by the HRF typically used in event-related 116 

fMRI design. 117 

 118 

Whole-brain pupil-BOLD patterns consistent with previous studies 119 

We aimed to verify that our data showed the expected pupil-associated BOLD response patterns at the 120 

level of the cortex, cerebellum and subcortical parts of the limbic system. To this end, we followed as closely as 121 
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possible the approaches from two previous studies reporting pupil-BOLD coupling during rest (Murphy et al., 122 

2014; Schneider et al., 2016) and indeed largely replicated their findings. First, following the approach by 123 

Schneider et al. (2016), we used pupil size (1-s shift) as a regressor in a GLM and convolved it with the canonical 124 

HRF (i.e., 6-s TTP). The assumption here is that the neural activity associated with spontaneous changes in pupil 125 

size is transformed into resting-state BOLD signal according to the same impulse response function as that driving 126 

neurovascular coupling during task performance. Indeed, we found positive correlations in the thalamus and 127 

negative correlations in the visual cortex and sensorimotor areas, as well as in the precuneus, cuneus, insula, 128 

superior temporal gyrus, and parahippocampal gyrus. These patterns of activation are consistent with those 129 

reported by Schneider et al. (2016; Figure 1a and Table 1). Second, we carried out the analysis in line with Murphy 130 

et al. (2014), using pupil size (not shifted) as a regressor and convolving it with the canonical HRF (i.e., 6-s TTP) 131 

as well as its temporal and dispersion derivatives (Figure 1b and Table 2). Adding these derivatives allows the 132 

timing of the HRF response peak and the width of the HRF response to vary across the whole brain. Here, we 133 

found significant clusters in the visual cortex, the insula, the anterior cingulate gyrus, and the inferior frontal 134 

gyrus, consistent with what was reported by Murphy et al. (2014). Overall, we found pupil-related BOLD response 135 

patterns across the whole brain that were highly consistent with the ones reported by the previous two studies. 136 

Following Murphy et al's. (2014) approach, we also inspected pupil-associated activity in the LC. However, we 137 

did not find significant voxels when using our group LC mask as an ROI or when we applied the more liberal mask 138 

used by (2014; Keren et al., 2009; 2-SD version). Thus, contrary to Murphy et al. (2014), we were unable to 139 

replicate pupil-LC BOLD coupling using the same convolution methods. 140 

 141 

 142 

Figure 1. Whole-brain pupil-BOLD coupling in comparison to previous studies. Neural correlates of pupil size 143 

from the analysis using the convolution approach from (a) Schneider et al. (2016) and (b) Murphy et al. (2014). 144 

Note that we only refer to the red and yellow activation in the figure from Murphy et al. (2014). Statistical 145 

parametric maps are thresholded at p < .001, uncorrected, for visualization purposes only. Whole-brain cluster-146 

level FWE-corrected inferential statistics, in MNI space, are reported in Table 1 and 2. 147 

 148 

 149 
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Table 1. Regions showing pupil-BOLD coupling using the convolution methods from Schneider et al. (2016) 150 

 Cluster 

 K pcorr 

Positive   

Thalamus (R), Posterior cingulate cortex (R/L) 871 <.001 

Rectus (L) 199 .010 

Cerebellum (R) 142 .043 

Cerebellum crus (L) 250 .003 

   

Negative   

Cerebellum crus (R/L), cerebellum 6 (R/L), cerebellum 4/5 (R/L), ( lingual gyrus (R/L), calcarine (R/L), 

fusiform gyrus (R/L), cuneus (R/L), precuneus (R/L), cerebellum 4 + 5 (L), cerebellar vermis, 

hippocampus (R/L), parahippocampal gyrus (R),  amygdala (R/L), thalamus (R), superior occipital 

gyrus (R/L), middle occipital gyrus (R/L), inferior occipital gyrus (R/L), superior parietal gyrus (L), 

inferior temporal gyrus (R/L), middle temporal gyrus (R/L), superior temporal gyrus (R/L), insula 

(R), postcentral gyrus (L), precentral gyrus (L), paracentral lobule (R/L), supplimentary motor 

area (R/L), middle cingulate gyrus 

65223 <.001 

Note. Reported clusters survived whole-brain family-wise error (FWE) correction at the cluster level (pFWE = .05). Abbreviations: R = right, L = 151 

left, pcorr = whole brain corrected cluster p-values, k = cluster size. 152 

 153 

Table 2. Regions showing pupil-BOLD coupling using convolution methods from Murphy et al. (2014) 154 

 Cluster 

 K pcorr 

Middle occipital gyrus (R/L), superior occipital gyrus (R/L), calcarine gyrus (R/L), cuneus (R/L), 

precuneus (R/L), angular gyrus (R/L), fusiform gyrus (R/L), cerebellum (R/L), middle temporal 

pole (R/L), inferior temporal pole (L), insula (R), inferior parietal lobule (R/L), superior parietal 

lobule (L), postcentral gyrus (R/L), middle frontal gyrus (R/L), medial frontal gyrus (R/L), inferior 

frontal gyrus (R/L), superior frontal gyrus (R/L), posterior cingulate gyrus, middle cingulate 

gyrus, anterior cingulate gyrus, supplementary motor area (R/L), middle frontal orbital (R/L), 

inferior frontal orbital (R/L), cerebellum crus II (R/L), cerebellum crus I (R/L), cerebellum 8 (R/L), 

cerebellum 9 (R/L),  Pons 

91471 <.001 

Rectus (R/L) 146 .010 

Note. Reported clusters survived whole-brain family-wise error (FWE) correction at the cluster level (pFWE = .05). Abbreviations: R = right, L = 155 

left, pcorr = whole brain corrected cluster p-values, k = cluster size. 156 

 157 

Assessment of the quality of subcortical fMRI data  158 

To assess the quality of the subcortical functional data we extracted the tSNR from each ROI (see 159 

Methods). The average tSNR across the AAS ROIs (Figure 2b; range: 23.3 - 72.9) and cortical regions (range: 49.6 160 

- 106.3) were in line with previous reports (Brooks et al., 2013, Figure 1: brainstem range: ~1-50 and cortex range 161 

~50-112; Sing et al., 2022, supplementary Figure 6: brainstem range: 0-50, cortex range: 0-50). We also replicated 162 

a recently reported pattern of positive (partial) correlations among the signal fluctuations in each pair of 163 
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subcortical ROIs, controlled for activity in the pons (Figure 2c; van den Brink et al., 2019; see also Singh et al., 164 

2022). Only the correlation between the DR and VTA was negative. Therefore, we are confident that the data 165 

had sufficient tSNR in our AAS ROIs to be able to assess pupil-AAS coupling. 166 

 167 

 168 

Figure 2. Overview of region-of-interest definition and validation of the quality of subcortical fMRI data. (a) All 169 

subcortical ROIs overlaid on the group T1 template. (b) Individual data points showing the temporal signal-to-170 

noise ratio for each ROI for session 1 (left) and session 2 (right; black points indicate the mean). (c) Correlation 171 

matrix showing that activity in subcortical nuclei co-varied positively with activity in other subcortical nuclei, with 172 

the strongest coupling present between the VTA and SN, which is to be expected given their close proximity, and 173 

the weakest (negative correlation) between the VTA and DR. Note: correlations were FDR-corrected and 174 

controlled for activity in the pons.  (d) FSE image of an example participant. Hyperintensities corresponding to the 175 

