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Abstract 15 

The gut microbiota is a reservoir for antimicrobial resistance genes (ARGs). With current 16 

sequencing methods, it is difficult to assign ARGs to their microbial hosts, particularly if these 17 

ARGs are located on plasmids. Metagenomic chromosome conformation capture approaches 18 

(meta3C and Hi-C), have recently been developed to link bacterial genes to phylogenetic 19 

markers, thus potentially allowing the assignment of ARGs to their hosts on a microbiome-20 

wide scale.  21 

Here, we generated a meta3C dataset of a human stool sample and used previously published 22 

meta3C and Hi-C datasets to investigate bacterial hosts of ARGs in the human gut 23 

microbiome. Sequence reads mapping to repetitive elements were found to cause problematic 24 

noise in, and may importantly skew interpretation of, meta3C and Hi-C data. We provide a 25 

strategy to improve the signal-to-noise ratio by discarding reads that map to repetitive 26 

elements and to the end of contigs. We also show the importance of using spike-in controls to 27 

quantify whether the cross-linking step in meta3C and Hi-C protocols has been successful.   28 

After filtering for spurious links, 87 ARGs were linked to their bacterial hosts across all 29 

datasets, including 27 ARGs in the meta3C dataset we generated. We show that commensal 30 

gut bacteria are an important reservoir for ARGs, with genes encoding for aminoglycoside and 31 

tetracycline resistance being widespread in anaerobic commensals of the human gut. 32 

  33 
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Introduction 34 

The gut microbiota is a complex ecosystem that is frequently characterised through high-35 

throughput shotgun sequencing to quantify and characterise the abundance of viruses, 36 

bacteria, fungi, and protists [1]. Using sequencing-based approaches, it remains a challenge 37 

to link genes in the gut microbiota to their microbial hosts as metagenomic assemblies are 38 

often highly fragmented and metagenome assembled genomes (MAGs) are frequently 39 

incomplete or suffer from contaminating sequences [2,3]. While contiguity of assemblies can 40 

be improved by the incorporation of long-read sequencing data [4,5], the hosts of plasmids 41 

can only be predicted, but not conclusively identified, by a variety of bioinformatic approaches 42 

[6]. The linkage of genes to their microbial hosts is particularly important for genes that confer 43 

antibiotic-resistant phenotypes to their hosts. Sequencing-based studies have shown that the 44 

human gut microbiota forms a reservoir of antibiotic resistance genes (ARGs) [7,8]. These 45 

genes often have the potential to spread promiscuously in microbial populations, particularly 46 

when they are associated with plasmids [9]. Horizontal transfer of antibiotic resistance genes 47 

in the gut has been observed among Enterobacteriaceae, Bacteroides and Enterococcus 48 

strains [10–12]. It is thus of interest to disentangle ARG-host linkage across the gut microbiota 49 

with the long-term goal to understand to what extent commensal bacteria can serve as a 50 

conduit for ARGs to be transferred to gut-dwelling opportunistic pathogens like Clostridioides 51 

difficile, Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis and others [2].  52 

To improve linkage of genes to their hosts in microbial ecosystems, metagenomic proximity 53 

ligation techniques have been developed [13]. In short, these techniques cross-link DNA within 54 

microbial cells through an incubation with formaldehyde, followed by digestion with restriction 55 

enzymes, proximity ligation, the reversal of crosslinks by treatment with a protease and finally 56 

high-throughput sequencing of the resulting fragments (Figure 1). Metagenomic chromosome 57 

confirmation capture was first described by Marbouty and colleagues and was termed meta3C 58 

[14]. Shortly afterwards, other protocols were published that include an additional step to 59 

specifically enrich for cross-linked DNA, which involves tagging the termini of DNA fragments 60 
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with biotin before ligation [15,16]. After removal of the cross‑links, DNA is sheared and 61 

streptavidin beads are used to pull down biotin‑tagged fragments, thus enriching for ligation 62 

junctions. Protocols with this additional enrichment step are collectively termed Hi-C.  63 

 64 

Figure 1. Metagenomic chromosome conformation capture approaches. 65 

Formaldehyde is used to cross-link DNA-bound proteins before cell lysis and enzymatic digestion of the 66 

DNA. In meta3C, the cross-linked digested fragments are then ligated. In Hi-C, the digested fragments 67 

are tagged with biotin prior to ligation, enabling enrichment of ligated biotin-labelled fragments following 68 

ligation and DNA shearing. The cross-links are then removed during treatment with a protease, and the 69 

fragments undergo high-throughput sequencing.  70 

 71 

Due to its lower cross-linking efficiency a meta3C library must be sequenced more deeply than 72 

a Hi-C library to ensure that sufficient numbers of cross‑linked fragments are sequenced [13]. 73 

However, the relatively low proportion of non‑cross‑linked fragments sequenced from a 74 

meta3C library allows generation and scaffolding of contigs directly from meta3C sequencing 75 

data [14]. For Hi-C, additional shotgun sequencing of the sample is required for metagenomic 76 

assembly, which must then be analysed in conjunction with the Hi-C data to link assembled 77 

contigs [15,16]. 3C/Hi-C approaches have been used to considerable effect in improving the 78 

assembly of MAGs in complex microbial ecosystems such as those present in the bovine 79 

rumen [17], the gut of dogs [18], sheep [19] and pigs [20]. Several studies have been 80 

performed using 3C/Hi-C to study the human gut microbiota [21–25]. 81 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 5, 2022. ; https://doi.org/10.1101/2022.11.05.514866doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.05.514866
http://creativecommons.org/licenses/by/4.0/


5 

The overarching goal of this study was to explore whether meta3C and Hi-C can be used to 82 

reliably link ARGs to their microbial hosts. To this aim, we generated a meta3C dataset, using 83 

spike-in controls, of a human stool sample. We combined the analysis of this dataset with re-84 

analysis of publicly available meta3C and Hi-C data generated using gut microbiome samples, 85 

to identify and address technical challenges in the analysis of metagenomic chromosome 86 

conformation capture data to determine linkage between ARGs and chromosomes and 87 

plasmids of their microbial hosts.   88 
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Results 89 

Generation of a meta3C library using a human stool sample  90 

A meta3C library was generated using a human stool sample from an individual suffering from 91 

Inflammatory Bowel Disease (IBD). Prior to the first step of the meta3C protocol (i.e. incubation 92 

with formaldehyde), we spiked in two antibiotic resistance gene carrying strains, E. coli E3070 93 

[26] and E. faecium E745 [27], at 6.4 x 108 colony forming units/g each, equivalent to an 94 

estimated 0.5% of the total community. Two meta3C libraries, differing by the enzymes (MluCI 95 

and HpaII) used for restriction digestion were generated and sequenced independently. After 96 

processing of the reads (to remove low-quality, duplicate, and human reads), 101 million and 97 

97 million high‑quality reads remained for the HpaII and MluCI meta3C libraries, respectively. 98 

These reads were then combined to generate the G_3C dataset and used for the 99 

metagenomic assembly. The reads were assembled into 89,005 contigs, with a contig N50 of 100 

