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Abstract

Behavior identification and quantification techniques have undergone rapid de-
velopment. To this end, supervised or unsupervised methods are chosen based
upon their intrinsic strengths and weaknesses (e.g. user bias, training cost,
complexity, action discovery). Here, a new active learning platform, A-SOiD,
blends these strengths and in doing so, overcomes several of their inherent draw-
backs. A-SOiD iteratively learns user-defined groups with a fraction of the usual
training data while attaining expansive classification through directed unsuper-
vised classification. In socially-interacting mice, A-SOiD outperformed stan-
dard methods despite requiring 85% less training data. Additionally, it isolated
two additional ethologically-distinct mouse interactions via unsupervised clas-
sification. Similar performance and efficiency was observed using non-human
primate 3D pose data. In both cases, the transparency in A-SOiD’s cluster def-
initions revealed the defining features of the supervised classification through
a game-theoretic approach. To facilitate use, A-SOiD comes as an intuitive,
open-source interface for efficient segmentation of user-defined behaviors and
discovered subactions.
Keywords - computational neuroethology, naturalistic behavior, machine learning, social

interactions, mouse behavior, primate behavior

Introduction

Naturalistic behaviors, particularly social interactions, provide a rich substrate
to understand the brain and the decisions it makes. Cutting edge machine
learning algorithms now enable researchers to capture the movement of individ-
ual body parts with markerless pose estimation [1–7]. These pose estimation
algorithms can then be readily used to extract behavioral expressions in a
previously unmatched level of detail and temporal resolution [5, 6, 8–15].

One approach that utilizes pose estimation data to extract behaviors is to
reproduce expert human annotation in an automated fashion. A major advan-
tage of this supervised approach is the direct control over the initial definition
of the behavioral expression, incorporating the expertise of researchers into
the classification process. However, for these supervised methods, a sizeable,
manually-annotated data set is required to learn and reproduce human rate
annotations [8, 16–19]. A potentially more serious issue, the reproducibility
between and within research groups is known to suffer as the annotation
process is prone to inherent biases and rater fatigue [6, 20]. Furthermore,
as investigators aim to untangle a more complete and detailed behavioral
repertoire, supervised algorithms are unable to generate new insights that build
upon the what they have already found. Related to this, classification models
often fail to capture a concise account of the learned reasoning, or decision
boundaries of the algorithm - instead relying upon qualitative descriptions
of the annotator’s intuitive reference frame [21]. Consequently, reproduction

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2022. ; https://doi.org/10.1101/2022.11.04.515138doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.04.515138
http://creativecommons.org/licenses/by-nc-nd/4.0/


and comparison of the classification process can become a matter of subjective
re-interpretation and escalating inter-rater variability.

The alternative approach is agnostic to experimenter definitions, focusing
instead on uncovering the conserved spatiotemporal structures within pose
dynamics [6]. These unsupervised models can find known and hidden behavioral
expressions without the need or influence of human annotation. Specifically,
unsupervised pattern discovery can be directly applied to provide behavioral
expressions with temporal resolution beyond human ability, into sub-second
components and distinct sub-actions with high sensitivity [9–11, 22–24]. This
major benefit is also its key drawback: the algorithm can only identify patterns
that are statistically obvious given the provided input features - i.e. rare
events or more subjective distinctions between behaviors will not be identified
as unique clusters. Thus, behavioral expressions that are evident to the
experimenter - but are not readily statistically discerned - often cannot be
reconstructed. Additionally, identified behavioral patterns are often assigned
semantic names that may obscure more complex underlying feature statistics
if used without proper validation. Nevertheless, behavioral patterns may be
discovered that do not conveniently fit traditional nomenclature, particularly
at temporal scales beyond the typical spectrum. In these cases, researchers are
often constrained to use associative descriptive names (e.g., grooming sub-type
A) or token names (e.g., motif 1) to report their findings.

Supervised and unsupervised methods focus on different feature-integration
approaches to segment behavior. As a result, each fails to combine both
informed analysis and efficient pattern discovery within the same workflow.
An ideal solution would be able to reproduce an expert researcher’s informed
annotations and translate them into a transparent, reproducible format. In
addition, the researcher would be able to engage the power of agnostic discovery
of conserved movement patters within the same framework to facilitate deeper
behavioral understanding without occluding the functional rationale behind
newly found components. Notably, in the field of machine learning there
are already developments striving to replace black-box approaches for better
post hoc explainability [25, 26]. With these, information about the feature
composition of learned classes can be inferred which enables researchers to
translate intuitive descriptions into transparent, operationalized definitions for
the comparison between data sets and methods [21, 27].