LC are visible in the yellow box (top). Using the FSE images, the LC (red) was manually delineated on the individual 176 

level following established protocols (Clewett et al., 2016; Mather et al., 2017). The graph shows the LC contrast-177 

to-noise ratio for all participants. The grey dot indicates the grand mean. Abbreviations: LC – locus coeruleus, VTA 178 

– ventral tegmental area, SN – substantia nigra, DR – dorsal raphe, MR – medial raphe, BF – basal forebrain ACC 179 

– anterior cingulate cortex, OCC – calcarine sulcus, CNR – contrast-to-noise ratio. 180 

 181 

 182 

No pupil-AAS coupling using region- and participant-specific estimates of the HRF 183 

The methods that have previously been used to examine co-fluctuations between pupil size and fMRI 184 

BOLD patterns worked under the assumption that the shape of the HRF during rest is homogeneous across the 185 

whole brain (Breeden et al., 2016; DiNuzzo et al., 2019; Schneider et al., 2016; Yellin et al., 2015). This assumption 186 
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may not be correct, and because even a 1-s latency difference between assumed HRF and actual HRF can have a 187 

significant impact on fMRI results (Wall et al., 2009), it may be important to account for regional and individual 188 

differences (Handwerker et al., 2004) in the shape of the HRF. Indeed, subcortical structures have been 189 

characterized by faster BOLD responses (TTP 4 – 5 s; Lau et al., 2011; Lewis et al., 2018; Yen et al., 2011) compared 190 

to the cortex (TTP 5 – 6 s; Lewis et al., 2018; Friston et al., 2000). Therefore, we next estimated ROI-specific and 191 

participant-specific HRFs using an approach in which spontaneous pseudo-events were identified in our resting-192 

state data and then aligned to determine the delay between the pseudo-events and corresponding BOLD 193 

signatures (Rangaprakash et al., 2018; Wu et al., 2013). The number of detected pseudo-events per ROI is shown 194 

in Figure 3c. Note that for some participants only one session was used to estimate these HRFs, so the number 195 

of detected pseudo-events for these participants tended to be smaller. 196 

After carrying our pairwise comparisons, we found that, as expected, the TTP of the estimated HRFs was 197 

significantly faster for all subcortical AAS ROIs than for each of the two cortical ROIs (Msubcortical ROIs = 4.7 s, 198 

SDsubcortical ROIs = 0.6 s, Mcortical ROIs = 5.4 s, SDcortical ROIs = 0.8 s; Figure 3d). The pupil-BOLD analysis using these specific 199 

HRFs, however, revealed no significant pupil-AAS correlations (Figure 3g, 3h). We only found that pupil size 200 

correlated negatively with activation in the OCC (pcorr < .001 [pupil size], pcorr = .018 [pupil derivative], FDR-201 

corrected). Note that the negative sign of this correlation is consistent with what we reported above and with 202 

previous reports linking pupil size to decreased activity in the visual system (Schneider et al., 2016; Yellin et al., 203 

2015). 204 
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 205 

Figure 3. Overview of the analysis using region- and participant-specific estimates of the HRF. (a) One 206 

participant’s pre-processed LC BOLD signal (concatenated across the two sessions), evaluated against a chosen 207 

threshold (>1 SD) to extract onsets of spontaneous neural events (indicated in yellow). (b) Estimated 208 

hemodynamic response functions (HRFs) for each participant and ROI. Black lines indicate the average across 209 
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participants. (c) The number of spontaneous neural events that were used to estimate the region- and participant-210 

specific HRFs. Black dots indicate the mean. (d) Time-to-peak (TTP) of the HRF for each participant and ROI. Black 211 

dots indicate the average across participants. Overview of the pupil data processing pipeline of one randomly 212 

chosen participant for pupil size (e) and the pupil derivative (f). The plots portray the raw pupil data (blue), the 213 

pupil time series down-sampled to the TR (red), and the convolved pupil time series (for LC HRF, green). The 214 

extracted t-values from the first-level resting-state HRF analysis for pupil size (g) and the pupil derivative (h). P-215 

values refer to one-sample t-tests (difference from zero; FDR-corrected).  Abbreviations: LC – locus coeruleus, VTA 216 

– ventral tegmental area, SN – substantia nigra, DR – dorsal raphe, MR – median raphe, BF – basal forebrain, ACC 217 

– anterior cingulate cortex, OCC – calcarine sulcus. 218 

 219 

 In sum, the use of region- and participant-specific HRFs also did not result in significant pupil-AAS 220 

coupling. Importantly, by focusing on pseudo-events in the fMRI data, this approach still assumes that 221 

neurovascular coupling during rest (and other passive conditions) is characterized by the typical sluggish HRF 222 

used in event-related fMRI design. 223 

 224 

Positive pupil-AAS coupling using HRFs with rapid time-to-peaks 225 

Since the analysis strategy so far unexpectedly did not result in pupil-AAS coupling, we let go of the 226 

assumption of a relatively slow HRF similar to that driving neurovascular coupling during task performance. 227 

Therefore we further examined a potential relationship between pupil and AAS ROIs by examining how 228 

systematically varying the TTP (from 1 s to 6 s) of the default canonical HRF affected the coupling between pupil 229 

dynamics and our AAS ROIs. This analysis was inspired by a recent animal study (Pais-Roldán et al., 2020) showing 230 

that pupil-BOLD signal coupling dynamics vary across time.  231 

We found that for almost all AAS ROIs the strength of pupil-BOLD coupling differed across TTPs (main 232 

effect of TTP; LC: p < .001, VTA:  p < .001, SN: p < .001, MR: p = .043, BF: p = .009, FDR-corrected for nine ROIs). 233 

The overall pattern shows that coupling between pupil size and AAS BOLD patterns increases with earlier TTPs. 234 

Specifically, we found positive correlations for all AAS regions at earlier TTPs (especially the 1-s [Figure 4a] and 235 

2-s TTPs) but no significant correlations (LC, VTA, SN, DR, MR) at later TTPs (5 s to 6 s; Figure 4b). For the OCC 236 

ROI, we found a positive correlation at the 1-s TTP, followed by a shift to negative correlations at later TTPs (4 s 237 

to 6 s), which is in line with previous work (Breeden et al., 2016; Schneider et al., 2016; Yellin et al., 2015) and 238 

the results we reported above (Whole-brain pupil-BOLD patterns consistent with previous studies), whereas the 239 

ACC correlated positively with pupil size at predominantly early TTPs (1 s to 4 s; Figure 4c; 4d), similar to the AAS 240 

ROIs. 241 

Similar analyses for the pupil derivative also showed significant differences in the strength of pupil-BOLD 242 

coupling across the TTPs for the VTA (p = .012), SN (p = .022), DR (p = .002), ACC (p = .009), and OCC (p < .001; 243 