10,778 and a total length of 404,824,063 bp (Table 1). 101 

 102 

3C/Hi-C datasets reflect composition of the gut microbiota 103 

To benchmark the meta3C data generated here against previously published 3C/Hi-C gut 104 

microbiota data, several published datasets using gut microbiota samples that were available 105 

at the inception of this study (June 2020) were reanalysed (Table 1). All these datasets 106 

originated from humans, with the exception of M_3C, which was generated using a murine gut 107 

microbiota sample [28].  108 
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 109 

Table 1. Read counts and assembly statistics 110 

*for K_HiC, an average of 43 samples is presented in this table; x_SG = accompanying shotgun metagenomic reads; assemblies in bold were 111 

used during analysis of 3C/Hi-C data; bp = base pairs; ND = not determined 112 

 113 

Dataset Assembly Read length (bp) Raw reads Processed reads 
Total length of 

assembly (bp) 

No. of 

contigs 
Contig N50 Reference 

G_3C G_3C 2 × 150 223,169,682 198,493,086 404,824,063 89,005 10,778 This study 

M_3C M_3C 2 × 75 375,815,400 366,961,002 480,933,195 116,057 7,562 [28] 

P_HiC 

P_HiC 2 × 150 171,853,886 157,755,162 ND ND ND 

[24] 

P_SG 2 × 150 250,884,672 237,293,522 528,999,126 104,368 14,455 

Y_3C 

Y_3C_A 2 × 160 3,019,738,680 2,921,579,828 1,040,533,919 177,689 17,376 

[21] 

Y_SG_A 2 × 160 416,571,650 410,280,634 658,813,968 101,575 22,551 

Y_3C_B 2 × 160 682,773,219 1,239,950,680 866,666,497 146,989 18,851 

[21] 

Y_SG_B 2 × 160 202,617,904 198,775,312 484,955,068 83,017 19,100 

D_HiC 

D_HiC 2 × 80 143,286,468 133,509,800 ND ND ND 

[23] 

D_SG 2 × 150 20,088,550 18,925,950 131,298,239 37,723 5,924 

K_HiC 

(average*) 

K_HiC 2 × 150 41,021,508 37,984,239 ND ND ND 

[22] 

K_SG 2 × 150 90,510,991 83,397,427 156,853,335 32,197 18,026 
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The raw reads from these published datasets were downloaded from NCBI, processed and 114 

analysed identically to the reads generated in this study. Where more than one enzyme was 115 

used and sequenced as separate libraries, or if 3C/Hi-C datasets were made up of technical 116 

repeats, the reads were combined before metagenomic assembly. For studies using the 117 

meta3C protocol, assemblies were made using the meta3C data, as advised in the publication 118 

describing meta3C [14], while for Hi-C data assemblies were generated using the shotgun 119 

metagenomic sequencing datasets (Table 1). The study of Yaffe and Relman [21] was the 120 

only study which contained both meta3C and shotgun sequencing data. We assembled both 121 

but we decided to use the assembly based on meta3C data for further analyses as these 122 

assemblies were 1.6-fold and 1.8-fold larger (for sample A and B, respectively) than the 123 

assemblies generated by shotgun sequencing data. 124 

The taxonomic compositions of the gut microbiota, on the basis of the processed reads from 125 

all datasets, were determined using MetaPhlAn3 [29]. Among classified reads, most samples 126 

showed results that can be expected for a human faecal sample, with the majority of the reads 127 

being assigned to the Clostridia and Bacteroidia classes (Figure 2). Some samples differed 128 

greatly from the others, such as K_HiC_N1-4, where 88.55% of the classified reads were 129 

assigned to ‘Viruses_unclassified’, which may reflect the neutropenic nature of most of the 130 

individuals in the K_HiC dataset [22]. For the dataset generated for this study (G_3C), 39.92% 131 

of classified reads were assigned to the class Clostridia, 17.63% to Actinobacteria, 10.64% 132 

Coriobacteria, and 9.94% to Bacteroidia (Figure 2). The Enterococcus and Escherichia genera 133 

had similar abundances to each other (3.79% and 3.43%, respectively), which suggests that 134 
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the E. coli and E. faecium strains had been spiked in at a higher level than the 0.5% target 135 

due to an overestimation of the total bacterial loads. 136 

 137 

Figure 2. Class-level compositions of all datasets. 138 

The reads from all datasets were taxonomically profiled using MetaPhlAn3. The stacked bars show the 139 

relative abundance (%) of each class for the classified reads. Reads that could not be classified by 140 

MetaPhlAn3 (~60% of reads for each dataset) are excluded. For the K_HiC dataset, individuals are 141 

either neutropenic (N1-7) or healthy (H1-2) with multiple samples collected longitudinally for each 142 

individual.  143 

 144 

Diverse antibiotic resistance genes are present in all datasets 145 

After phylogenetic profiling of the reads, ABRicate was used to identify contigs containing 146 

ARGs in the metagenomic assemblies. In the G_3C assembly, 37 contigs containing ARGs 147 

were identified. The known ARGs from the E3090 and E745 spike-ins were all present 148 

(Figure 3). For E745, the two chromosomal ARGs (aac(6’)-Ii and msr(C)) had similar 149 

abundances of 15.0 and 14.3 reads per kilobase per million mapped reads (RPKM), 150 

respectively. The other ARGs from E745, vanHAX and dfrG, are carried on plasmids, and had 151 

higher abundance (43.4 and 34.9 RPKM) than the chromosomal ARGs, likely due to being 152 

carried on a plasmid that has a higher copy number than the chromosome. For the E3090 153 
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ARGs, six chromosomal ARGs (sul1, sul2, ant(3’’)-Ia, blaOXA‑1, floR, and mdf(A)) had relatively 154 

similar abundances, ranging from 9.6-27.4 RPKM. The ARGs carried on plasmids in E3090 155 

had higher relative abundances. The mcr-1.1 gene had an abundance of 98.1 RPKM, while 156 

blaTEM was present at a high abundance of 104.8 RPKM. The blaTEM gene present in the 157 

metagenomic assembly was identified as blaTEM-116, as opposed to blaTEM-1B that the E3090 158 

genome contains. These genes differ by 5 single nucleotide polymorphisms (SNPs), so this is 159 

most likely due to a misassembly in either the original genome sequence or the metagenomic 160 

assembly. 161 

The rest of the datasets contained many and diverse ARGs, with 71 unique ARGs in total 162 

across the datasets, excluding the K_HiC samples (Figure 3). The 86 samples in the K_HiC 163 

dataset (43 Hi-C and 43 corresponding shotgun metagenomic samples) contained 141 unique 164 

ARGs and have been shown separately in Supplementary Figure 1. 165 

 166 

Figure 3. Relative abundance of antimicrobial resistance genes (ARGs) in 3C/Hi-C 167 

datasets. 168 

The ARG sequences from the assemblies of each dataset were isolated, and the reads from that dataset 169 

were mapped to the ARGs (columns). The relative abundance was calculated as reads per kilobase 170 

per million mapped reads (RPKM). White cells mean the ARG was not present, and coloured cells show 171 

that the ARG was present, with the colour relating to the relative abundance of the ARG within that set 172 

of reads (log(10) transformed RPKM values). Different datasets are separated by gaps in the heatmap. 173 

