1 Isolation and characterization of bacteriophages against IMP-6-producing *Klebsiella*

2	pneumonia	e isolated	from	clinical	settings	in	Japan
---	-----------	------------	------	----------	----------	----	-------

- 3 Kohei Kondo^a, Satoshi Nakano^a, Junzo Hisatsune^a, Yo Sugawara, Michiyo Kataoka^b,
- 4 Shizuo Kayama^a, Motoyuki Sugai^a, Mitsuoki Kawano^c#
- 5
- ^aAntimicrobial Resistance Research Center, National Institute of Infectious Diseases,
- 7 Higashimurayama, Tokyo, Japan
- 8 ^bDepartment of Pathology, National Institute of Infectious Diseases,
- 9 Toyama, Shinjuku-ku, Tokyo, Japan
- 10 ^cDepartment of Nutritional Sciences, Nakamura Gakuen University, Jonan-Ku, Fukuoka,
- 11 Japan
- 12
- 13 Notes: Kohei Kondo and Mitsuoki Kawano contributed equally to this work.
- 14
- 15 Running Head: Phages infecting *bla*_{IMP-6}-harboring *K. pneumoniae*
- 16 #Address correspondence to Mitsuoki Kawano, mkawano@nakamura-u.ac.jp
- 17

18 Abstract

19	Carbapenemase-producing Enterobacteriaceae (CPE) are one of the most detrimental
20	species of antibiotic-resistant bacteria worldwide. Phage therapy has emerged as an
21	effective strategy for the treatment of infections caused by CPE pathogens. In west Japan,
22	the increasing occurrence of Klebsiella pneumoniae harboring the pKPI-6 plasmid, which
23	encodes <i>bla</i> _{IMP-6} , is a growing concern. To manage such major antimicrobial-resistant
24	pathogens, we isolated 29 novel phages from sewage in Japan, targeting 31 strains of K .
25	pneumoniae and one strain of Escherichia coli harboring the pKPI-6 plasmid. Electron
26	microscopy analysis indicated that of the 29 isolated phages, 21 (72.4%), 5 (17.2%), and 3
27	(10.3%) belonged to Myoviridae, Siphoviridae, and Podoviridae, respectively. Host range
28	analysis revealed that 20 Myoviridae members in isolated phages infected 25-26 strains of
29	<i>K. pneumoniae</i> , indicating that most of the isolated phages have a broad host range. The <i>K</i> .
30	pneumoniae Kp21 can only be infected by phage øKp_21, while Kp22 can be infected by
31	more than 20 phages. We applied a phage cocktail, which consists of 10 phages, against
32	Kp21 and Kp22 and found that the phage cocktail delayed the emergence of phage-resistant
33	bacteria for Kp21 strain but not for the Kp22 strain. Furthermore, phage-resistant Kp21
34	(Kp21r) became prone to be infected from other bacteriophages as a "trade-off" of

35	resistance to phage øKp_21. Our proposed phage set has an adequate number of phages to
36	combat the K. pneumoniae strain isolated in Japan. Notably, our work demonstrates how a
37	suitable phage cocktail diminishes the occurrence of phage-resistant bacteria.
38	
39	Importance
40	Klebsiella pneumoniae harboring the plasmid carrying bla_{IMP-6} is becoming an increasingly
41	hazardous species in Japan. We collected and characterized 29 novel bacteriophages that
42	infect K. pneumoniae carrying the pKPI-6 plasmid, isolated in clinical settings of west
43	Japan. Our phages showed broad host ranges. We applied a phage cocktail treatment
44	constructed from 10 phages against two host strains, Kp21 and Kp22, which show different
45	phage susceptibility patterns each other. Although the phage cocktail delayed phage-
46	resistant Kp21 emergence, the emergence of phage-resistant Kp22 could not be delayed.
47	Moreover, phage-resistant Kp21 became sensitive to other phages, which did not originally
48	infect wild-type Kp21. Our study demonstrates how a suitable phage cocktail can diminish
49	the occurrence of phage-resistant bacteria.
50	