FDR-corrected for nine ROIs). The overall pattern and follow-up t-tests revealed similar, but attenuated effects 244 
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in comparison to pupil size (Figure S2a). The most prominent exception was the OCC, which showed a curvilinear 245 

relationship with largest correlations for intermediate TTPs (2s to 5s), which is also visible upon inspecting the 246 

whole-brain maps in Figure S2b. The same analyses carried out for the control region in the pons revealed no 247 

main effect of TTP for pupil size or the pupil derivative, nor were there any positive or negative associations with 248 

pupil size or the pupil derivative for any TTP, attesting to the specificity of the pupil-BOLD associations found in 249 

our AAS and cortical ROIs. Statistical parametric maps including whole brain results for all TTPs are shown in 250 

Figure 4d and Figure S2b. 251 

These exploratory analyses suggest that fluctuations in pupil diameter have a much closer temporal 252 

relationship with changes in AAS-BOLD activity than what is characteristic of event-related responses.   253 
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 254 

 255 

Figure 4. Pupil-BOLD correlations based on systematic adjustment of the time-to-peak of the HRF. (a) Statistical 256 

maps showing pupil-BOLD correlations in the subcortex for the 1-s TTP. Graphs show the extracted t-statistics as 257 

a function of the systematically adjusted TTP for each participant in the subcortical ROIs (b) and the validation 258 

and control ROIs (c). P-values refer to one-sample t-tests (difference from zero; FDR-corrected). Black dots indicate 259 

the mean. (d) Statistical maps showing unsmoothed pupil-BOLD correlations across the cortex for each TTP (1 s 260 

to 6 s). All statistical maps were thresholded at p < .005 (uncorrected) for visualization purposes only.  261 

Abbreviations: LC – locus coeruleus, VTA – ventral tegmental area, SN – substantia nigra, DR – dorsal raphe, MR 262 

– median raphe, BF – basal forebrain, ACC – anterior cingulate cortex, OCC – calcarine sulcus. 263 

 264 
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Positive pupil-AAS coupling when BOLD patterns closely follow pupil fluctuations 265 

In our next analysis we wanted to release the assumption that BOLD responses associated with pupil-266 

size changes would resemble an HRF. Therefore, we correlated the BOLD signal from our AAS ROIs with the 267 

unconvolved pupil vector using a cross-correlation approach (Pais-Roldán et al., 2020; Yellin et al., 2015). This 268 

method also allowed us to interrogate the pupil-BOLD coupling in both time directions. To that end, we shifted 269 

the pupil vector 8 s backwards and forwards, in steps of 2 s, with negative lags (backwards) corresponding to 270 

pupil changes preceding the BOLD signal, and positive lags (forwards) corresponding to pupil changes succeeding 271 

the BOLD signal (Figure 5). 272 

Critically, and in line with the TTP analysis, we found significant positive pupil-BOLD correlations for all 273 

AAS ROIs (except the DR), with the strongest correlations occurring at lag 0 (Figure 5). These results again suggest 274 

that the relationship between pupil size and AAS activity is temporally close, rather than following the shape of 275 

an HRF with a 5- or 6-s TTP. In addition, these patterns of results appeared to be stable across the two sessions 276 

(Figure S3). For the pupil derivative (Figure S4), we observed a similar pattern in SN and VTA, with stronger 277 

correlations at lag 0, although overall the correlation coefficients were attenuated compared to those for pupil 278 

size, or not present in some AAS ROIs (LC, MR, and BF). 279 

For comparison, we also computed cross-correlations between pupil size and BOLD signal extracted 280 

from our validation and control ROIs (ACC, OCC, pons; Figure 5). The OCC showed strong negative correlations at 281 

lags +4 to +8 s, similar to previous studies (Murphy et al 2014; Schneider et al 2016), and in line with the 282 

replication and TTP analyses reported above. However, the OCC also showed a positive correlation with pupil 283 

size at short lags (-2 s to +2 s). Similarly, we found that both ACC and OCC correlated most strongly with the pupil 284 

derivative (Figure S4) at relatively short positive lags (0 s to +4 s), with a shift to a strong negative correlation at 285 

maximum positive lags (+8 s), especially in the OCC. 286 

Together, the TTP analysis and cross-correlation analysis yield essentially the same outcome, suggesting 287 

that no HRF convolution is needed to characterize the relationship between pupil size and AAS BOLD patterns 288 

during rest. 289 
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 290 

Figure 5. Cross-correlations between the unconvolved pupil time series and the BOLD time 291 

series at various time lags. Negative (positive) time lags indicate that the pupil signal precedes 292 

(follows) the BOLD signal. Black lines indicate the grand mean and shaded regions indicate the 293 

standard error of the mean. P-values refer to one-sample t-tests for the corresponding time bin. 294 

Black font and black dots indicate significant time bins (p < .05, FDR-corrected). 295 

 296 

Pupil-AAS coupling is largely driven by oscillations in low-frequency band 297 

Finally, to better understand the nature of the pupil-AAS coupling, we carried out an exploratory cross-298 

spectral density analysis (Figure 6). The cross power spectral density is the Fourier transform of the cross-299 

correlation functions reported above, and hence expresses the relationship between the pupil and AAS signals 300 

in the frequency domain. To determine which frequency bands were driving the observed positive pupil-AAS 301 

correlations, we calculated the cross spectral power density (see Methods) of the pupil size time series and 302 

average BOLD time series extracted from each ROI. A simple peak detection indicated that the correlations for 303 

most AAS nuclei and both cortical ROIs (ACC and OCC) were largely driven by frequencies between 0.04 and 0.09 304 

Hz (LC: 0.09, VTA: 0.04, SN: 0.03, DR: 0.008, MR: 0.04, BF: 0.04, ACC: 0.04, OCC: 0.07; Figure 6a; 6b).  305 
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 306 

 307 

Figure 6. Cross spectral power density analysis. Cross spectral power density for 308 

subcortical ROIs (a) and cortical ROIs (b) averaged across participants. Black lines 309 

indicate the grand mean and shaded regions indicate the standard error of the mean. 310 

Abbreviations: LC – locus coeruleus, VTA – ventral tegmental area, SN – substantia 311 

nigra, DR – dorsal raphe, MR – median raphe, BF – basal forebrain, ACC – anterior 312 

cingulate cortex, OCC – calcarine sulcus. 313 

 314 

Discussion 315 

In the current study we examined whether, during rest, non-luminance-related spontaneous 316 

fluctuations in pupil size were associated with fluctuations in BOLD signal in nuclei part of the ascending arousal 317 

system (AAS). We found a positive correlation between pupil size and BOLD signal in all of the AAS ROIs: LC, VTA, 318 

SN, DR, MR and (sublenticular) BF. This finding is in line with recent rodent studies (Joshi et al., 2016; Reimer et 319 

al., 2016) indicating that pupil changes reflect activity in multiple neuromodulatory systems, not only the 320 

noradrenergic system. Critically, using two different methodological approaches, we found that pupil-AAS 321 

coupling was strongest when the two signals were assumed to occur close in time. This means that during rest, 322 

unlike in response to task events (de Gee et al., 2017), BOLD signal fluctuations in AAS nuclei immediately follow 323 

fluctuations in pupil size. This correlation was largely driven by slow oscillations (i.e., ~0.05 – 0.1 Hz) in both 324 

measures. Together, our results suggest that pupil size can be used as a noninvasive readout of AAS activity, and 325 

reveal new insights into the temporal dynamics of pupil-AAS coupling during rest. 326 