3C datasets (*_3C) have rows showing the RPKM of the 3C reads mapping to the ARGs identified in 174 

the 3C metagenomic assembly. Hi-C datasets show RPKM of the shotgun reads (*_SG) or Hi-C reads 175 

(*_HiC) mapping to ARGs identified in the shotgun metagenomic assembly. The ARGs highlighted with 176 

a coloured dot are ARGs from the spike‑ins in the G_3C dataset (purple = E. coli E3090, yellow = 177 

E. faecium E745).  178 

 179 

Presence of spurious crosslinks in 3C/Hi-C data 180 
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To identify reads from cross-linked fragments of DNA, the first 50 bp of the 3C/Hi-C reads from 181 

each dataset were first mapped against their respective metagenomic assemblies. For Hi-C 182 

datasets (P_HiC, D_HiC, K_HiC), the Hi-C reads were mapped to assemblies generated from 183 

the accompanying shotgun metagenomic library, whereas 3C reads from the 3C datasets 184 

(G_3C, M_3C, Y_3C) were mapped to assemblies generated directly from the 3C library. From 185 

the reads that mapped with a mapping quality (MAPQ) >20, intercontig read pairs were 186 

identified as instances where both reads of the pair mapped to different contigs (Figure 4; 187 

Supplementary Table 1), indicating the read pair potentially came from a cross‑linked fragment 188 

of DNA. 189 

 190 

 191 

 192 

 193 

 194 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

Figure 4. Proportion of intercontig reads in 3C/Hi-C and shotgun reads of the same 202 

sample. 203 

The first 50 bp of each read were mapped against the corresponding assembly, and pairs 204 

where each read of the pair mapped to different contigs were labelled as intercontig reads. 205 

Y-axis shows the percentage reads that were intercontig. K_HiC average (cyan) is the average 206 

for all 43 K_HiC samples (black). G_3C (orange) and M_3C (green) did not have 207 

accompanying shotgun reads, so only the intercontig proportion for the 3C reads are shown.  208 
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The proportion of intercontig reads greatly varied across the datasets, with the highest being 209 

13.74% for P_HiC, and the lowest being 0.2% for K_HiC_N1-1 (0.64% average across all 210 

K_HiC samples). For the meta3C datasets, M_3C had the highest proportion of intercontig 211 

reads at 9.73%. The G_3C dataset had the lowest number of cross-linked reads of the meta3C 212 

datasets at 1.65% (Supplementary Table 1).  213 

Due to the large differences in the proportion of intercontig reads across the datasets, we set 214 

out to study whether these intercontig reads were truly a result of physical cross linking. We 215 

first mapped shotgun metagenomic reads, which, by definition, cannot have been physically 216 

cross-linked, in the datasets that contained them (Y_3C_A/B, D_HiC, P_HiC, K_HiC) back to 217 

the assemblies in the same way as the 3C/Hi-C reads were in the previous step. They were 218 

then analysed the same as the 3C/Hi-C reads to isolate the intercontig read pairs and calculate 219 

the proportion of intercontig reads. The shotgun metagenomic reads showed a background 220 

level of 0.16 to 4.20% intercontig reads (Figure 4). These reads have not been generated from 221 

physically cross-linked fragments of DNA and shall thus be referred to as ‘spurious intercontig 222 

reads’. In the K_HiC datasets, the average proportion of intercontig reads from the shotgun 223 

metagenomic reads was 0.74%, compared to the average of 0.64% cross-linked reads from 224 

the Hi-C reads. This suggested that there may be no, or very few, reads resulting from the 225 

physical cross-linking of DNA in the K_HiC dataset.  226 

Non-contiguous assemblies introduce noise in 3C/Hi-C datasets 227 

We recognised that the G_3C dataset, with an intercontig read proportion of 1.65%, is within 228 

the range of the spurious intercontig reads from the shotgun metagenomic data and may thus 229 

also have been insufficiently cross-linked during the experimental procedure. Because the 230 

G_3C dataset contained the E. coli and E. faecium spike-ins, for which whole genome 231 

sequences are available, the intercontig reads mapping to the respective genome sequences 232 

could be examined further. G_3C reads were mapped to the E. coli E3090 and E. faecium 233 

E745 genomes to isolate spike-in 3C reads for each genome. These reads were then 234 
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compared to whole genome sequencing (WGS) reads downloaded from NCBI for each 235 

genome by mapping the first 50 bp of all reads to the G_3C assembly (Supplementary 236 

Table 2). 237 

The proportion of intercontig reads from the 3C reads (0.98% and 0.99% for E. coli and 238 

E. faecium, respectively) were comparable to the WGS reads (0.78% and 2.34% for E. coli 239 

and E. faecium, respectively) confirming again that short-read sequencing produces a 240 

considerable background level of reads that can be erroneously interpreted as originating from 241 

cross-links. Aligning both the intercontig and non-intercontig reads from the G_3C spike‑in 242 

and the WGS reads back to their respective genomes revealed the regions the reads were 243 

mapping to on the genome. Both the intercontig and non-intercontig reads spanned the whole 244 

genome for both spike‑ins and aligned to different genomic regions (Figure 5). A greater 245 

proportion of the intercontig reads mapped to insertion sequence elements (IS elements) in 246 

the genome compared to the non‑intercontig reads for all sets of reads, except for the G_3C 247 

E3090 reads. This was most clear in the E745 reads, where over 20% of the intercontig reads 248 

for both the G_3C and WGS reads aligned to IS elements, compared to less than 1% of the 249 

non‑intercontig reads, suggesting that the presence of multiple copies of IS elements in the 250 

assembly is partially responsible for the spurious intercontig reads. Using ABRicate with the 251 

ISfinder database [30], 93 copies of IS elements (18 different types) were found across the 252 

3,168,411-bp E. faecium E745 genome (29.3 IS elements/Mbp), compared to 79 IS element 253 

copies (25 different types) in the 5,270,976 bp E. coli E3090 genome (15.0 IS elements per 254 

Mb). The E745 reads thus have a higher chance of mapping to an IS element, causing more 255 

spurious intercontig reads. 256 

  257 
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Figure 5. G_3C reads and whole genome sequencing reads mapping to genome 258 

sequences of spike-in controls  259 

Both the intercontig and non-intercontig reads for G_3C spike-in reads and WGS reads of the 260 

spike-ins were mapped to their respective genomes. The genomes were annotated using 261 

Prokka and the regions in which the reads mapped to were grouped into four categories (see 262 

legend). IS element = Insertion Sequence element. Percentages at the end of the stacked 263 

charts show the proportion of total reads that were assigned to intercontig/non-intercontig. 264 

Next, the position in the contigs from the G_3C assembly that the spike‑in reads 265 

mapped to was checked to determine whether spurious intercontig reads were more 266 

likely to map near to the beginning or end of a contig, meaning they were potentially 267 

caused by fragmentation in the assembly. Indeed, a greater proportion of the 268 

intercontig reads for both the G_3C and WGS spike‑in reads mapped within 500 nt of 269 

the ends of a contig compared to the non‑intercontig reads (Figure 6). For G_3C 270 