52 Introduction

53	Carbapenemase-producing Enterobacteriaceae (CPE) are high-risk bacteria in clinical
54	settings globally. Klebsiella pneumoniae, a member of the family Enterobacteriaceae,
55	causes nosocomial infections and is one of the most common causes of life-threatening
56	infections caused by multidrug-resistant bacteria worldwide (1). <i>bla</i> _{IMP} genes are classified
57	as class B metallo- β -lactamases. bla_{IMP-1} and bla_{IMP-6} genes are predominantly detected in
58	CPE isolated from Japan (2, 3), whereas other types of carbapenemases (NDM, KPC, and
59	OXA-48) are mainly detected in CPE isolated from other countries (4). Klebsiella
60	pneumoniae with the pKPI-6 plasmid encoding bla_{IMP-6} (5), which is susceptible to
61	imipenem but resistant to meropenem, has become increasingly common in clinical settings
62	in west Japan since their emergence in 2009 (6). These strains are therefore of major
63	concern in clinical settings because of the inappropriate selection of antibiotics for
64	treatment.
65	Recently, research on the use of bacteriophages as an alternative for the treatment of
66	infections caused by antimicrobial-resistant bacteria has become increasingly prevalent (7).
67	Phage therapy targeting <i>Staphylococcus aureus</i> (8) and <i>Mycobacterium tuberculosis</i> (9) has
68	been administered successfully to patients. Furthermore, a recent study has demonstrated

69	effective phage therapy targeting CPE in clinical settings (10). Thus, phage therapy is now
70	recognized as a highly reliable strategy to combat nosocomial pathogens.
71	Following the use of phages against bacteria, phage-resistant bacteria have emerged (11)
72	in vitro (12) and in vivo (13). The phage cocktail strategy, which consists of several types
73	of phages, is often used to prevent the emergence of phage-resistant bacteria. A phage bank
74	is useful to quickly apply the phage cocktail in clinical settings (14), especially in
75	emergency cases. As national phage banks are pertinent for the instant management of
76	contingent nosocomial pathogen outbreaks, several countries have constructed public phage
77	banks for the efficient use of phage therapy (14, 15). However, there is no public phage
78	bank optimized for the trend of antibiotic-resistant bacteria in Japan.
79	In this study, we isolated and characterized 29 bacteriophages targeting IMP-6-producing K .
80	pneumoniae and Escherichia coli clinical isolates as the first step in constructing a public
81	phage library in Japan. We also describe the mechanisms by which phage cocktails reduce
82	the emergence of phage-resistant K. pneumoniae.
83	
84	

Results 86

87	1. Phage hunting and morphological analysis of novel bacteriophages
88	We performed phage hunting from the sewage system in west Japan, which yielded 29
89	phages against 32 K. pneumoniae and one against E. coli (Ec1) isolates harboring pKPI-6.
90	Each phage name number indicates the corresponding host number. For instance, øEc_1
91	and øKp_1 phages were isolated from <i>E. coli</i> Ec1 and <i>K. pneumoniae</i> Kp1, respectively, as
92	their corresponding hosts. All phage-corresponding hosts combinations are listed in Table
93	S1. We did not discover appropriate phages against <i>K. pneumoniae</i> (Kp2, Kp6, Kp25, Kp28,
94	and Kp29). Morphological analysis using electron microscopy indicated that 21/29
95	(72.4 %) isolated phages belonged to Myoviridae, 5/29 (17.2 %) belonged to Siphoviridae,
96	and 3/29 (10.3 %) belonged to Podoviridae (Fig. 1). All TEM images of Myoviridae were
97	shown in Fig. S1 The transmission electron microscopy image strongly suggested that
98	øEc_1 belonged to <i>Podoviridae</i> and C3 morphotype (honeycomb-like) phages (16–18),
99	which possess an elongated head (height, 136.6 nm \pm 1.8 nm; width, 61.7 nm \pm 3.6 nm; tail,
100	15.8 nm \pm 2.3 nm) (Fig. 1). øEc_1 formed turbid plaques on the <i>E. coli</i> Ec1 strain. øKp_21
101	was classified as <i>Myoviridae</i> (height, 133.8 nm \pm 3.1 nm; width, 137.1 nm \pm 1.1 nm; tail,

102	$109.7 \text{ nm} \pm 1.0 \text{ nm}$)	(Fig. 1). Furthermore	øKp_21 l	had a branched tail ((tail spike) fiber and
-----	---	-----------------------	----------	-----------------------	------------------------

103 formed clear plaques on the lawn of *K. pneumoniae* Kp21.