Here, we present A-SOiD, an active learning platform that incorporates unsu-
pervised discovery of spatiotemporal movement patterns. A-SOiD outperforms
traditional supervised methods and does so with significantly less data than
traditional supervised models. By automatically balancing annotation sets, A-
SOiD reduced the amount of annotations required (≈ 85% reduction). Because
A-SOiD requires only very small input data to reproduce annotations, we were
able to expand an initial set of behavior categories to include newly discovered
behaviors autonomously with high predictive performance. It also provides an
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entry point for discovery to expand the classification annotation set through
unsupervised segmentation of a selected behavior. To test its performance, we
applied A-SOiD to two benchmark data sets. First, social interactions in rodents
are complex and nuanced. While supervised approaches can be trained to iden-
tify select interactions, there are still substantial limitations on the specificity of
behavioral segmentation - even with large training data sets. We investigated
the sizeable human-annotated data set of social behavior in mice (CalMS21)
[28] with A-SOiD and then extended the range of detected canonical social
behaviors. Next, we note that there is currently a lack of behavioral segmenta-
tion methods for both 3D pose estimation and for non-human primates, despite
rapid growth in these fields [7, 29]. To demonstrate the flexibility of A-SOiD,
we analyzed a three-dimensional non-human primate pose data set. Finally,
to facilitate A-SOiD’s use in the rapid segmentation of a behavioral repertoire,
we packaged the platform into an intuitive open-source graphical user interface
that can be used without prior coding experience (Supp. Fig. 1).

Results

User definitions of complex behavior are not readily iden-
tified using unsupervised approaches

Experimenters often focus their initial behavioral quantification on a few
selected behaviors but would like to expand their analysis by exploring the
inherent data structure (unsupervised). The assumption being, that human
definitions will be self-evident from the given data representation, so that
further exploration can be directly aligned to previous findings. We therefore
first investigated whether an unsupervised classification approach would be
able to reproduce human annotations given a large benchmark data set of
socially-interacting rodents.

The CalMS21 data set is a large social behavior benchmark data set consisting
of annotations from four expert human raters for three distinct behavioral
categories (attack, investigate and mount; see Methods) were annotated (Fig.
1a-b, see Methods and [6, 28]). The data set also provides pose estimation
data of the two socially-interacting mice (Fig. 1a). To extract a single,
homogenized set of annotations, we divided the behavioral classifications
into non-overlapping segments. For this, we examined the distribution of
bout lengths across annotations and found that a period of 400 ms (12 frames
10%tile, Fig. 1c) would be sufficient to resolve behavioral changes across anno-
tations. Given that 12 frames could contain more than 1 type of annotation, we
examined the annotation pattern in depth. We found that ≈ 92% of the 400 ms
non-overlapped segments contained only a single behavioral annotation. The
remaining ≈ 8% had at least 2 types of annotation within the same segments.
Further examination of the remaining ≈ 8% cases revealed a predominantly
annotation dominated the segments, thus a tie-breaker was rarely required.
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Our results suggest that, compared to frame-wise annotation, there is minimal
loss of information upon downsampling of annotations to 400 ms.

To capture the spatiotemporal pose relationships of the annotated social inter-
actions, we extracted features (see Methods) from both the individual animals
(intra-animal; Fig 1d left) and the multi-animal interactions (inter-animal; Fig.
1d right). Notably, we observed that the distribution of single features was al-
ready indicative of the human annotations, e.g. mounting is characterized by
a small inter-animal snout-snout distance while attacking typically possesses a
greater speed (Fig. 1e top-left). However, significant overlap can occur (com-
pare Fig. 1e bottom-left), which necessitates the evaluation of the composite
feature distributions to fully represent a behavioral class (Fig. 1f).
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Figure 1: Human annotations of social interactions cannot be easily represented in un-
supervised embeddings. a) Schematic representation of body positions on two mice (Ms1:
cyan; Ms2: magenta) taken from the CalMS21 data set. b) Annotated example frames from
the CalMS21 training data set (Red: attack; Orange: investigate; Blue: mount; Black:
other). Behavioral color-code to be maintained throughout manuscript. c) Histograms
showing the distribution of annotated frames before a transition into a different behavior
occurs. Dashed lines indicate 400ms (12 frames) that was used to integrate our features
over, temporally. d) Intra-animal and inter-animal distances (top), and respective angu-
lar changes (bottom) are calculated for all combinations. e) Example feature distributions
across annotated behaviors (top: snout-to-snout and tailbase-to-tailbase inter-animal dis-
tance, bottom: sample-to-sample tailbase speed of Mouse1 and Mouse2). f) Schematic
representation of unique composite feature distribution for each behavioral expression. g)
UMAP embeddings of composite features, colored by annotations. h) UMAP embeddings
using a random subset (top) and using the same count, but more similar subset. i) 2D-
histogram showing normalized feature values (z-scored) across features (columns) and se-
lected samples (rows) of all three classes (attack, investigation, mount). Here we show a
subset (n=60) representing (h) for ease of visualization.

With this realization, we next explored whether an unsupervised approach
[9] (see Methods) could resolve the human annotation space given the ex-
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tracted features (Fig. 1g). In the feature distribution (Fig. 1e), individual
behaviors could be largely separated by a composite of several features. If
the human annotations can be readily described by the selected features, a
high-dimensional representation of all points in the feature space or its low
dimensional embedding (UMAP) should provide distinct clusters that readily
map onto each group (e.g., all examples of attack in the same area (high speed,
low distance) whereas mount is in a different region (low speed, low distance);
Fig. 1f). While an unsupervised approach has been proven successful for
extracting common, single-animal behaviors [9–11, 22, 24, 30], when applied
to the social interactions of the CalMS21 data set, we found that human
annotation cannot be reliably represented as clusters of spatiotemporal pose
relationships (Fig. 1g). Given the characteristics of unsupervised approaches,
a potential cause for failure is the highly unbalanced distribution of data
in its raw state. The majority of annotations are designated as ”other”
(n = 26409, see Methods) while all remaining behaviors are only represented by
a substantially smaller amount of examples (attack: n = 1188; investigation:
n = 12300, mount: n = 2378). The clustering algorithm is inclined to emphasize
the differences between data points in ”other”, and consequently will overlook
the differences in smaller classes. As such, we see that the ”other” group
spans the entire embedded space (grey, Fig. 1g), encompassing all other classes
within. It is important to note that this bottom-up approach is agnostic
to human classification and considers all points as equally important. The
top-down human annotations were only added to the embeddings in order to
visualize the lack of separation (Fig. 1g).