E3090 reads, 37.7% of the intercontig reads mapped within the first or last 500 nt of a 271 

contig, compared to only 5.0% of non‑intercontig G_3C E3090 reads. This observation 272 

was even clearer for the E3090 WGS and G_3C/WGS E745 reads, where over 80% 273 

of the intercontig reads were mapping near the ends of a contig, compared to less 274 

than 10% of the non‑intercontig reads (Figure 6).  275 
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Figure 6. Proportions of reads mapping within the first or last 500 nucleotides (nt) of a 276 

contig in the G_3C assembly for spike-in G_3C and whole genome sequencing (WGS) 277 

reads. 278 

The position of the alignment to contigs in the G_3C assembly was checked for both 279 

intercontig and non‑intercontig read pairs from WGS reads and reads from G_3C that mapped 280 

to each spike-in genome. Orange shows the proportion of reads mapping within 500 nt of the 281 

ends of a contig. Blue shows the proportion of reads mapping more than 500 nt away from the 282 

ends of a contig.  283 

  284 
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To determine whether intercontig reads mapped to the ends of contigs for all 3C/Hi‑C reads, 285 

the positions in the metagenomic assembly that the reads mapped to were checked for all 286 

datasets. The majority of spurious intercontig reads from the shotgun metagenomic data 287 

mapped within the first or last 500 nt of a contig for all datasets that had shotgun data 288 

(Figure 7). For the 3C/Hi-C intercontig reads, the proportion varied, but was lower for P_HiC, 289 

D_HiC, Y_3C_B, and M_3C (12.7%, 27.5%, 32.1%, and 19.4%, respectively), compared to 290 

around 52% for G_3C and Y_3C_A.  291 

Figure 7. Proportions of intercontig reads mapping within the first or last 500 292 

nucleotides (nt) of a contig in their respective assemblies for all datasets. 293 

The position of the alignment to contigs was checked for the intercontig reads in all datasets. 294 

Orange shows the proportion of reads mapping within 500 nt of the ends of a contig. Blue 295 

shows the proportion of reads mapping greater than 500 nt away from the ends of a contig.  296 

 297 

The proportion of intercontig 3C/Hi‑C reads mapping near ends of a contig correlated 298 

(R2 = 0.86; P = 0.0028) with the proportion of intercontig reads in the dataset, whereby 299 

datasets with a higher proportion of intercontig reads in the sequence data had a lower 300 

proportion of intercontig reads mapping near the ends of a contig (Supplementary Figure 2). 301 

This, along with the high proportion of shotgun intercontig reads mapping near the ends of a 302 

contig, suggested that many spurious intercontig reads can be filtered out by removing those 303 

that mapped within the first or last 500 nt of a contig. 304 
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Filtering reads that map in the first 500 nt of a contig removes most spurious intercontig 305 

reads 306 

To reduce the number of spurious intercontig reads in the data, intercontig reads that mapped 307 

within the first 500 nt of a contig were removed in all datasets, reducing the proportion of 308 

intercontig reads by 32.6%, on average, across all the datasets (Figure 8). Notably, when the 309 

same filtering step was performed on the shotgun data, the proportion of intercontig reads 310 

decreased by 63.8%, suggesting that this step is essential to reduce the number of spurious 311 

intercontig reads in the data. After removing the reads mapping near the ends of contigs, the 312 

proportion of intercontig reads from the Hi‑C data in the K_HiC dataset was 0.18% on average, 313 

hardly different from the average of the K_SG spurious intercontig reads (0.16%). Therefore, 314 

this dataset was not included in further analyses.  315 

  316 
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Figure 8. Proportion of intercontig reads in 3C/Hi-C and shotgun reads before and after 317 

filtering. 318 

The first 50 bp of each read were mapped against the corresponding assembly, and pairs 319 

where each read of the pair mapped to different contigs were labelled as intercontig reads 320 

(‘Before’ on X-axis). These were then filtered to remove intercontig reads that mapped within 321 

the first or last 500 nt of a contig (‘After’ on X-axis). Y‑axis shows the percentage reads that 322 

were intercontig. K_HiC average (cyan) is the average for all 43 K_HiC samples (black). G_3C 323 

(orange) and M_3C (green) did not have accompanying shotgun reads, so only the intercontig 324 

proportion for the 3C reads before and after filtering are shown.  325 

 326 

  327 
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Linking ARGs to microbial hosts in 3C/Hi-C datasets 328 

After filtering out the intercontig reads that mapped to the 500 nt ends of contigs, pairs where 329 

one read mapped to an ARG contig in its respective assembly were identified. To further 330 

reduce the impact of the noise from any remaining spurious intercontig reads, contigs were 331 

only considered linked to ARG contigs if there were ≥5 unique intercontig read pairs linking 332 

them. In addition, ARG‑linked contigs identified as IS elements were also filtered out (Table 2). 333 

 334 

Table 2. Number of contigs linking to ARG contigs in 3C/Hi-C datasets 

Dataset G_3C M_3C P_HiC 

Y_3C 

D_HiC 

Y_3C_A Y_3C_B 

Intercontig reads linking 

contigs to an ARG contig 
26,607 17,321 28,200 186,177 128,774 19,475 

Unique contigs linked to 

ARG contig 
4,767 6,763 4,517 9,172 14,757 3,007 

Linked ≥5 times 519 264 445 611 1,661 392 

After removal of links to IS 

elements 
466 264 443 606 1,655 392 

After removal of links to 

plasmids 
342 259 439 594 1,627 387 

Number of ARGs linked to 

host(s) ( / number of ARGs 

in sample) 

27 / 37 6 / 7 9 / 15 23 / 30 16 / 23 6 / 11 

For datasets that used multiple restriction enzymes, numbers presented are a combined total; 

ARG = antimicrobial resistance gene; IS element = insertion sequence element  

 335 

  336 
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For G_3C, this resulted in 26,607 intercontig reads that linked a total of 466 contigs to 27 out 337 

of 37 of the ARG contigs (Table 2). Linked contigs that mapped with >99% identity to known 338 

plasmid sequences in the NCBI nt database, which were all linking to ARGs from the spike‑ins, 339 

were removed as no definitive identification of the microbial hosts could be made (Table 2). 340 

The remaining contigs were then taxonomically classified using Kraken2. This revealed that 341 

the ARGs were linked to a wide range of taxa (Figure 9). Genes from the E745 spike‑in were 342 

correctly linked to Enterococcus, although vanHAX was excluded as it only linked to plasmid 343 

contigs. The same was true for catA1 and blaTEM in the E. coli E3090 spike‑in, however the 344 

remaining E3090 ARGs were all linked to Escherichia. A small proportion (1.7‑3.7%) of the 345 

contigs that linked to several of the E3090 ARGs (blaCTX‑M‑1, mcr‑1.1, aph(3’’)-Ib, aph(6)-Id, 346 

mdf(A), sul1, ant(3’’)-Ia, blaOXA-1, and sul2) were only classified to the family level as 347 

Enterobacteriaceae, with the remaining contigs linked to these genes being successfully 348 

classified to species level as E. coli. 349 

These results indicated that the analysis pipeline used here could successfully link the spike‑in 350 