 327 

We found robust positive correlations between pupil size and BOLD signal in five of our AAS ROIs: LC, 328 

VTA, SN, MR and (sublenticular) BF. The positive relationship with pupil size was less robust for the DR, and only 329 
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significant in the TTP analyses, perhaps because this area had lower tSNR than the other subcortical ROIs. Thus, 330 

unlike what findings from previous studies (e.g., Murphy et al., 2014) may have implicitly suggested, the coupling 331 

between pupil size and activation of the AAS is not specific for the LC. Our findings contribute to a growing body 332 

of literature showing a more general role for AAS nuclei in driving pupil size changes. Specifically, our findings 333 

are consistent with recent animal studies that found co-fluctuations in pupil size and LC and BF activity during 334 

rest (Joshi et al., 2016; Reimer et al., 2016); with studies showing that optogenetic activation of the LC or DR 335 

increases pupil size (Breton-provencher & Sur, 2019; Cazettes et al., 2021); and with human task-related fMRI 336 

work showing positive correlations between event-related pupil responses and BOLD responses in the LC, VTA 337 

and BF (de Gee et al., 2017). Unfortunately, it has become common practice for researchers to interpret task-338 

related pupillometry data in terms of the role of the LC in cognitive and brain function. However, our findings 339 

reinforce previous arguments (Joshi & Gold, 2020) that changes in pupil size should not be used to infer a 340 

selective role for the LC. An outstanding question is to what extent the AAS nuclei have independent influences 341 

on pupil size. 342 

 343 

The temporal relationship between pupil size and AAS BOLD response patterns was different than we 344 

had expected based on reports from previous resting-state and event-related fMRI studies (e.g., de Gee et al., 345 

2017; Murphy et al., 2014). Namely, we found that BOLD signal in the AAS closely followed the corresponding 346 

pupil fluctuations. These results were corroborated by a series of analyses in which we convolved the pupil time 347 

series with HRFs with systematically varied TTP (1-6 s). Pupil time series that were convolved with the canonical 348 

HRF (TTP = 6 s) or region-specific HRFs based on a point process approach were not significantly related to AAS 349 

activation. Instead, maximal and significant pupil-AAS coupling was found using HRFs with TTPs of 1 to 3 seconds. 350 

In addition, cross-correlations between the unconvolved pupil time series and AAS BOLD time series similarly 351 

revealed maximum correlations when the signals occurred close in time (at lags of 0 to 2 seconds). For the pupil 352 

derivative we obtained similar results, with strongest cross-correlations around lag 0 s to +2 s, although the 353 

correlation coefficients were overall attenuated and only remained significant in the VTA and SN. Our findings 354 

are in line with previous research that has suggested that subcortical regions (Lewis et al., 2018) and AAS nuclei 355 

(de Gee et al., 2017) are characterized by faster event-related hemodynamic responses than cortical regions. 356 

However, our findings suggest an even closer temporal relationship between pupil size and BOLD response 357 

patterns in AAS nuclei during rest. Therefore, these findings, although correlational, have implications for our 358 

understanding of the time scale at which AAS regions might drive changes in pupil diameter. 359 

 360 

Furthermore, our findings may provide a reason why most previous human resting-state pupil-fMRI 361 

studies (e.g. Breeden et al., 2016; Schneider et al., 2016; Yellin et al., 2015) did not find or report pupil-AAS 362 

coupling. Namely, these studies only investigated pupil-BOLD coupling with longer time lags between pupil 363 

changes and corresponding BOLD response patterns. Using standard TTPs we (broadly) replicated previously 364 

reported associations between pupil size and cortical BOLD response patterns (e.g., negative coupling with the 365 

visual cortex, positive coupling with the thalamus and posterior cingulate cortex; e.g., Murphy et al., 2014; 366 

Schneider et al., 2016; Yellin et al., 2015). However, we did not find evidence that standard TTPs characterized 367 
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the coupling between resting-state pupil size and AAS activation. Although one of these previous studies did 368 

report pupil-LC coupling (Murphy et al., 2014), we were unable to replicate this finding in our data, despite using 369 

the same convolution methods, LC mask, and other methodological details of this study, and despite a much 370 

larger sample size (70 versus 14 included participants). Although we cannot make a direct comparison between 371 

the shape of human and mouse HRFs, a recent study in rats (Pais-Roldán et al., 2020) also found temporally close 372 

positive coupling (i.e., 1-s TTP) between resting-state pupil dynamics and BOLD signal in specific areas in the 373 

brainstem including the A5 noradrenergic cell group (which projects to the spinal cord). They, however, did not 374 

find evidence for a coupling between pupil dynamics and any of the AAS nuclei. Although this seems inconsistent 375 

with our findings, note that the rats in this study were anesthetized. Indeed, preliminary evidence suggests that 376 

behavioral states can strongly modulate pupil-AAS coupling (Megemont et al., 2022), and therefore it is possible 377 

that in an anesthetized state pupil-AAS coupling is reduced or absent.  378 

 379 

Lastly, our findings raise the question how the neuronal activity in AAS nuclei that contributes to resting-380 

state pupil fluctuations is coupled to the BOLD signal in these areas. The main frequency band that drove our 381 

pupil-AAS coupling was ~0.05-0.1 Hz. Interestingly, recent work in the mouse cortex has shown that the ultra-382 

slow (~0.1 Hz) BOLD fluctuations that are characteristic of resting-state fMRI data are entrained by ultra-slow 383 

vasomotor oscillations that lead to rhythmic changes in the diameter of brain arterioles. These vasomotor 384 

oscillations, in turn, are entrained by rhythmic local neuronal activity in the same ultra-low-frequency band (Drew 385 

et al., 2020; Mateo et al., 2017). These findings beg the question whether this neurovascular coupling sequence 386 

may be responsible for our findings. However, in the mouse brain this sequence, from neuronal activity and 387 

vasomotion to blood oxygenation levels, was estimated to last approximately 2.6 s (Mateo et al., 2017). This 388 

seems inconsistent with the 0- to 2-s interval between our estimated timing of the AAS neuronal activity 389 

underlying pupil fluctuations and the timing of corresponding AAS BOLD signals. Future work in animal models 390 

should therefore examine the physiological basis of these seemingly close temporal relationships between 391 

activity of AAS nuclei and corresponding changes in pupil size by simultaneously measuring pupil size changes 392 

and rhythmic BOLD fluctuations during awake rest.  393 

 394 

Our study has several potential limitations. First, although our EPI sequence had a higher spatial 395 

resolution (2 mm isotropic) than previous studies linking pupil size to BOLD (e.g., 3.5 mm isotropic in Murphy et 396 

al., 2014), imaging small subcortical structures at this conventional spatial resolution may have led to partial-397 

volume averaging (Forstmann et al., 2017; Liu et al., 2017a), especially in the LC, the smallest of our ROIs. To 398 