We further investigated whether a data set [28] comprised of a more balanced
sample of all classes that contained clear definitions (attack, investigation and
mount, see Methods) would yield better results in unsupervised embedding.
Notably, this would not be possible without supervised annotations as an
unlabeled data set would not be differentiable without prior human curation.
First, we selected a random sample (n = 580, 872, 581 for attack, investigation,
and mount, respectively) and embedded them together to determine how an
unsupervised approach would perform. While these embeddings yielded better
reproduction of the desired annotations, there appears to be subgroups within
each annotation. Consequently, this approach does not resolve the entirety of
the human annotation spectrum (Fig. 1h,i top).

Next, while maintaining the same number of samples from the three classes, we
selected those that appear most similar amongst the three annotation types. We
discovered that there are a select group of samples that rarely differ in features
(Fig. 1h,i bottom). One possible explanation for these is that these samples
are transitions between two behaviors and could be labeled as either or - i.e.,
where does a rater decide when a behavior stops and a new one starts. We first
examined the preceding behavior for each behavior that the algorithm deemed
uncertain and found that when examining the subset of samples that are most
similar in feature space (hardest to predict), the consistency of annotations
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between prior frame to current frame (transition) is significantly lower than
a random subset of samples (Supp. Fig. 2b). One key finding is that the
rater’s decision at which frame the animal goes from investigation to mount
is inconsistent, as there is a higher rate of investigation to mount transitions
and vice versa (Supp. Fig. 2a). As expected, this is in line with the type of
predictions errors by baseline models from Sun et al. [28].
Moreover, when investigating whether our classifications show a bias towards
transitions ”out of” a behavior or transitions ”into” one, we found that when
considering the samples that are the most similar, that, overall, the consistency
of annotations between current frame and the next frame is similar to transi-
tioning ”into” a behavior (Supp. Fig. 2d). More specifically , we found that,
for the annotations in the used CalMS21 data, the particular inconsistency
varies between behaviors for ”into” vs ”out of” transitions of the investigation
class. For example, while the rater was less consistent with labeling a transition
from mount into investigation, the inconsistency was higher for transitions out
of investigation into other (Supp. Fig. 2a, c). Again, in line with prediction
error types made by baseline models from Sun et al. [28].

Thus, a purely data-driven approach such as unsupervised classification is un-
likely to fully reproduce human annotations in this social interaction data set.
However, this interrogation of the data structure revealed key inroads to im-
proved segmentation. Anticipating the challenges of an unbalanced data set
and problematic edge scenarios, we focused on developing a solution that would
automatically balance the training data and integrate human annotations in a
data-efficient manner. Finally, we embraced the possibility that a data-driven
approach, such as unsupervised clustering, may perform better when applied
to the restricted, segmented classes - and allow further discovery of conserved
patterns.

Active learning automatically balances training data and
integrate human expertise with high performance

We developed A-SOiD - a GUI pipeline (Fig. 2a; Supp. Fig. 1) that includes
both active learning and directed unsupervised behavioral segmentation.
A-SOiD makes use of an iterative, active learning paradigm that selectively
trains on low-confidence examples to improve classification robustness. Rather
than blindly feeding in additional human annotations, A-SOiD queues a
subset of low confidence predictions from the rest of the training using each
previous classifier iteration. By focusing on the potentially problematic edge
cases (Fig. 1h, i bottom, Supp. Fig. 2), the algorithm greatly reduces the
overall number of annotated frames required (Fig. 2a, step 1-3). Beyond
initial annotations, A-SOiD provides users an unsupervised clustering algo-
rithm [9] to explore and further subdivide existing annotations (Fig. 2a, step 4).

To directly overcome the bottleneck of supervised approaches requiring massive
training data sets while reducing the possibility of de-emphasizing the smaller

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2022. ; https://doi.org/10.1101/2022.11.04.515138doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.04.515138
http://creativecommons.org/licenses/by-nc-nd/4.0/