104

105	2. Host range determination and analysis of the correlation between plaque size and
106	efficiency of plating (EOP)
107	We next determined the host range and its EOP for all phage-host combinations (Fig. 2)
108	(Table S2). We selected two standard strains (ATCC BAA 1705, ATCC BAA 1706) as the
109	control for <i>K. pneumoniae</i> . Although no novel phages against five hosts (Kp2, Kp6, Kp25,
110	Kp28, and Kp29) were isolated, the host range experiment indicated that several isolated
111	phages formed plaques against Kp2, Kp6, Kp25, and Kp29 but not Kp28 (Fig. 2). Phages
112	øKp_8 and øKp_17 showed the broadest host range (26/32 K. pneumoniae host strains).
113	Most phages (øKp _3, øKp _5, øKp _9, øKp _10, øKp _12, øKp _13, øKp _15, øKp _16,

114 øKp_18, øKp_19, øKp_20, and øKp_26) showed plaque formation on 25 host *K*.

- 115 *pneumoniae* strains, indicating that these phages have a broad host range (infecting ≥ 25
- 116 host strains). In contrast, several phages showed a narrow host range (infecting ≤ 4 host
- strains). For example, øKp_31 infects Kp15, Kp17, Kp26, and Kp31. øKp_27
- 118 (Siphoviridae), øKp_30 (Podoviridae), and øKp_32 (Myoviridae) infect only Kp27, Kp30,

119	and Kp32, res	pectively (F	ig. 2).	Overall, our	phage set	can handle	the K.	pneumoniae
-----	---------------	--------------	---------	--------------	-----------	------------	--------	------------

- 120 isolated in clinical settings and has an adequate number of phage types to construct a phage
- 121 cocktail against *K. pneumoniae* in this study.
- 122 We observed that high EOP values indicated the formation of large plaques. Thus, we
- 123 performed correlation analysis between EOP values and plaque size of eight representative
- 124 phages that showed different host range pattern. Pearson's correlation coefficients (R
- 125 values) were 0.75 for øKp_1, 0.86 for øKp_7-1, 0.70 for 7-2, 0.55 for øKp_14, 0.25 for
- 126 øKp_21, 0.80 for øKp_24, 0.83 for øKp_27, and 0.65 for øKp_31 (Fig. S2). Therefore,
- 127 plaque size was positively correlated with the EOP.
- 128

129 3. OD₆₀₀ kinetics of *K. pneumoniae* challenged with phages

- 130 OD₆₀₀ kinetics were analyzed for all phage–indicator host combinations. Individual phages
- 131 were added to cultures of indicator hosts at 10^8 pfu/ml. The OD₆₀₀ decreased 1 h after each
- 132 phage was added, while that of the Ec1 and øEc_1 mixture did not decrease and
- approximated that of the host strain without any phages (Fig. 3). The OD₆₀₀ in all phage
- 134 combinations increased again 6–10 h after the addition of each phage. This result indicates
- 135 that phage-resistant bacteria emerged in almost all the phage-host combinations.

137	4. Cocktail analysis of phage-resistant bacteria Kp21
138	Kp21 can only be infected by øKp_21, while Kp22 can be infected by 23 phages (Fig. 2).
139	Furthermore, øKp_21 infects 18 hosts including Kp21, but øKp_22 infects Kp22 and Kp31
140	strains only (Fig. 2). We focused on these contrasting strains, øKp_21 and øKp_22, for the
141	phage cocktail experiment. The phage cocktail consisted of 10 phages (øKp_16-26), which
142	include 8 Tevenviridae, 1 Alcyoneusvirus, and 1 Siphoviridae. In the Kp21 and øKp_21
143	combination, the OD_{600} increased again after 6 h and reached that of the negative control
144	after 24 h (Fig. 4A). However, the OD_{600} did not increase until 14 h when Kp21 was
145	combined with the phage cocktail (Fig. 4A). Therefore, the phage cocktail delayed the
146	emergence of phage-resistant Kp21 in the <i>in vitro</i> assay. However, the OD_{600} of the cocktail
147	against Kp22 increased again after 10 h, which is the same time taken as the OD_{600} of
148	single øKp_22 (Fig. 4C). This result indicates that the phage cocktail failed to delay the
149	emergence of phage-resistant Kp22. We isolated øKp_21-resistant Kp21 (Kp21r) and
150	øKp_22-resistant Kp22 (Kp22r) according to the method described in the Materials and
151	methods section. Although the OD_{600} kinetics in the mixture of Kp21r and øKp_21 did not
152	decrease and approximated that of Kp21r without any phages, the OD_{600} reduced in the