ARGs to their correct host. The non‑spike‑in ARGs linked to a wide range of hosts. Some 351 

ARGs such as cfxA3 and tet(X) linked to single hosts, whereas others, like tet(40) and tet(W), 352 

were widespread and linked to various gut commensals. Where ARGs were associated with 353 

multiple taxa, the potential microbial hosts were usually related at phylum level, such as tet(40) 354 

which linked to the genera Streptococcus, Flavonifractor, and Lachnoclostridium, which are 355 

all in the Firmicutes phylum. 356 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 5, 2022. ; https://doi.org/10.1101/2022.11.05.514866doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.05.514866
http://creativecommons.org/licenses/by/4.0/


14 

Figure 9. Heatmap showing antimicrobial resistance genes (ARGs) linked with their 357 

microbial hosts for G_3C. 358 

Contigs linked to ARG-containing contigs were taxonomically classified using Kraken2. The 359 

heatmap shows the proportion of contigs linked to each ARG that was classified as the taxon 360 

on the right. Enterococcus facecium E745 and Escherichia coli E3090 were spiked into the 361 

stool sample, and the ARGs that these strains carried are highlighted in yellow and purple, 362 

respectively. 363 

 364 

ARGs were then linked to their microbial hosts for the other 3C/Hi-C datasets. As with G_3C, 365 

some ARGs were linked to few microbial hosts, whereas others were linked to a wide range 366 

of hosts (Figure 10), and the proportions of ARGs successfully linked to their hosts were high, 367 

with 6/11, 9/15, 23/30, 16/23, and 6/7 for D_HiC, P_HiC, Y_3C_A, Y_3C_B, and M_3C, 368 

respectively (Table 2).   369 
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Figure 10. Heatmap showing antimicrobial resistance genes (ARGs) linked with their 370 

microbial hosts for downloaded 3C/Hi C datasets. 371 

Contigs linked to ARG-containing contigs were taxonomically classified using Kraken2. The 372 

heatmaps show the proportion of contigs linked to each ARG that was classified as the taxon 373 

on the right. Where there were multiple taxa that made up a proportion of no more than 0.02 374 

for any ARG in that dataset, they have been grouped into “Other”. 375 

  376 
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Some of the shared ARGs linked to the same hosts across datasets, whereas others linked to 377 

multiple diverse hosts. The tet(X), tet(Q), and erm(F) genes were linked predominantly to 378 

Alistipes, and Bacteroides, both from the order Bacteroidales, in all datasets that they were 379 

present in. The beta-lactamase cfxA3 was only linked to Bacteroides in all datasets that it was 380 

present in. Conversely, tet(O), tet(40), lnu(C), cat, ant(6)-Ia, and tet(W) showed a wide range 381 

of hosts across the datasets, with tet(W) linking to over 20 taxonomic classifications in total 382 

across five datasets.   383 

Overall, these results indicate that the ARGs identified in the assemblies were able to be linked 384 

to their microbial hosts using meta3C/Hi‑C data, with stringent filtering to minimise the impact 385 

of spurious links, revealing some genes to be promiscuous and linking to a wide range of gut 386 

bacteria. 387 

 388 

  389 
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Discussion 390 

Previous studies have implemented 3C/Hi-C‑based methods on the gut microbiome of 391 

humans and animals [21–24,28]. In this this study, we sought to implement meta3C on a 392 

human stool sample to link ARGs to their microbial hosts, as well as compare the 3C data 393 

generated here to previously published 3C/Hi‑C datasets with the aim to optimise analysis 394 

methods for 3C/Hi-C data by reducing the impact of spurious intercontig reads. 395 

The proportion of intercontig reads calculated here considerably varied between each dataset, 396 

ranging from 0.64% in the K_HiC dataset to 13.74% in P_HiC. In the meta3C libraries that 397 

were generated in this study, the fractions of intercontig read pairs were 1.65%. This is lower 398 

than expected from the protocol which suggested that 10‑15% of the reads will be from cross-399 

linked fragments [31]. However, another study by the same authors using meta3C on human 400 

stool samples reported intercontig reads ranging between 1.92% and 14.58% [32]. 401 

Additionally, a study that tested the meta3C protocol on a synthetic community also reported 402 

that most of their experiments resulted in approximately 1% proximity ligation read rate [33], 403 

which suggests that it may be challenging to generate high levels of crosslinks using the 404 

original meta3C protocol and that additional enrichment, as in the Hi-C protocol, may be 405 

required.  406 

The relatively low average number of intercontig reads in the K_HiC dataset was unexpected. 407 

After analysing the shotgun metagenomic reads in the same way as the Hi‑C reads by 408 

mapping them back to the assembly in each sample of K_HiC, the proportion of spurious 409 

intercontig reads was higher than the Hi‑C intercontig reads, substantiating the hypothesis 410 

that true cross‑linking had not been achieved for this Hi‑C dataset. Our analyses suggest that 411 

the Hi‑C procedure may not have worked effectively in most of the K_HiC samples. The 412 

authors’ claims on widespread HGT between different phyla in the human gut [22], thus needs 413 

further validation as other studies indicate that interphylum HGT in the human gut microbiome 414 

is a rare event [9,34]. These observations also highlighted that background noise introduced 415 
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by spurious intercontig reads could interfere with the analysis of the intercontig reads in the 416 

3C/Hi‑C datasets. 417 

Spurious intercontig reads can be the result of the formation of spurious ligation products 418 

between DNA that originated in different hosts during the experimental process of 3C/Hi‑C 419 

[35]. They can also occur from sequencing errors [36], and as the results in this study show, 420 

they are an inherent issue in short‑read sequencing, being present in both the shotgun 421 

metagenomic sequence datasets and the WGS short‑read data analysed here. The issue of 422 

spurious intercontig reads has been relatively underappreciated by the previous studies 423 

performing 3C‑based techniques on the gut microbiome. On the basis of the analyses in this 424 

study, it is clear that they have potential to significantly disrupt the interpretation of data by 425 

misassigning hosts to functional genes being investigated. Indeed, when analysing Hi‑C reads 426 

from wastewater samples, Stalder et al. [37] found that several clusters of contigs 427 

characterised as Firmicutes, Alphaproteobacteria, and Betaproteobacteria were linked by Hi‑C 428 

reads to the E. coli spike‑in strain that had been added to the sample. This E. coli spike‑in was 429 

also linked to several ARGs and plasmids that were not present in the spike‑in strain, and the 430 

authors concluded that these Hi‑C links were spurious and likely due to the high abundance 431 

of the spike‑in strain [37]. The authors suggested that these ARGs and plasmids were 432 

probably present in other strains of E. coli that were present in the sample. However, this 433 

cannot be confirmed without culturing of the sample. Press et al. [24] also observed results 434 

that are likely caused by spurious intercontig reads, including a Eubacterium eligens 435 

megaplasmid being linked by Hi‑C reads to another large plasmid originating from a species 436 

in the Bacteroidetes phylum. 437 

The majority of the original studies that generated the datasets analysed in this manuscript 438 

did little to remove spurious intercontig reads during their analysis. Like the analysis pipeline 439 

used in this study, most studies removed reads aligning with a low MAPQ and reads mapping 440 

to multiple contigs [21,22,24]. Some also required the presence of restriction sites on the 441 
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contigs being mapped to [21,22]. However, as these studies used restriction enzymes 442 

recognising four-nucleotide motifs, these restriction sites could be quite common in the 443 

assembly. Notably, Yaffe and Relman [21] did most to reduce spurious intercontig reads from 444 

interfering with the data analysis by developing a pipeline that included probabilistic modelling 445 

of experimental noise to determine the likelihood of links made using the 3C data being real. 446 