annotations like ”attack”, we first initialized A-SOiD by providing mere 1% of
samples that were randomly selected from each of the three annotations. We
maintained the relative proportions when initializing to maintain a relatively
similar feature distribution to the entire pool. Not surprisingly, the resulting
predictions underperform compared to using the entire data set (Fig. 2b,
iteration 1). Next, a selected subsampling of low confidence predictions on the
remaining training data (i.e., most similar across classes, Fig. 1h,i bottom) by
the initial classifier (iteration 1) is refined by extracting annotations from the
remaining training labels or by prompting human refinement. In subsequent
iterations, the latest classifier is used to identify new low-confidence predictions
and to refine them for the training of the following iteration. This establishes an
iterative active learning scheme that focuses on clarifying annotation preference
only for examples that lie at the decision boundary between classes (Supp. Fig.
2). With this approach to refinement, performance on a completely unseen,
held out test data set improves beyond using the entire available training data
with just 12% of the labels necessary, or fewer than 1000 samples per class (Fig.
2b, dashed line represents performance using all training data, black indicates
average across all three classes). A-SOiD performance reached 0.874 ± 0.002
macro average f1 score and 0.918 ± 0.001 MAP with 20 cross-validation runs -
on par with Top-1 performance in the MABe 2021 Task1 Challenge [28], and
without the use of additional unlabeled data set. This increase in performance
is paralleled by a drop in additional samples per iteration, as the quantity
of low-confidence samples sharply drops. Additionally, we observed that the
number of training samples per behavioral expression became more balanced
out over active learning iterations, even when the total available counts, and
subsequently our initialized classifier inputs, were largely biased towards one
behavior expression (investigation; Fig 2b bottom, orange of ”Full” dataset).
Therefore, these benchmark data suggest that even if A-SOiD starts from
scratch with a small, random sample of frames, performance quickly exceeds
that from classifiers trained on the full training data set at once by nearly an
order of magnitude.

To understand the impact of individual features in the decision process of our
iterative-learning classifier, we performed SHAP analysis (SHapley Additive
exPlanations , see Methods) [25, 26] on representative iterations (1, 6, 11, and
20). SHAP is a game theoretic approach to assign credit to the individual
feature underlying the performance of an algorithm. Each example (dot) from
a feature provides both the explainability (X position) and the normalized
feature value - e.g. red indicates greater speed or distance - with consistent
local coloring indicating a conserved feature-explanability relationship.

In examining ”attack”, the class that was learned the slowest, we found that
the critical spatiotemporal features quickly standardizes across subsequent it-
erations (Fig. 2c). While initial features such as the Resident mouse’s nose
speed (”RNose”, grey; also Resident nose-Intruder neck distance ”Rnose-Ineck”,
black) have a consistently high impact on the model’s decision, other features
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become more important and maintain their importance rank across iterations.
As expected, the impact of speed features (grey) is mostly negative (SHAP
value < 0.0) and skewed towards low values (blue dots) - i.e., low speed values
are a good predictor against the attack class, as would be predicted from the
full training data set (Fig. 1e). In this way, SHAP analysis provides a direct,
transparent explanation for the performance of the autonomous active learning
through an observer’s point-of-view. It also provides potential insight into label
discrepancy/misalignment amongst various human raters, a major area for im-
provement [6]. While investigation and mount classes improve less, we still see
shuffling of the top five feature ranks (Supp. Fig. 3).
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Figure 2: Active learning improves data efficiency and overall performance. a) The A-
SOiD pipeline initializes a classifier with minimal training annotations (step 1). Next, low
confidence predictions on the remaining training data are subsampled for researchers to
refine manually (step 2) or automatically taken from the available ground truth. Step 2
reiterates until there are no remaining low confidence training samples (step 3). Lastly, A-
SOiD can expand the annotation set by deploying directed, unsupervised pattern discov-
ery (step 4). b) A-SOiD performance (F1 score, 20 cross-validations, top) on held out data
outperforms a classifier trained on the full data at once (dashed lines). This is achieved
through 12% of data (middle), with a more balanced representation across sampled anno-
tations (bottom). Red: Attack; Orange: Investigate; Blue: Mount; Black: Average across
classes. Full indicates complete annotated data set. c) Ranked order of the top five features
(descending order) across iterations according to SHAP analysis (see Methods) for the ”at-
tack” class, including individual feature impact (x-axis) separated by relative feature value
(High: red, Low: blue). The differences in top-5 features allow insights into the learning
process (compare iteration 1, 4 and 8). In contrast, the top-5 features do not change after
the plateau of test performance in (e, compare iteration 8 and 20). Features (inter-animal
distance: black, speed: gray) are denoted by their corresponding animal (R: resident, I: in-
truder) and body part (e.g., nose).

Fast and efficient pattern discovery

While A-SOiD’s active-learning component allows the reproduction of human
annotations in a highly efficient manner, it lacks the ability to discover
conserved patterns of behavior and thereby limits researchers to their initial
set of behaviors. This limited set may be due to a lack of comprehension of
the behavioral repertoire during annotation or difficulties in robustly defining
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rare or nuanced sub-actions. For example, the CalMS21 data set does not
inherently differentiate between the several known investigation types. As
such, investigative behavior sub-types are hidden and dispersed within the
”investigation” class (Fig. 3). However, it is often desirable to be able to
split high-level behaviors into component, conserved sub-actions. Specifically,
in social interactions encompassing both male and female mice, anogenital
investigation is a primary behavioral expression when mice engage in olfactory
investigation. Quantification of such behavior can therefore serve as a key
identifier for social recognition, including habituation and discrimination [31,
32] (https://mousebehavior.org/investigate-anogenital/) which in turn
indicates a branching point in behavioral strategies depending on the specific
outcome.