mitigate this concern, we did not apply spatial smoothing to the EPI data. Our confidence in the LC imaging data 399 

reported here is also bolstered by the fact that the LC showed the same pattern of results as other, much larger 400 

nuclei, including the VTA, SN and BF, that are less susceptible to partial-volume averaging effects. We also note 401 

that a further increase in spatial resolution at 3T would be accompanied by a dramatic drop in signal-to-noise 402 

ratio (Murphy et al., 2007), and therefore would not per se lead to a better signal from the AAS regions. Although 403 

future studies combining pupillometry with ultra-high-field fMRI (e.g., 7T) could circumvent this problem, 404 

measuring pupil size in ultra-high-field scanners is still challenging. A second potential limitation concerns the 405 
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proximity of some of the subcortical ROIs to air- and cerebrospinal fluid-filled cavities as well as major arteries, 406 

making them particularly prone to movement and other sources of physiological noise (Brooks et al., 2013). To 407 

mitigate this concern, we included an extensive physiological noise correction model, accounting for measured 408 

cardiac and respiratory signal components as well as residual signal from the fourth ventricle. Furthermore, if 409 

the BOLD signal in AAS nuclei was largely driven by noise, this could not explain the robust temporal relationship 410 

between AAS BOLD and pupil size, and the selective absence of pupil-BOLD coupling in the pons, our control 411 

region that is also susceptible to physiological noise artifacts. A third drawback is that our analyses were limited 412 

by the temporal resolution of our fMRI data. Due to our 2-s TR we were unable to interrogate potentially 413 

meaningful, faster pupil-BOLD correlations. Future studies using ultra-high-field fMRI and/or simultaneous 414 

imaging techniques (Barth et al., 2016; Lewis et al., 2016) can speed up image acquisition and assess the presence 415 

of pupil-BOLD correlations at a faster timescale. 416 

 417 

In conclusion, we show that spontaneous changes in pupil size that occur during rest reflect activity in a 418 

variety of nuclei that are part of the AAS. This suggests that pupil size can be used as a noninvasive and general 419 

index of AAS activity, in contrast to previous work suggesting a selective role for the LC in arousal-related pupil 420 

size changes. However, the nature of pupil-AAS coupling during rest appears to be vastly different from task-421 

related pupil-AAS coupling, which has previously been modeled using a canonical HRF. Together, our findings 422 

provide new insights into the nature and temporal dynamics of AAS-linked pupil size fluctuations.  423 

 424 

Materials & Methods 425 

This study was preregistered on the Open Science Framework before data analysis: osf.io/xcj2y. Note 426 

that preregistration occurred after data collection; due to circumstances surrounding the global pandemic, 427 

already collected data was used to address our hypotheses. As we could not replicate previous findings, we 428 

needed to deviate from the preregistration. When we deviated from the preregistration, this will be explicitly 429 

mentioned below. 430 

 431 

Participants  432 

Seventy-four right-handed participants were recruited from New York University (39 females, mean age: 433 

22.5 years, age range: 18-33 years) and completed two resting-state sessions on two consecutive days. Exclusion 434 

criteria for participation were as follows: current treatment or treatment in the last year of psychiatric, 435 

neurological, or endocrine disease, current treatment with any medication, average use of >3 alcoholic beverages 436 

daily, average use of recreational drugs, habitual smoking, uncorrected vision, and contraindications for MRI. 437 

Two participants were excluded entirely and one session for one participant was excluded due to technical issues 438 

with the scanner. The two resting-state sessions were part of a larger study of which the data will not be reported 439 

here. The study was approved by the University Committee on Activities Involving Human Subjects at New York 440 

University (Institutional Review Board #2016-2) and the study was conducted in accordance with these guidelines 441 
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and regulations. All participants provided written informed consent. Participants received a payment ($35 per 442 

hour) for their participation. 443 

 444 

Procedure  445 

 All participants completed two resting-state sessions of five minutes each, 24 hours apart (+/- 2 hours). 446 

During the session they were instructed to think of nothing in particular, let their mind wander but not to have 447 

any repetitive thoughts such as counting. They were instructed to keep their eyes open and maintain their gaze 448 

on a centrally presented fixation dot (RGB: 60, 60, 255) on a grey screen (RGB: 125,125,125).  449 

  450 

MRI data acquisition  451 

MRI data was acquired using a Siemens MAGNETOM Prisma 3T MR scanner. T2*-weighted BOLD images 452 

were recorded using a customized multi-echo EPI sequence with ascending slice acquisition (58 axial slices; TR = 453 

2 s; TE = 14.4, 39.1 ms; partial fourier = 6/8; GRAPPA acceleration factor = 2; multiband acceleration factor = 2; 454 

flip angle = 65°; slice matrix size 104 x 104 mm; slice thickness = 2.0 mm; FOV: 208 x 208 mm; slice gap = 0; 455 

bandwidth: 2090 Hz/px; echo spacing: 0.56 ms). Multi-echo EPI protocols can be used to avoid the tradeoff 456 

between BOLD sensitivity in the cortex and subcortex (Turker et al., 2021). To account for regional variation in 457 

susceptibility-induced signal dropout, voxel-wise weighted sums of both echoes were calculated based on local 458 

contrast-to-noise ratio (Poser et al., 2006). A structural image (0.9 mm isotropic) was acquired using a T1-459 

weighted 3D MP-RAGE (TR = 2.3 s; TE = 2.32 ms; flip angle = 8°, FOV = 256 x 256 x 230 mm). A fast-spin echo (FSE) 460 

neuromelanin-sensitive structural scan was acquired for delineation of the LC (11 axial slices , TR = 750 ms, TE = 461 

10 ms, flip-angle = 120°, bandwidth = 220 Hz/Px, slice thickness = 2.5 mm, slice gap = 3.5 mm; in-plane resolution 462 

= 0.429 x 0.429 mm). Note that a large slice gap is a common feature in the use of FSE scans for LC imaging (Liu 463 

et al., 2017a). This procedure allows for a high in-plane resolution but with a thicker slice thickness, resulting in 464 

elongated voxels that match the cylindrical shape of the LC. To minimize excessive movement during scanning, 465 

we secured participants’ heads in a pillow and medical tape was attached across their foreheads to provide 466 

immediate tactile feedback in case of any movement, which has been shown to reduce motion (Krause et al., 467 

2019). 468 

 469 

MRI data preprocessing 470 

Preprocessing of MRI data was carried out using Advanced Normalization Tools v2.1 (ANTs) and SPM12 471 

(https://www.fil.ion.ucl.ac.uk/spm; Wellcome Department of Imaging Neuroscience, London, UK). Here we 472 

deviated from the preregistration, as we reported we would carry out all preprocessing steps in SPM12. Since 473 