This method allowed the detection and removal of thousands of spurious links. Spurious links 447 

can also be removed through normalization of Hi-C data based on zero-inflated negative 448 

binomial regression frameworks, although this method has not been applied to 3C/Hi-C 449 

experiments on the human gut microbiota [38].  450 

The results in this manuscript show that spurious intercontig reads often account for ~2% of 451 

shotgun metagenomic reads, indicating that a considerable fraction of identified intercontig 452 

reads in meta3C/Hi‑C datasets, even after removal of low‑quality mapping, could be spurious 453 

reads that do not originate from cross‑linked fragments. Intercontig reads from both 3C data 454 

and WGS data were more likely to map near to IS elements. This indicates that many spurious 455 

intercontig reads could be caused by repeats in the genome leading to fragmentation of the 456 

assembly into smaller contigs. Repeat regions in the genome, like IS elements, that are longer 457 

than the read length cause breaks in the assembly as the assembly software will not be able 458 

to determine which sequences the repeat is between in the genome. This results in 459 

fragmented assemblies in which the repeats are represented as separate individual contigs 460 

[39]. This is especially an issue for bacteria, as repeat regions are estimated to make up 461 

around 5‑10% of the total genome [40]. The typical lengths of IS range between 1,000 and 462 

1,750 bp [41], which is longer than read-length and insert sizes used in 3C/Hi-C. It is thus 463 

likely that one of the reads of a pair could map to an IS element contig, or even a contig flanked 464 

by repeats. This could cause not only spurious intercontig reads, but also false 465 

host‑associations of contigs during analysis of 3C/Hi-C data, as the same IS elements can be 466 

present in different species [41]. This is particularly relevant for ARGs, which are often flanked 467 

by IS elements [42]. Furthermore, our results also showed that intercontig reads were much 468 
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more likely to map within the first or last 500 nt of a contig compared to non‑intercontig reads 469 

for both the 3C and WGS reads for the spike‑ins. The ends of contigs often contain fragments 470 

of repeats [43,44]. By filtering out reads that mapped to IS elements and those that map to the 471 

first or last 500 nt of a contig, many of the spurious intercontig reads will be removed. Whilst 472 

this may also remove some true intercontig reads that originated from cross‑linked fragments 473 

of DNA, it is an important step to reduce the impact of spurious intercontig reads on host‑ARG 474 

associations during further analysis.  475 

Our study also highlights the importance of spike‑ins, with completely sequenced genomes, 476 

in 3C/Hi-C experiments. Here, a spike-in of two strains of E. coli and E. faecium were added 477 

to the stool sample before meta3C. This was the first study to add spike‑ins during proximity 478 

ligation of a stool sample, although Marbouty et al. [28] added meta3C reads post‑sequencing 479 

from three bacterial species into the mouse faecal meta3C reads before downstream analysis, 480 

and a study implementing Hi‑C on wastewater used an E. coli spike‑in strain in one of the 481 

samples [37]. Whilst the G_3C spike‑ins were useful in analysis of the meta3C data, by 482 

providing positive controls for linkage between ARGs and hosts, the strains used may not 483 

have been optimal. Both spike‑ins were species of bacteria that are commonly found in the 484 

human gut microbiome [45,46]. This meant that any E. coli or E. faecium strains that were 485 

naturally present in the sample used would have been masked by the spike‑in strains, 486 

complicating the detection of potential ARG‑host links to these species. For future 3C/Hi-C 487 

experiments, strains of species that are unlikely to be naturally present in the sample type that 488 

is being studied should be considered. Ideally these strains should carry resistance genes on 489 

both plasmids and chromosomes to corroborate ARG-host linkages on different replicons. 490 

After filtering out spurious intercontig reads, 87 ARGs were linked to their microbial hosts 491 

across the 6 datasets, including 27 in the meta3C data first described in this manuscript. These 492 

included 6 ARGs known to be carried on plasmids in two spike‑in strains that were added to 493 

G_3C, showing that meta3C was able to link ARGs carried on plasmids to chromosomal DNA 494 
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of their microbial hosts in a human stool sample. A potential limitation of our study is that 495 

Kraken2 was used to taxonomically classify the linked contigs to determine the hosts of the 496 

ARGs. This tool classifies sequences by finding the lowest common ancestor (LCA) of 497 

genomes containing an exact match to each k‑mer in the sequence [47]. Kraken2 relies 498 

heavily on correct annotations in the database being used, which is especially a problem when 499 

the query contigs differ greatly from sequences in the database [48]. The hosts of some ARGs 500 

were very likely misclassified, including the linkage of tet(Q) to the fungal genus 501 

Saccharomyces in the M_3C dataset, lnu(P) linking to Kosmotoga, a thermophile found in 502 

hydrothermal systems in the ocean [49] in Y_3C_A, and blaTEM-116 in Y_3C_B linking to human 503 

mastadenovirus C. It should be noted that these links represented less than 3% of the 504 

ARG‑host cross‑links for those genes. Other 3C/Hi‑C studies have used binning methods to 505 

improve the reliability of the gene‑host link, as this will link genes to a group of contigs rather 506 

than just one, which could reduce the chance of misclassifying the host [20]. Classifying these 507 

metagenomic assembled genomes (MAGs) often uses phylogenetic trees of multiple marker 508 

genes, and whilst this is a well‑established method, interpreting the resulting phylogeny and 509 

taxonomically classifying the MAGs still has the limitations of needing an accurate reference 510 

database [3,48]. 511 

Nevertheless, the results of this study showed that ARGs were widespread amongst different 512 

microbial hosts, including in many known commensals in the gut microbiome. Genes that were 513 

present in multiple datasets showed similar hosts across the datasets. The genes tet(Q), 514 

tet(X), and erm(F) were associated with the genera Alistipes and Bacteroides in nearly all 515 

datasets in which these genes occurred. The tet(Q), tet(X), and erm(F) genes are known to 516 

be prevalent amongst Bacteroides species, and commonly occur together in the same strains, 517 

along with the presence of a conjugative transposon [50]. These genes have also been 518 

observed in an Alistipes strain isolated from the chicken gut [51]. The beta‑lactamases cfxA3 519 

and cfxA5 were exclusively linked to contigs assigned to the Bacteroides genus, where these 520 

genes are known to be prevalent [52]. Other genes were widespread and were linked to 521 
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multiple hosts, including various tetracycline resistance genes, which are highly prevalent and 522 

widespread in the human gut microbiota [7,53,54]. Novel observations include the linkage of 523 

the vancomycin resistance genes vanHDX to the genus Eubacterium in the Y_3C_B dataset. 524 