Therefore, for the directed discovery of hidden sub-behaviors, we included
an unsupervised classification step and discovered conserved sub-types of
investigative behavior. Unsupervised embedding and clustering of the ”investi-
gation” class separately from the full data set revealed several sub-classes (Fig.
3a, see Methods). Of these, two clusters appear to be investigation specifically
at the anogenital areas. More specifically, one of the sub-classes consists of the
resident mouse approaching and directing its investigation at the anogenital
area of the intruder mouse from behind (sub-class 2, ”anogenital approach”,
n = 3234) - and the other of the resident mouse investigating the anogenital area
of the other mouse while already in close proximity (sub-class 5, ”anogenital
investigation”, n = 706; http://mousebehavior.org/ethogram-index/; Fig.
3c). To allow a direct comparison between unsupervised clusters and the
heuristic criterion, that the snout of one or both mice must be close to the tail
base of the other, we annotated all data points within the investigation class in
which the distance between the resident’s snout and the intruder’s tail base was
lower than a manually set threshold (15 pixels; Supp. Fig. 5). A comparison
revealed an extensive overlap between the unsupervised clusters of sub-class 2
and sub-class 5 with the top-down, manually selected feature space.

We then computed the motion energy (see Methods) for each cluster. Motion
energy analysis results in single images that are an average of the motion
spectrum relative to an individual, aligned animal (Fig. 3b). Consequently,
conserved behaviors with repeated distinct movements result in a bright,
clearly defined image, while behaviors that include divergent movement pat-
terns appear darker and blurry (Fig. 3b). In both example clusters the average
resident snout’s motion energy is concentrated close to the anogenital region
of its con-specific, unlike the widely distributed motion energy found in the
investigate class (Fig. 3c). Specifically, sub-class appears restricted to motion
behind the centered animal, i.e., a targeted approach to the anogenital area,
”anogential approach”, while sub-class 5 consists of paralleled resident/intruder
anogenital investigations, ”anogenital investigation” (Fig. 3b). We confirmed
the motion energy inspection by extracting example episodes (Supp. Video 1)
of the found behavioral sub-types.
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To test A-SOiD’s ability to integrate discovered sub-types into our classifier, we
provided additional labels for sub-class 2 (”anogenital approach”) and sub-class
5 (”anogenital investigation”) by splitting them from investigation , while all
remaining clusters remain in the original class ”investigation” (Fig. 3a). We
then retrained a classifier using the expanded annotation set. Since we only
clustered the provided training set from the CalMS21 data set, we decided to
split the training set into a test and train set, which resulted in a reduced overall
performance in this particular section compared to active learning using the full
training set (compare with Fig. 2b). Similar to the active learning performance
described in (Fig. 2b), we found that after 30 iterations, we reached higher
predictive performance across all categories, while attack still improved the
most (Fig. 3d). Taken together, these results demonstrate the possibility of
iterating between supervised and unsupervised classification.
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Figure 3: Unsupervised Clustering can be used to discover and integrate novel behav-
ioral expressions in previously unspecific data. a) UMAP embeddings followed by HDB-
SCAN clustering (see Methods) of only the ”investigation” class revealed 6 behavioral
sub-classes. b) Schematic representation of motion energy in single bout (top) and aver-
age across all bouts (bottom). c) Representative examples (top row) and motion energy
plot (bottom row) of the investigation class including two sub-types that closely align with
heuristic identification of anogenital investigation (Suppl. Fig. 5) d) With new sub-classes
redefined within the existing training data set, A-SOiD (F1 score, 20 cross-validations, top)
outperforms a classifier trained on the full data at once (dashed lines). Note that in this
case, we are only considering a subset of the CalMS21 training data (80%/20% split within
the CalMS21 training data described throughout the manuscript) to allow testing on the
remaining data. This performance increase is achieved through less data (bottom). Red:
attack; Orange: investigate; Blue: mount; Pink: anogentital approach (sub-class 2); Gold:
anogenital investigation (sub-class 5); Black: average across classes

A-SOiD demonstrates improved performance regardless of
species or spatial dimensions

To demonstrate the flexibility of our approach, we applied A-SOiD to position
information and human annotations of singly-housed non-human primates. No-
tably, pose information was computed using OpenMonkeyStudio [7], which pro-
vides 3D pose-estimations. The video was manually annotated, separating the
animal’s behavior into 5 categories: walk, rear, jump, ceiling climb (Climb C),
and side-wall climb (Climb S), (Fig. 4a, or see Methods for detailed description
of our annotations). Next, we trained A-SOiD to reproduce the human rater
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annotations (n = 64, 177, 50, 214, 676 for ceiling climb, sidewall climb, jump,
rear and walk respectively). In this case, 15 active learning iterations were suf-
ficient to reach plateau performance (Fig. 4b). Similar to the performance in
the social mouse benchmarking, we found that A-SOiD automatically balanced
the training set to include examples of classes that were initially underrepre-
sented across iterations (jump, Fig. 4 b). The overall predictive performance
improved beyond the performance of a classifier trained on the full data all at
once (compare Fig. 4b, dashed lines). SHAP analysis was again used to re-
veal the refinement process during active learning iterations that enabled the
classifier to considerably increase predictive performance in this class. For ex-
ample, the emerging feature importance (compare Fig. 4c iteration 1 and 15)
of the speeds of hip and tail, followed by the distances between hip and right
foot, as well as the distance between neck and tail, reveal how the jump was
better defined with these composite features. While the classification of other
monkey behaviors improved less, we still see shuffling of top five feature ranks
(Supp. Fig. 4). These results demonstrated that A-SOiD performed just as
well in a 3D, single-housed, non-human primate data set as it had with 2D,
resident-intruder, mice data set (CalMS21).
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Figure 4: Efficient segmentation of monkey behavioral repertoire a) Representative frame
examples for each annotated behavior. Images are reconstructed by OpenMonkeyStudio (3D
pose). b) A-SOiD performance (F1 score, 20 cross-validations, top) on held out data outper-
forms classifier trained on all data at once (dashed lines). This is achieved through 12% of
data (middle), with a more balanced representation across the annotations (bottom). Light
Green: Ceiling Climb (Climb C); Cyan: Sidewall Climb (Climb S); Blue: Jump; Violet:
Rear; Dark orange: Walk ; Black: Average across classes. c) Ranked order of the top five
features (descending order) across iterations according to SHAP analysis for the ”Jump”
class, including individual feature impact (x-axis) separated by relative feature value (High:
red, Low: blue). The differences in top-5 features allow insights into the learning process
(compare iteration 1, 9, 11 and 15). The learning stopped prematurely due to lack of sam-
ples in a 5 minute video. Features (distance: black, speed: gray) are denoted by body part
(e.g., Tail).

