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Abstract

Predicting the effects of mutations on protein function is an outstanding challenge. Here

we assess the performance of the deep learning based RoseTTAFold structure prediction and

design method for unsupervised mutation effect prediction. Using RoseTTAFold in inference

mode, without any additional training, we obtain state of the art accuracy on predicting mutation

effects for a set of diverse protein families. Thus, although the architecture of RoseTTAFold was

developed to address the protein structure prediction problem, during model training

RoseTTAFold acquired an understanding of the mutational landscapes of proteins comparable

to that of large recently developed language models.  The ability to reason over structure as well

as sequence could enable even more precise mutation effect predictions following supervised

training.

Main Text
Accurate and unsupervised prediction of single mutation effects using sequence

information alone would help relate observed sequence polymorphisms to human disease [1, 2]

and contribute to the design of proteins with higher functional activities. Deep learning methods

have recently shown considerable promise for mutation effect prediction. DeepSequence [3], a

probabilistic model for sequence families, obtained excellent performance in mutation effect

prediction using latent variables for capturing higher-order interactions between residues in

proteins through training on multiple sequence alignments (MSAs) for the target protein of

interest. Large protein language models trained on multiple sequence alignments (MSA

Transformer) [4] or single sequences [5] also performed very well at mutation effect prediction,

and have the advantage over DeepSequence of not requiring specific training on the protein of

interest. RoseTTAFold was originally developed for protein structure prediction [6], but during

training we included a masked token recovery task, and a recently developed version,

RoseTTAFold Joint (RFjoint ) was further trained to solve ‘inpainting’ problems in which
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substantial portions of both sequence and structure are rebuilt [7].  To assess RFjoint’s

understanding of protein sequence-structure relationships, we set out to investigate whether it

could predict experimental mutational data from published deep mutational scanning (DMS)

sets [8] with no further training (using a zero-shot approach). We compared RoseTTAFold

performance on this task to that of the state of the art MSA Transformer; both are MSA based

methods requiring no further training.

RFjoint was evaluated on a set of 38 deep mutational scans curated by Riesselman et al.

[3]. Each of the mutational scans recorded a different protein function with varying

measurements. Each dataset was treated as a separate prediction task, and each variant was

scored individually. For each target protein, we generated MSAs using iterative sequence

search against the UniClust30 database as described in Baek et al. [6] and used it for both

RFjoint and MSA Transformer predictions. For RF joint, the variants were scored by masking out the

mutation site in the query sequence in the MSA and the MSA token recovery head was used to

predict the distribution over the masked position. The predicted effect of the mutation was

calculated as the log odds ratio of the mutant amino acid and the wild-type amino acid (Figure

1). The performance on each dataset was assessed based on the spearman correlation of the

predictions to the observed experimental values.

We found that RFjoint predicts mutational effects considerably better than a baseline

calculated as the log odds ratio of the frequency of the mutant amino acid and of the wild-type

amino acid in the MSA (Figure 2).  RF joint also slightly outperformed MSA Transformer (Figure

2). RoseTTAFold has the advantage in principle over the purely sequence based models of also

being able to utilize structural template information, but we did not observe a significant

improvement with incorporation of template structure information (data not shown; this may be

in part because RoseTTAFold generates 3D models from sequence with reasonable accuracy).

We also found little dependency of prediction accuracy on MSA depth (Supplementary Figure

1).

Conclusion
We find that the  RoseTTAFold network,  developed originally for structure prediction and

then extended to protein design, is also able to predict the effect of single mutations with quite

high accuracy.  Just as large language models like the MSA Transformer provide general

models of protein sequence, RoseTTAFold joint may be viewed as a general joint  model of

protein sequence and structure.  With further more directed training, it should be possible to

further improve performance by better utilizing protein structural information, which can be
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readily input into RoseTTAFold but not into pure sequence based models, and by fine-tuning

specifically for the mutational effect prediction task. More generally, our results demonstrate that

RoseTTAFold has quite a broad understanding of protein mutational landscapes, which should

be very useful for protein design and other challenges involving inference over both sequence

and structure.
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Materials and Methods
We used the published RFjoint model [7] in inference mode for the task of single mutation

effect prediction. All weights of the model were frozen and no further training was done. Up to

256 sequences were considered from the input MSA of a target protein with an additional 1024

extra sequences passed into the model. All default parameters from RF joint were used and the

number of recycles was set to 1. RoseTTAFold [6] predicted structures for a target protein were

used as structural templates for mutation effect prediction. Inference code for predicting the

effect of single mutations through this pipeline is available here:

https://github.com/RosettaCommons/RFDesign/tree/main/inpainting
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Figure 1. Overall pipeline for zero-shot prediction of mutation effect using

RoseTTAFold. A MSA is generated and masked at the mutation position in the query sequence,

and structural templates are fed into pre-trained RoseTTAFold. Using the masked token

prediction head, the emitted probability distribution of the 20 amino acids over the mutation site

is used to calculate the effect of a mutation as the log odds ratio of the wild-type and mutation

amino acid.

Figure 2. Boxplots of spearman rho correlations on deep mutation scanning datasets.

Baseline refers to the non-ML MSA baseline. RF joint refers to the model trained on a joint
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sequence and structure recovery task [7]. Box plots show the median (center line), interquartile

range (hinges), and 1.5 times the interquartile range (whiskers); outliers are plotted as individual

points.

Supplementary Figure 1. Spearman rho correlations for all deep mutational scanning

datasets evaluated. Each point corresponds to a different protein. The points are arranged

according to increasing MSA depth for RF joint and MSA Transformer.
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