This gene has not been observed in Eubacterium previously, although vanD has been found 525 

in several other Eubacteriales, including Ruminococcus and Blautia [55,56]. Notably, 526 

VanD-type glycopeptide resistance genes in gut commensals can be transferred to the 527 

opportunistic pathogen E. faecium, complicating therapy of infections caused by this species 528 

[57].  529 

Overall, the findings in this chapter demonstrate that 3C/Hi‑C data contains a substantial 530 

background noise from spurious intercontig reads, that could confound host‑ARG associations 531 

during analysis. Several steps should be taken to reduce the impact of these spurious 532 

intercontig reads, including discarding reads that map near to the ends of a contig, removing 533 

reads mapping to IS element contigs, and requiring at least five unique intercontig read pairs 534 

to link two contigs together. In addition, the use of spike-ins as a control for the efficacy of the 535 

cross-linking step in 3C/Hi-C is recommended to ensure the validity of the data.  536 

  537 
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Materials and methods 538 

Stool sample and ethics 539 

The stool sample used to create a meta3C library was obtained from a patient with 540 

inflammatory bowel disease, an illness that is associated with higher levels of ARGs in the gut 541 

microbiota [58]. Ethical approval for this study has been obtained from the Bradford Leeds 542 

Research Ethics Committee (REC 16/YH/0100). The stool sample was divided into ~500 mg 543 

aliquots and stored at -80°C until use. 544 

Strains 545 

Strains used for spike-in were stored as stocks with 15% glycerol (v/v) at -80°C. E. coli E3090 546 

[26] was grown in lysogeny broth (LB) (Sigma-Aldrich), and E. faecium E745 [27] was grown 547 

in brain heart infusion (BHI) broth (Sigma-Aldrich), both at 37°C with shaking at 200 rpm. To 548 

determine viable counts in an overnight broth culture, 10-fold dilutions were made in 549 

phosphate-buffered saline (PBS), spread-plated onto the respective agars and incubated at 550 

37°C for 24 h. 551 

Estimation of the abundance of bacterial cells in stool 552 

To estimate the number of bacterial cells per gram of stool, the copy number of the 16S rRNA 553 

gene in the stool sample was estimated as previously described [59]. In short, amplicons 554 

(111 nt), generated with primers targeting the V6 region of 16S rRNA gene 555 

(5’-CAACGCGARGAACCTTACC-3’ and 5’-ACAACACGAGCTGACGAC-3’ [60]),  of E. coli 556 

MG1655 were cloned into the pJET1.2 cloning vector (Thermo Scientific). The number of 16S 557 

rRNA gene copies in stool were then determined using quantitative PCR with the above 558 

primers for a concentration range of the pJET1.2-16S construct and the DNA isolated from 559 

400 mg stool, using the FastDNA™ Spin Kit for Soil (MP Biomedicals). We used 2× Luna® 560 

Universal qPCR Master Mix (New England Biolabs [NEB]) for quantitative PCR in a volume of 561 

20 µL and primer concentrations of 250 nM each for the forward and reverse primers. The 562 

qPCR was then run, in triplicate, on a Bio-Rad CFX Connect™ Real-Time PCR Detection 563 
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System, following the Luna® protocol. To estimate the number of bacterial cells in the stool 564 

sample, the 16S rRNA copy number was divided by 3.82, the average 16S rRNA gene copy 565 

number in bacteria [61].  566 

meta3C 567 

Meta3C was carried out following the protocol from [31], summarised below. Before 568 

cross-linking was performed on the stool sample, a spike-in of E. coli E3090 and E. faecium 569 

E745 was added to a final concentration of 1% (0.5% each), calculated using the viable counts 570 

of overnight cultures and the estimated number of cells/g of stool, as described above. 571 

Approximately 250 mg of stool was added to 25 mL of PBS with 5% methanol-free 572 

formaldehyde (Sigma-Aldrich). After resuspension by vortexing for 30 s, the stool was 573 

incubated for 30 min at room temperature (RT) with shaking (250 rpm), followed by 30 min at 574 

4°C under gentle agitation (33 rpm using a roller mixer). Glycine (Fisher Scientific) was then 575 

added to a final concentration of 420 mM to quench remaining formaldehyde and incubated 576 

for 5 min at RT with moderate shaking (120 rpm), followed by 15 min at 4°C under gentle 577 

agitation. The sample was then centrifuged at 4,800 × g for 10 min at 4°C. The pellet was 578 

washed with sterile distilled water and resuspended in 4 mL of 1× TE (Tris/EDTA) buffer pH 8.3 579 

(Sigma-Aldrich) supplemented with cOmplete™ mini EDTA-free protease inhibitor (Roche 580 

Diagnostics). The suspended pellet was then transferred to four Lysing Matrix E tubes (MP 581 

Biomedicals) and run on the FastPrep-24 bead-beater (MP Biomedicals) for three cycles of 582 

8.0 m/s for 20 s, off for 30 s. This run of three cycles was repeated three times, with cooling 583 

of the tubes on ice for 5 min between each run. After transfer of the lysate to 15 mL tubes, 584 

sodium dodecyl sulphate (SDS) (National Diagnostics) was added to the samples to a final 585 

concentration of 0.5% and, after mixing by inversion, the tubes were incubated for 20 min at 586 

65°C, then cooled on ice. The DNA was then digested using 1000 units of either MluCI or 587 

HpaII in 1× NEB1 digestion buffer (NEB) and 1% Triton X-100 (Sigma-Aldrich) for 3 h at 37°C. 588 

The digestion reaction mixes were centrifuged at 16,000 × g for 20 min at 4°C, and each pellet 589 

was resuspended in 500 µL of cold sterile distilled water. Separate ligation reactions (total 590 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 5, 2022. ; https://doi.org/10.1101/2022.11.05.514866doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.05.514866
http://creativecommons.org/licenses/by/4.0/


25 

volume 16 mL) were prepared for the MluCI and HpaII-digested DNA with mixes were 591 

prepared containing 1× ligation buffer (50 mM Tris-HCl pH 7.4 (Jena Bioscience), 10 mM 592 

MgCl2 (Sigma-Aldrich), 10 mM DTT (Roche Diagnostics)) and 0.1 mg/mL bovine serum 593 

albumin (BSA) (Sigma-Aldrich). To start the ligation reaction, adenosine triphosphate (ATP; 594 

Roche Diagnostics), to a final concentration of 1 mM, and 250 U of T4 DNA ligase (NEB) were 595 

added to the ligation reaction tubes, which were then incubated at 16°C for 4 hours. Reversal 596 

of the cross-links was then carried out by the addition of 200 µL 0.5 M EDTA, 200 µL 10% 597 

SDS, and 100 µL 20 mg/mL proteinase K to the ligation reactions, followed by overnight 598 

incubation at 60°C. DNA was then further purified using extraction with 599 

phenol-chloroform-isoamyl alcohol and precipitation with isopropanol and ethanol. The 600 

purified DNA pellets were resuspended in 60 µL Tris-HCl pH 7.5 with 0.8 mg/mL RNAse A 601 