Discussion

As computational ethology explores the power of Big Data, the tools used to
extract meaningful information must enable researchers to report transparent
findings and allow generalizability across experiments. This is especially true
in neuroethology, where variations in behavioral detection can fundamentally
alter neural correlations or preclude their detection entirely [6, 9, 10, 20,
33]. To this extent, public benchmark data sets such as the social rodent
data set CalMS21 [28] serve as a meaningful resource for developing and
benchmarking new tools. We used this data set to develop a framework for the
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data-efficient integration of human-expert annotations and directed pattern
discovery called A-SOiD. We then demonstrated the power of the approach,
applying it to a completely unrelated data set - primate 3D pose estimation data.

Thus, A-SOiD facilitates building user-defined behavior analysis pipelines with
high-data efficiency. A-SOiD’s active learning framework resulted in an 8-fold
decrease in required samples (total available labels = 15866, used labels at
performance peak = 1866; see Supp. Table 2) to reproduce human annotations
of socially active rodents with high performance (Fig. 2b). Even in the
small non-human primate data set (n = 1181 total labels), A-SOid robustly
increased the performance of the low-frequency behavior (jump, n = 50) by
selectively training on low confidence examples (Fig. 4b, see Supp. Table
3). Moreover, the resulting analysis of the model’s output can reach different
levels of complexity depending on the research question. The unsupervised
clustering of the embedded space of an annotation-based class was able to
discover well-known behavioral phenotypes that were not the focus of the initial
annotations and likely would not have been possible with a purely top-down
approach(see Fig. 3, Supp. Fig. 5).

When annotating behaviors, experimenters are predisposed to mirror the biased
distribution of behaviors in the data set, thus producing an unbalanced training
data set. To improve the performance of supervised algorithms, experimenters
add additional frames, but this rarely overcomes the initial imbalance. However,
the root of the problem is that classifier objective functions strive to improve
overall performance. Although there are good solutions for binary imbalanced
classifications [34–37], multi-class imbalanced classification is not as well devel-
oped [38, 39]. The main issue lies on the varying relationships between classes,
as there could be two out of three classes that are balanced (both large), while
the third one is small, or vice versa [40]. Our solution is to implement intelligent
selection of samples (active learning) within the already given annotations to
reduce the bias towards larger classes. By starting with an absolutely minimal
number of annotations, we let A-SOiD determine which samples are to be an-
notated. This approach effectively sparsifies representation, while focusing on
the outliers.

Intuitive A-SOiD GUI for improved research integration

To improve the efficacy of this approach, A-SOiD comes as an app that can
be installed on local computers without additional coding (Supp. Fig. 1).
The app guides researchers through active learning and facilitates training
high-performing classifiers based on an initially labeled data set. Researchers
are then enabled to further refine their classifiers on unlabeled data using an
intuitive interface in which low-confidence examples are presented for replay
and evaluation. While the app is capable of reproducing the results from the
CalMS21 data set reported in this study, we expanded its data importation
capabilities to include the two most common open-source pose estimation
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solutions (DeepLabCut [1] and SLEAP [4]). Further, once a classifier reaches
satisfactory performance levels, the app can be used to predict behaviors on
novel data directly. The classifier can also be exported and deployed in custom
analysis pipelines, including closed-loop experiments [12].

A-SOiD targets an unmet need in behavior analysis tools and provide researchers
with an accessible, conjoined solution of supervised and unsupervised classifica-
tion.

Quantifying classifier performance

An important unresolved issue in behavioral classification is the quantification
of classification performance. While there is a general consensus concerning
the relative features of several behaviors, there is no ground truth. Thus, there
is a need for , comparative methods that can be used to quantify algorithmic
performance. In this manuscript we utilize two approaches that focus on the
internal consistency of behavior classes themselves, rather than an external,
top-down rule.

Motion energy can quickly asses the differences between movement patterns
(e.g., behavioral sub-types). Motion energy is an intuitive and informative way
to generate visual summary of the action within a found cluster [41]. In our
hands, we utilized motion energy images to quickly differentiate sub-types of
anogenital investigation (Fig. 3). Note, that comparative analysis can be done
by analyzing the energetic variability within and across groups, providing a
valuable statistic for cluster quality [9].