ANTs SyN was found to be the best performing method for normalization (Ewert et al., 2019), some steps, 474 

including standardization and registration, were carried out using ANTs instead, 475 
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A whole-brain group template (T1template) was generated using all MP-RAGE scans (using 476 

antsMultivariateTemplateConstructinon2.sh; Figure S1a). This process involved two steps: 1) participants’ whole-477 

brain T1 scans (T1native space) were coregistered to a common group space (T1group space); then 2) these coregistered 478 

scans were averaged to form a whole-brain group template (T1template). An initial fixed image was created by 479 

averaging all input files. For registration (or ‘normalization’) of input images, a set of linear (rigid, then affine) 480 

and nonlinear (SyN) algorithms were used. Each nonlinear registration was performed over four levels of 481 

increasingly fine-grained resolutions (100x70x50x10 iterations). We applied a N4 bias field correction on moving 482 

images before each registration (using N4BiasFieldCorrection function). Cross-correlation was the similarity 483 

metric used for registration. Greedy SyN (SyN) was the transformation model used for registration. The gradient 484 

step size for refining template updates was set at 0.20 mm. After the whole-brain template image (T1template) was 485 

generated, for optimal coregistration, all individual MP-RAGE scans (T1native space) were submitted to a new 486 

coregistration step (using antsRegistration.sh; Figure S1b). For this we performed linear (rigid, then affine), 487 

followed by nonlinear (SyN), registration steps, resulting in optimized individual whole-brain scans in template 488 

space (T1group space).  489 

Mutual information maximization-based rigid-body registration was used to register MP-RAGE scans 490 

and functional images. Functional images were motion-corrected using rigid-body transformations. To move the 491 

functional images into group space, the affine transforms and displacement field transformations from the final 492 

coregistration (T1native space to T1group space) for each participant were applied to their respective functional images 493 

(using linear interpolation). To avoid contamination of AAS BOLD activity by signal from adjacent structures, all 494 

analyses reported in this paper, except those aimed at replicating previous studies (see section ‘Comparisons 495 

with previous studies’), were performed without spatial smoothing. 496 

We applied a movement and physiological noise correction model with 33 regressors in SPM12. These 497 

included six movement parameter regressors (3 translations, 3 rotations) derived from rigid-body motion 498 

correction, high-pass filtering (1/128Hz cut-off) and AR(1) serial autocorrelation corrections. In addition these 499 

included retrospective image-based correction (RETROICOR) of physiological noise artifacts (Glover et al., 2000) 500 

regressors. Raw pulse was preprocessed using PulseCor (https://github.com/lindvoo/PulseCor) implemented in 501 

Python for artifact correction and peak detection. Fifth-order Fourier models of the cardiac and respiratory 502 

phase-related modulation of the BOLD signal were specified (Van Buuren et al., 2009), yielding 10 nuisance 503 

regressors for cardiac noise and 10 for respiratory noise. Additional regressors were calculated for heart rate 504 

frequency, heart rate variability, (raw) abdominal circumference, respiratory frequency, respiratory amplitude, 505 

and respiration volume per unit time (Birn et al., 2006), yielding a total of 26 RETROICOR regressors 506 

(https://github.com/can-lab/RETROICORplus). An additional regressor was added to remove signal fluctuations 507 

from the fourth ventricle, which was manually delineated using individual MP-RAGE scans (M= 90, SD=34 voxels). 508 

This movement and physiological noise correction model was added to all general linear models (GLMs) 509 

described below. Please note that we deviated from the preregistration and did not apply ‘scrubbing’ in addition 510 

to the 33 nuisance regressors.  511 

 512 
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Pupil data acquisition and preprocessing 513 

 Pupil size was recorded using an MR-compatible eye-tracker (EyeLink 1000 Plus; SR Research, Osgoode, 514 

ON, Canada) at a sampling rate of 250 Hz. The eye-tracker was placed at the end of the scanner bore, such that 515 

the participant’s right eye could be tracked via the head coil mirror. Before the start of each resting-state session, 516 

we began with a calibration of the eye-tracker using the standard five-point EyeLink calibration procedure. 517 

Moments when the eye-tracker received no pupil signal (i.e., during eye blinks) were marked 518 

automatically during acquisition by the manufacturer’s blink detection algorithm. Pupil data was preprocessed 519 

using PupCor (https://github.com/lindvoo/PupCor) implemented in Python. Missing and invalid data due to 520 

blinks were replaced using linear interpolation for the period from 100 ms before blink onset to 400 ms after 521 

blink offset. Following the automated interpolation procedure, the data were manually checked and corrected if 522 

any artifacts had not been successfully removed. Two sessions from two separate participants were excluded 523 

due to technical problems with the eye-tracker. To ensure the pupil data was of good quality, a session was 524 

excluded from all analyses if the raw pupil data contained >25% invalid samples (marked automatically during 525 

data acquisition by EyeLink’s blink detection algorithm; n sessions excluded = 15). For the remaining sessions (n 526 

sessions included = 126; n participants = 70, average proportion invalid samples = 6.4%) we computed pupil size 527 

as well as the first-order derivative of the pupil size time series. The latter describes the slope of changes in pupil 528 

size, where positive values reflect pupil dilation and negative values reflect pupil constriction. Because pupil size 529 

lags behind the underlying neural activity in AAS nuclei (including the LC and DR; Cazettes et al., 2021; Joshi et 530 

al., 2016; Liu et al., 2017b; Reimer et al., 2016), and in line with previous neuroimaging studies (Pfeffer et al., 531 

2022; Schneider et al., 2016; Yellin et al., 2015), we shifted the pupil time series one second back in time. This 532 

step was only omitted when we attempted to replicate Murphy et al. (2014). Both pupil time series (i.e., pupil 533 

size and pupil derivative) were then resampled to the TR (2 s) resolution (0.5 Hz). To detect further artefactual 534 

samples, within each 2-s time bin, any sample +/-3 SD outside the time bin mean was removed, after which the 535 

average of the corresponding time bin was recalculated from the remaining non-artefactual samples (percentage 536 

samples recalculated = 0.04%; as in Murphy et al., 2014). The results of these pre-processing steps were two 537 

pupil time series (pupil size and pupil derivative) that were equal in length to the number of fMRI volumes (i.e., 538 

150) collected in each session. 539 

 540 

Definition of regions-of-interest (ROIs) 541 

The LC was delineated on each participant’s FSE scan using ITK-SNAP (version 3.8.0; Yushkevich et al., 542 

2006). Two raters (BL and a research assistant) manually identified LC voxels following established protocols 543 

(Clewett et al., 2016; Mather et al., 2017). Pairwise dice similarity coefficients between both raters were high (M: 544 

0.96, range: 0.70 – 1.00). As described in Clewett et al. (2016), left and right LC regions were identified in the 545 

axial slice ~7 mm below the inferior colliculus. Within this slice, two regions were delineated in the form of a 546 

cross ~1.29 mm wide and ~1.29 mm high (3 x 3 voxels, see Figure 2d), covering the 1 – 2 mm of LC neurons in 547 

this slice. The center voxel for each cross was placed on the voxel with the highest signal intensity that fell within 548 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.04.514984doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.04.514984
http://creativecommons.org/licenses/by-nc/4.0/