(Qiagen) and incubated at 37°C for 30 min. The quality and quantity of DNA was assessed by 602 

performing gel electrophoresis and the Qubit dsDNA BR Assay Kit (Thermo Scientific), 603 

respectively. DNA was stored at -20°C until library preparation.  604 

Meta3C sequencing libraries were generated with the NEBNext® Ultra™ II FS DNA Library 605 

Prep Kit for Illumina (NEB catalogue number #E6177) following the manufacturer’s protocol 606 

with barcoding of the MluCI and HpaII libraries with the NEBNext® Multiplex Oligos for 607 

Illuminia® (NEB #E7335). The libraries were quantified on a 2200 TapeStation system (Agilent) 608 

using the High Sensitivity D5000 reagents and ScreenTape (Agilent) as per the manufacturer’s 609 

protocol to ensure fragmentation ranging between 300-1000 bp. Prepared sequencing 610 

libraries were the sequenced by Genomics Birmingham on an Illumina NextSeq 2×150 611 

paired-end platform using a Mid Output Kit v2.5 (300 cycles) (Illumina) with a 1% PhiX spike-in. 612 

This dataset is named G_3C in this publication and the short read data are available in the 613 

European Nucleotide Archive (ENA), accession number PRJNA879122. 614 

 615 

 616 
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Analysis of 3C/Hi-C datasets 617 

Reads from published 3C/Hi-C gut microbiome studies were downloaded from the short read 618 

archive (SRA) (Table ) using the fastq-dump of the SRA-Toolkit [62] with the 619 

--split-files option.  620 

 621 

Table 3. Published 3C datasets downloaded in study 

Study Accession number Reference 

M_3C PRJNA302158 [28] 

P_HiC PRJNA413092 [24] 

Y_3C PRJNA505354 [21] 

D_HiC PRJNA377403 [23] 

K_HiC PRJNA649316 [22] 

 622 

 623 

We used identical workflows for G3_C and the downloaded datasets. All Bash and R scripts 624 

used in this workflow are available at https://github.com/gregmcc97/3C-HiC_analysis. 625 

Duplicate reads were removed using PrinSeq-lite [63]. Reads were then quality filtered 626 

(--nextseq-trim=20 or -q 20 and min length 60 nt) and had adapter sequences removed 627 

using CutAdapt v2.5 [64]. Human sequences were removed with Bowtie2 v2.3.4.1 [65], 628 

BEDtools v2.25.0 [66], and Samtools v0.1.19 [67] using the GRCh38.p13 human reference 629 

genome (or the GRCm38.p6 mouse reference genome for the M_3C dataset) from the 630 

National Centre for Biotechnology Information (NCBI) [68]. The remaining high-quality, 631 

non-human, unique, paired reads were then assembled using MEGAHIT v1.1.3 [69] using 632 

default parameters and filtering out contigs shorter than 1 kb (--min-contig-len 1000). 633 

The taxonomic profile of the processed reads was generated using MetaPhlAn3 v3.0 634 

(--unknown-estimation -–add-viruses) [29]. 635 
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ARGs were identified using ABRicate v0.9.8 (https://github.com/tseemann/abricate) with the 636 

ResFinder database [70] (≥75% coverage, ≥95% identity). To calculate the abundance of the 637 

ARGs, they were first extracted from their contigs and CoverM v0.4.0 638 

(https://github.com/wwood/CoverM) was used to calculate the number of reads mapping to 639 

each ARG. The number of mapped reads was then used to calculate the reads per kilobase 640 

per million mapped reads (RPKM) using the following formula:  641 

 642 

𝑅𝑃𝐾𝑀 =  
(𝑟𝑒𝑎𝑑𝑠 𝑚𝑎𝑝𝑝𝑒𝑑 (𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑎𝑑𝑠 1000000⁄ )⁄ )

(𝑔𝑒𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 1000⁄ )
 643 

 644 

The first 50 bp of the 3C/Hi-C reads were mapped to their respective assemblies using the 645 

Burrows-Wheeler Alignment Tool v0.7.12 [71] using the aln and sampe sub-commands. The 646 

aligned reads were then filtered to remove those with a mapping quality <20 using Samtools. 647 

Read pairs where each mate of the pair mapped to a different contig (intercontig reads) were 648 

then identified using Samtools (view -F 14) to filter out reads in the SAM file that mapped 649 

in a proper pair, were unmapped, or had an unmapped mate, followed by the Unix “grep” 650 

command to remove reads in the SAM file that mapped to the same contig as their mate 651 

(-grep -v “=”).  652 

Analysis of G_3C reads mapping to spike-ins. 653 

The complete genome sequences of the E. coli E3090 (assembled as described in [26])  and 654 

E. faecium E745 (downloaded from NCBI, accession GCA_001750885.1) spike-ins were 655 

annotated using Prokka [72]. WGS reads (ENA accession numbers: E. coli E3090: 656 

ERX2620237; E. faecium E745: SRS15053183) and 3C reads were then mapped to the 657 

genomes and an R script (available at https://github.com/gregmcc97/3C-HiC_analysis) was 658 

used to identify the annotated region of the genome being mapped to by each read. From the 659 

output file, products labelled as “NA” were assigned as intergenic regions. Products labelled 660 

as “*IS*” or “*transposase*” were assigned as IS elements. Products labelled as 661 
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“*hypothetical_protein*” or “*product=putative protein*” were assigned as genes with unknown 662 

functions. Remaining products labelled as “*gene*”, “*locus_tag*”, “*db_xref*”, “*protein*”, 663 

“*note*”, or “*product*” were assigned, using a bash script, as genes with predicted functions. 664 

To calculate the proportion of reads that map within the first or last 500 nt of a contig, a bash 665 

script was used that mapped coordinates in the SAM mapping file and the contig lengths in 666 

the assembly. 667 

Filtering of spurious intercontig reads  668 

A bash script (available at https://github.com/gregmcc97/3C-HiC_analysis) was written to 669 

remove intercontig reads that mapped within the first or last 500 nt of a contig. Further filtering 670 

was carried out after intercontig reads linking contigs to ARG contigs were identified (see 671 

below). 672 

Linking ARGs to their microbial hosts 673 

3C/Hi-C intercontig reads where one mate mapped to a contig carrying an ARG gene were 674 

identified to generate a list of linked contigs for each ARG contig. These lists were then filtered 675 

so that only contigs that linked at least five times to an ARG contig were kept. Additionally, 676 

and to remove potential false cross-links from contigs that contain IS elements, IS elements 677 

in the assembly were identified using ABRicate with the ISfinder [73] database (≥60% 678 

coverage, ≥99% identity) and these were removed from the lists of contigs linked to ARGs. 679 

 680 

Remaining contigs for each ARG were then taxonomically classified using Kraken2 v2.0.8 [74] 681 

using the prebuilt kraken2-microbial database 682 

(https://lomanlab.github.io/mockcommunity/mc_databases.html). The contigs were also 683 

mapped to NCBI’s nucleotide (nt) database using BLASTN v2.2.31 [75]. Links to contigs that 684 

aligned with 99% identity to known plasmid sequences using BLAST were removed. 685 

Pheatmap (https://github.com/raivokolde/pheatmap) was used to create a heatmap of the 686 

ARG-host associations. 687 

  688 
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