Another approach is using algorithmic explainability metrics, such as SHAP-
based reporting [25, 26] of the underlying feature importance which can help
to share and compare conserved patterns across studies (for a review see [21]).
The feature value impact and ranking not only describe the refinement process
but also serve as a looking glass into the underlying intuitive human reference
frames by translating reproductions of human annotations into transparent,
operationalized definitions. In this study, we employed SHAP-analysis to inves-
tigate the learning process across multiple iterations during active learning and
could identify that specific sets of features accounted for the increased perfor-
mance of our classifiers. Once the algorithm is trained, these same values can
be used to compare the classification reference frame across various models.
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Methods

Data processing feature extraction

With increasing sampling frequency, the intra-frame differences that are critical
to determining the spatiotemporal features (e.g. speed) diminish. For instance,
30 fps sampling provides an inter-frame interval of only 33.3 ms - relegating the
changes in position to a similar magnitude to the jitter in the position signal
itself. To improve the signal-to-noise ratio in CalMS21 social mice data set, we
analyzed the duration distribution of these annotated behaviors, and established
a non-overlapping 400 ms windows to integrate signal over, and then either sums
(displacement, anglular change) or averages (distance) over all 10 fps samples.
The window was defined as 200 ms for the single-housed non-human primate
data set. Thus, for the 10 points used in the CalMS21 resident-intruder assay,
the per-frame spatiotemporal features consisted of 45 distances (D) and angular
change (Θ) measures, and 10 total displacements (L). As described, the social
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behavior described in this data set can be reliably described based on a set of
intra- and inter-animal features. These features are are based on the distance,
angular change, and speed of the animal’s body parts in relation to itself (speed,
angular change) or to another body part, including its counterpart on the con-
specific. For a detailed description refer to Supp. Table 1. This process is
described in Algorithm 1 and the process pipeline diagram (Fig. 2a). As for
annotation selection, we identified the most common annotation in that time
window (mode). In the rarest case of tie-breakers, we used the smaller values
and did not observe any difference by using a different method.

Algorithm 1: Feature extraction for N pose estimates

Initialize, for m = 1 to
(
N
2

)
:

Lm ← 0
Θm ← 0
for m = 1,M do

m← any pair of pose n and ̸= n

Store
∥∥∥(nm1, nm2)

∥∥∥2 in Lm

for t = 1, T − 1 do
Store arccos [(Lm,t+1 × Lm,t)/(∥/Lm,t+1∥∥Lm,t∥)] in Θm

end
Discard the first index of Lm

end
Initialize, for n = 1 to N :
Dn ← 0
for n = 1, N do

n← 2D pose estimate
for t = 1, T − 1 do

Store
∥∥∥(nt+1, nt)

∥∥∥2 in Dn

end

end
return L, Θ, D

Behavioral and annotation downsampling to mimic anno-
tation scale

Adjusted mutual information score calculates the similarity in two sets of label
sequences. We employed this as the metric for A-SOiD to learn the granularity
in human annotation. If AMI = 1, all annotations are identical within that
binned segment of 400 ms. On the other hand, if AMI = 0, there are more
than 1 annotation that deviate from the rest. We have shown that employing
10percentile, or 400 ms, as the minimum duration threshold for CalMS21 data
set yields 92% in complete target consistency throughout the bin, even without

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2022. ; https://doi.org/10.1101/2022.11.04.515138doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.04.515138
http://creativecommons.org/licenses/by-nc-nd/4.0/


any bin overlap.

Random forest classifier for accurate and fast prediction

To create a reproducible mapping between extracted features and aligned
downsampled annotations, Random forest classifier design was chosen for
high-dimensional pose relationships mapping to discrete multi-class be-
haviors. Random forest was iteratively implemented in the ‘Clas-
sify’ step in A-SOiD UI. Embedded in this step is a python imple-
mentation of ensemble.RandomForestClassifier() from scikit-learn v.1.1.2
(https://github.com/scikit-learn/scikit-learn). In addition to active learning
automatically balance training class sizes, the random forest initialized weights
were dependent on the remaining diversity in class sizes (class weight = balanced
subsample). In the first iteration, we subsampled 1% per annotation class to
mimic the time budget. We then followed an autonomous active learning sched-
ule to curate a selection of refined samples to incorporate into our training set.

Autonomous iterative active learning

Upon initializing the classifier with 1% of each annotated class, we predict the
probability for all training samples. In theory, similar training samples to the
initial 1% would have a high predict probability for one class over the rest.
However, if there exist a sample that does not have a predict probability > 0.5
for any of the classes, we defined it as a low confidence sample. These samples
appear to be very similar in high feature dimensional space, as well as the
reduced dimensional space (Fig. 1 h,i bottom). In an iterative manner, we
incorporate the supposed annotation aligned with these low confidence samples
to create a meaningful training data set. To test the model’s performance
generalizability, we used the same 20% held-out test data.