22 
 

an area anatomically consistent with the location of the LC. If the peak voxel was located immediately adjacent 549 

to the fourth ventricle, the center of the ROI was placed one voxel further away from the ventricle. This ensured 550 

that the peak voxel but no fourth ventricle voxels were included in the ROI. To ensure we captured LC intensity 551 

signal, we calculated an objective measure for comparisons namely contrast-to-noise ratios between the average 552 

signal intensity in the LC relative to a pontine reference region. Contras-to-noise ratios were positive for all 553 

participants, indicating that LC intensity was consistently higher than pontine intensity (M: 0.17, range: 0.08 – 554 

0.29; Figure 2d). The obtained contrast-to-noise ratios were in line with previous reports (Clewett et al., 2016; 555 

Mather et al., 2017). For three participants we could not delineate LC ROIs because movement led to poor-quality 556 

FSE images. For these participants we used the group LC ROI (i.e., average of all individual LC ROIs in group space 557 

thresholded at 2 SD above the mean). This group LC ROI was also used for visualization purposes. In line with 558 

current standards (Yi et al., 2021), the LC masks were then transformed (using nearest neighbor interpolation) 559 

into template space by applying the linear and nonlinear transformations from the final coregistration (T1native 560 

space to T1group space), and resliced resulting in the final individual LC masks in functional space (range of size in 561 

functional space:  1 – 7 voxels, M=3.4 , SD=1.3 voxels).  562 

Published probabilistic atlases were used for the remaining subcortical ROIs as there are no established 563 

protocols for individual segmentation of these regions: VTA (Trutti et al., 2021), SN (Alkemade et al., 2020), DR 564 

(Beliveau et al., 2015), MR (Beliveau et al., 2015) and the sublenticular (Ch4) part of the BF (Eickhoff et al., 2005; 565 

Zaborszky et al., 2008), which includes the cholinergic nucleus basalis of Meynert (see Figure 2a). All atlases were 566 

originally in MNI space. To move the atlases into our study-specific template space, antsRegistration.sh (using 567 

the same parameters as described above) was applied to generate the transformation matrices between MNI 568 

space and template space, which were applied to each ROI mask. Each subcortical mask was then thresholded 569 

and resliced to the functional space. In the preregistration, we reported that we would only be examining pupil-570 

BOLD coupling in the LC, VTA, and SN. We also opted to include the raphe nuclei and BF since recent evidence 571 

shows that they are involved in driving pupil size during task behaviours (Cazettes et al., 2021; de Gee et al., 572 

2017). 573 

Previous studies (Schneider et al., 2016; Yellin et al., 2015) have found a robust relationship between 574 

pupil size and BOLD patterns in the occipital cortex (OCC) and anterior cingulate cortex (ACC). Therefore, we 575 

included these two cortical regions as additional validation ROIs. Specifically, we obtained masks of the calcarine 576 

sulcus in the OCC and ACC using the automated anatomical labeling atlas in SPM (Tzourio-Mazoyer et al., 2002). 577 

Lastly, to explore the specificity of our pupil-AAS BOLD results, we delineated a cubic ROI in the medial part of 578 

the basis pontis (pons), which served as a control region in which we did not expect to find pupil-BOLD coupling. 579 

The same procedure as described above was carried out to move these masks from MNI space into our study-580 

specific template space. 581 

 582 

fMRI data quality assessment 583 

Comparisons with previous studies 584 
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We wanted to ensure that we could replicate the resting-state correlations between pupil size and BOLD 585 

patterns reported in previous studies. First, we followed the methods of Schneider et al. (2016). We convolved 586 

the pupil size time series with the canonical HRF (6-s TTP [time-to-peak]). This single pupil regressor, along with 587 

the movement and physiological noise correction model were entered into first-level GLMs. Note that we only 588 

refer to the light condition in Schneider et al. (2016), since we did not assess other light conditions. Second, we 589 

followed the methods of Murphy et al. (2014). Here, we used the preprocessed pupil size time series and 590 

convolved that with the default canonical HRF, as well as its temporal and dispersion derivatives (Friston et al., 591 

2000). The resulting three pupil time series were entered into a first-level GLM together with the movement and 592 

physiological noise correction model. For the Murphy et al. (2014) comparison analysis, the first-level single-593 

subject contrast maps were submitted to a second-level random effects analysis (one-way ANOVA, three levels 594 

of pupil/basis functions). To interrogate pupil correlations within the LC, statistics were also carried at the 595 

second-level using small volume correction with our group LC mask and the LC mask (Keren et al., 2009) used by 596 

Murphy et al. (2014) as an ROI in SPM12. In line with the reports of Schneider et al. (2016) and Murphy et al. 597 

(2014), the analyses described here included spatial smoothing with a 6-mm full width at half maximum (FWHM) 598 

Gaussian kernel. 599 

 600 

Assessment of the quality of subcortical fMRI data  601 

Next, we assessed the signal quality within the subcortical nuclei to ensure we would be able to capture 602 

pupil-AAS coupling. First, we inspected the temporal signal-to-noise ratio (tSNR) of our data in all cortical and 603 

subcortical ROIs. To do this, the tSNR was calculated as the ratio of the mean and the standard deviation of the 604 

signal across the unsmoothed BOLD time series from the two sessions. We then averaged the resulting tSNR 605 

within each ROI. Second, we investigated if we could replicate previous work reporting co-fluctuations between 606 

activity in various subcortical ROIs during rest (van den Brink et al., 2019). The extracted BOLD signal from each 607 

ROI (LC, VTA, SN, DR, MR, BF, and pons as a control region) per session, per participant, was denoised (using the 608 

movement and physiological noise correction model described above) and demeaned and then entered into a 609 

partial correlation analysis. We computed a partial correlation for each pair of AAS nuclei, controlling for activity 610 

in the pons. Correlation coefficients underwent a Fisher r-to-Z transform and were then submitted to one-sample 611 

t-tests. 612 

 613 

Pupil-AAS coupling analyses 614 

To systematically examine pupil-AAS coupling, and to understand the temporal relationship between 615 

the two signals, we conducted a set of three main analyses. The rationale for our approach was that previous 616 

studies (see Comparisons with previous studies) assumed that pupil-brain coupling during rest would follow the 617 

canonical HRF used in event-related fMRI designs. However, these assumptions may not be correct or may not 618 

apply to subcortical nuclei. Therefore, in our first analysis we (i) convolved the pupil time series with participant-619 
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specific and ROI-specific estimates of the HRF (described below in Estimation of region- and participant-specific 620 

HRF), which showed a range of TTPs. In the second analysis we (ii) systematically changed the TTP of the canonical 621 

HRF (from 1 to 6 s, in steps of 1 s) and convolved the pupil time series with each of these. And lastly, we (iii) 622 

performed a pupil-AAS cross-correlation analysis in which we did not convolve the pupil time series at all. Note 623 

that analyses (ii) and (iii) were not preregistered, as they were carried out to better understand the outcome of 624 

analysis (i). Therefore, they should be deemed exploratory. We will now provide a detailed description of each 625 

of these analyses. 626 

 627 

Estimation of region- and participant-specific HRF 628 

In the first main analysis, we aimed to account for HRF variability across different brain regions and 629 

participants in our resting-state data. Here, we deviated from the preregistration, in which we stated that we 630 

would obtain participant-specific HRFs from event-related fMRI data. However, the HRFs based on these event-631 

related fMRI data did not provide plausible HRFs in the AAS regions (i.e., did not rise up to one tall peak and 632 

follow with an undershoot), possibly because these AAS regions may not have been involved in the task at hand. 633 

Instead, we used a blind deconvolution technique developed by Wu et al. (2013) to estimate region- and 634 

participant-specific HRFs based on the data from both resting-state sessions. This point process method has been 635 

validated on simulated as well as empirical data (Rangaprakash et al., 2018; Wu et al., 2021). It assumes that a 636 

common HRF is shared across various spontaneous point process events (i.e., random neural events) in a given 637 

voxel or ROI. After physiological correction, the cleaned BOLD signal 𝑦(𝑡) at a given voxel or ROI is considered as 638 

the convolution of the voxel/ROI-specific HRF ℎ(𝑡) and spontaneous neural events 𝑥(𝑡) 639 

𝑦(𝑡) = 𝑥(𝑡) ⊗ ℎ(𝑡) + 𝑐 +  ℇ(𝑡) 640 

where 𝑐 is a constant term indicating the baseline magnitude of the BOLD response, ℇ(𝑡) is noise, and, ⊗ denotes 641 

convolution. Spontaneous point process events �̂�(𝑡) were identified as BOLD fluctuations of relatively large 642 

amplitude (one or more standard deviations away from the mean; see Figure 3a). Before identifying these events, 643 

we removed movement and physiological noise with the same set of 33 regressors as described above (see MRI 644 

data preprocessing). We then applied a high-pass filter (1/128Hz cut-off) and AR(1) serial autocorrelation 645 

corrections. These events were modeled as a train of Dirac delta functions given by 646 

�̂�(𝑡) =  ∑ δ(t − τ)

∞

𝑟=0

 647 

where δ(t − τ) is the delta function. The ROI-specific HRF ℎ(𝑡) was then fitted according to �̂�(𝑡) using a canonical 648 

HRF and two derivatives (temporal derivative and dispersion derivative; Friston et al., 2000). Once ℎ(𝑡) was 649 

calculated, we obtained an approximation �̂�(𝑡) of the neural signal from the observed data using a Wiener filter. 650 

ROI-specific HRFs (Figure 3b) were estimated for all AAS nuclei (i.e., LC, VTA, SN, DR, MR, BF) and two validation 651 

regions (i.e., ACC, OCC) and one control region (i.e. pons). To maximize the number of spontaneous neural events, 652 

HRFs were estimated based on the concatenated BOLD signals from the two sessions (see Figure 3c for number 653 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.04.514984doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.04.514984
http://creativecommons.org/licenses/by-nc/4.0/


25 
 

of detected pseudo-events per ROI). These HRFs were then convolved with the two pupil time series (i.e., pupil 654 

size [Figure 3e] and pupil derivative [Figure 3f]), forming the final pupil regressors that were entered into the 655 

GLMs for this analysis. GLMs were made up of a single pupil regressor-of-interest in addition to our physiological 656 

noise correction model described above. Analysis for pupil size included nine GLMs per participant, dedicated to 657 

six AAS nuclei (LC, VTA, SN, DR, MR, BF) and the three validation and control regions (ACC, OCC, pons). Similarly, 658 

nine models formed the analysis for the pupil derivative.  659 

 660 

Systematic adjustment of HRF time-to-peak 661 

To explore other possible temporal relationships between pupil size and AAS BOLD patterns, we carried 662 

out a second analysis of pupil-AAS coupling where the TTP of the HRF was systematically shifted in time (time-663 

to-peak [TTP] analysis; Pais-Roldán et al., 2020). This was done using the canonical HRF (Friston et al., 2000), 664 

which by default has a TTP (delay of response relative to onset) of 6 s. To explore pupil-AAS coupling at shorter 665 

lags, we compared six HRFs with TTPs varying between 1, 2, 3, 4, 5, and 6 s. These HRFs were created using 666 

spm_hrf() in SPM, where parameter p(1) which refers to ‘delay of response (relative to onset)’ was adjusted from 667 

6 (default) to 1, 2, 3, 4, and 5 respectively. Note that the 6-s TTP corresponds to the TTP used in the analysis 668 

corresponding to Schneider et al. (2016). These six HRFs were then convolved with the two pupil time series 669 

(pupil size, pupil derivative) for each participant, resulting in 12 pupil regressors. Each pupil size regressor was 670 

then added to the physiological noise correction model, making up six GLMs per participant, each focusing on 671 

one TTP (i.e., 1 s, 2 s, 3 s, 4 s, 5 s, 6 s). Similarly, six GLMs were created for the pupil derivative. 672 

 673 

Analyses using unconvolved pupil time series 674 

To further characterize the nature of pupil-AAS coupling we carried out two analyses using the 675 

unconvolved pupil time series. Firstly, we performed a cross-correlation analysis (Pais-Roldán et al., 2020) in 676 

which the preprocessed (downsampled, demeaned, unconvolved) pupil timeseries (size and derivative) were 677 

shifted forwards and backwards relative to the BOLD signal (denoised using the movement and physiological 678 

noise correction model and demeaned). Note that the BOLD signal from each ROI was first averaged and then 679 

entered into the cross-correlation analysis. This analysis is similar to the TTP analysis but used unconvolved pupil 680 

time series and allowed us to investigate both positive and negative lags between the pupil and BOLD signals, 681 

which was not possible with the TTP method. Secondly, in order to determine which frequencies were driving 682 

the observed pupil-BOLD cross-correlations, we estimated for each ROI the cross spectral power density (Yellin 683 

et al., 2015), the Fourier transform of the cross-correlations. We did this using cspd() in Matlab, setting the 684 

window length to 10 samples with an overlap of 3 samples.  685 

 686 

Statistical analyses 687 
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All first-level GLMs described above were constructed in SPM12 with session (session 1, session 2) as a 688 

within-subject factor (n=56). For participants in which only one session could be included (i.e., due to pupil quality 689 

exclusion criteria or technical issues in a scanning session), a GLM was constructed using only one session (n = 690 

14). 691 

Second-level analyses were carried out by extracting t-values from single-subject contrast maps 692 

generated from the first-level analyses. These weights were then submitted to a second-level random effects 693 

analysis (one-sample t-test) in R using ‘stats’ package. To correct for multiple comparisons, alpha levels (set at 694 

0.05) were adjusted by controlling the false discovery rate (FDR).  695 

For the comparison analyses with Schneider et al. (2016) and Murphy et al. (2014), single-subject 696 

contrast maps obtained from first-level analyses were entered into second-level random effects analyses (one-697 

sample t-test for Schneider et al. [2016] and a one-way repeated-measures analysis of variance [ANOVA] with 698 

three levels for Murphy et al. [2014]) in SPM12. Here, we used a cluster-forming voxel-level threshold of p < .001 699 

(uncorrected). Alpha was set at 0.05 whole-brain family-wise error (FWE) corrected at the cluster level using 700 

Gaussian random field theory-based methods as implemented in SPM12 (Friston et al., 1996). 701 

 702 

Data and code availability statement 703 

Analyses code can be found here: https://github.com/bethlloyd/rs-fMRI_brainstem. Brain maps and processed 704 
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