Frameshift prediction paradigm

Many end users may wish to apply the algorithm to higher frame-rate video.
Because A-SOiD applies a temporal constraint depending on the temporal scale
of user annotations, we designed A-SOiD to predict along a sliding window.
This is mathematically implemented using offsets, pseudocode in Algorithm 2.
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Algorithm 2: Frameshift implementation for F times higher sam-
pling rate than 10fps

Initialize behavioral array:
G ← 0
Initialize downsampled behavioral array, for f = 1 to F :
gf ← 0
for f = 1, F do

Start at f , sample pose-relationships at 10fps, S frames
for s = 1, S do

Store the prediction (g | s) in gf

end

Insert gf at every F th position in G starting at f

end
return G

Identify group assignments with UMAP and HDBSCAN

A-SOiD then projects the computed pose relationships (D, , and L)
into a low-dimensional space, which facilitates behavioral identification without
simplifying the data complexity. In simpler terms, similar mouse multi-joint tra-
jectory will retain its similarity visualized in the low-dimensional space. A-SOiD
achieves this through UMAP, a state-of-the-art algorithm that utilizes Rieman-
nian geometry to represent real-world data with the underlying assumptions of
the algebraic topology [42]. UMAP, as previously described in Hsu et al. [9], is
chosen over the popular t-SNE for its advantage in computational complexity,
outlier distinction, and most importantly, preservation of longer-range pairwise
distance relationships [42–45]. Embedded in this step is a python implemen-
tation of umap-learn v.0.5.3 (https://github.com/lmcinnes/umap). Since our
goal is to use UMAP space for clustering, we enforced the following UMAP
parameters: (n neighbours=60, min dist=0.0, euclidean distance metric). In
terms of n components, we call python implementation of decomposition.PCA()
from scikit-learn v.1.1.2 (https://github.com/scikit-learn/scikit-learn) and set
n components to explain 0.7 of total pose-estimation variance. UMAP embed-
dings were then clustered through HDBSCAN algorithm [9, 46]. It is partic-
ularly useful for UMAP outlier detections as it recognizes subthreshold densi-
ties. Embedded in this step is a python implementation of hdbscan v.0.8.28
(https://github.com/scikit-learn-contrib/hdbscan). We enforced the following
HDBSCAN parameters: (min cluster size=a range of 2−2.5% of the size of the
data, whichever yields the most groupings).

Motion Energy

The term ”motion energy” as previously described was first introduced by
Stringer et al. [41] and refers to the absolute value of the difference of con-
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secutive frames. Since the animals are freely moving in the environment, an
initial pose alignment is necessary. For this, the intruder’s neck and tail base
coordinates are used. Following image registration using estimated outline of
both animals at the start of each identified behavior, we compute the motion
energy (ME, absolute value of the difference of all consecutive frames) within
a bout using the numpy [47] functions np.diff, np.absolute, and np.mean (for
more information see ). We then performed averaging for each bout to re-
construct a single ME image per annotated class. In other words, each pixel in
such reconstructed ME image represents the average absolute difference between
consecutive frames at a given pixel location.

CalMS21 data set

Data set

While the data set consists of three parts [28]. For our purpose the first set
(Task 1, Classical Classification) is the most relevant as it contains a complete
training set of pose estimation sequences (70 sessions; total of 507,738 frames)
including complete annotations of all frames. A separate test set of pose estima-
tion sequences (19 sessions; total of 262,107 frames) is being used to benchmark
against the challenge winner [6].

Annotation Descriptions

The behavior annotation as described in Sun et al. 2021 was not altered ([28]).
Please refer to the original publication for detailed information. Notably, the
majority of annotations did not include one of the three behaviors. These
widely-divergent samples were collectively annotated as ”other” and are there-
fore not considered in evaluations regarding this benchmark data set.

Pose estimation

The provided pose estimation of the data set were extracted using the MARS
[6]. MARS identifies seven user-defined body parts (snout, ears, neck, hips,
and tail base). For more information refer to Sun et al. 2021 [6, 28]. During
feature engineering, we discarded the left and right ear key points as they did
not provide additional information about the underlying behavior.

Non-human primate data set

A single housed monkey exploring the environment for 5 minutes. Monkey’s pose
was generated by OpenMonkeyStudio [7] as seen in Maisson et al. 2022 [48] and
Voloh et al. 2022 [49]. All research and animal care procedures were conducted
in accordance with University of Minnesota Institutional Animal Care and Use
Committee approval and in accord with National Institutes of Health standards
for the care and use of non-human primates.
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Annotation Descriptions

Behavior annotation was done using BORIS [50] by an expert annotator based
on unpublished video displaying the 3D pose data. The animal’s behavior was
separated into distinct categories that were exclusive to one another - i.e., only
a single behavior could be shown at the same time.

1. Walk: The monkey moved across the arena using its feet or feet and
hands touching the ground (floor or platform).

2. Jump: The monkey jumped from the ground onto a platform, or from
a platform to another, leaving the ground and remaining for a certain
duration in the air. This included the moment preparing the jump and
immediately after landing.

3. Climb sidewall: The monkey left the ground completely and moved on
a sidewall of the arena using its hands and feet. This does not include
moments where the monkey transfers from the ground to the sidewall to
separate the behavior from rearing.

4. Climb ceiling: The monkey left the ground or sidewall completely and
climbed on the ceiling of the arena using its hands, or hands and feet.
This includes moments, when the monkey transfers from the sidewall to
the ceiling and vice versa.

5. Rearing: The monkey touches the sidewall at any point while remaining
on the ground or a platform on its feet. This includes initiating and
finishing the rearing until the next behavior is identified.
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