153	Kp21r-phage cocktail combination (Fig. 4B). This result indicates that the Kp21r strain is
154	resistant to phage 21 but susceptible to the phage cocktail. However, OD_{600} did not
155	decrease in either Kp22r-øKp_22 or Kp22r-cocktail combinations, suggesting that the
156	phage-resistant Kp22r is not susceptible to either øKp_22 or the phage cocktail (Fig. 4D).
157	
158	5. Shifting of phage sensitivity between Kp21 and Kp21r
159	To analyze the susceptibility of Kp21r to the phage cocktail, we compared phage plaque
160	formation between Kp21 and Kp21r. According to the host range analysis, no phages
161	formed plaques on Kp21. However, the Kp21r strain became susceptible to øKp_16, 17, 18,

- 162 19, 20, 23, and 26, which are of the genus *Tevenviridae*. This result suggests that Kp21r
- 163 becomes prone to be infected from other phages in compensation for resistance to øKp21
- 164 (Fig. 5A). Furthermore, the Kp21r strain showed a sparse background on LB agar plates
- 165 containing Tevenviridae viruses (Fig. 5A). This sparse background is not caused by
- 166 confluent plaque lysis. This implies a mechanism by which the phage cocktail prevents the
- 167 emergence of phage-resistant bacteria without phage infection. To determine the efficiency
- 168 with which phages can kill the Kp21r strain, we measured the colony-forming unit (cfu)
- 169 values of Kp21 and Kp21r by mixing the individual phages used in the phage cocktail. In

170	$\&$ Kp_21, the cfu of Kp21 was reduced (10 ⁴ cfu/ml), but that of Kp21r was almost the same
171	as that of the control Kp21r (10^7 – 10^8 cfu/ml). In øKp_22 and øKp_24, cfu/ml in Kp21r was
172	not significantly decreased compared to that in Kp21. These results are consistent with our
173	observation that these phages are incapable of infecting Kp21 and Kp21r. In other phages,
174	the cfu of Kp21r strain significantly decreased compared to that of Kp21. In particular,
175	colonies were not detected for øKp_18, 19, 20, or 23-Kp21r combinations. Our results
176	indicate that Kp21r viable cells were wiped out by phages that newly infected Kp21r.

177

178 6. Characterization of Kp21 and Kp21r

179 To analyze the differences between the strains Kp21 and Kp21r, we performed an adsorption assay of øKp 21 for Kp21 and Kp21r. The assay showed that unadsorbed 180 181 øKp 21 for the Kp21r strain was approximately 100 % at 5 min after the phage was added to the Kp21 strain, while for Kp21, the value was 2–5 % (Fig. 6A). In addition, no plaques 182 were detected when \emptyset Kp 21 was input at 10⁹ pfu (EOP < 10⁻⁹) (Fig. 6B). These results 183 184 indicate that øKp 21 loses its ability to adsorb Kp21r. Next, we detected single nucleotide 185 polymorphism (SNPs) between Kp21 and Kp21r. Insertion mutations were detected in two 186 genes, *thpA* (encoding the inner membrane protein) and *cpsA* (encoding exopolysaccharide

187	synthesis genes) as shown in Table S4; this result suggests that the øKp_21 phage
188	recognizes the capsular polysaccharide of Kp21. Insertion mutations of cpsA in Kp21r
189	occur at the 452 nd nucleotide position and a stop codon appeared at the 463 rd nucleotide
190	position (Fig. 6C). Therefore, 141 amino acids are truncated at C-terminus CpsA of Kp21r
191	(154 amino acids long); the wild-type CpsA amino acid length is 295. This severe
192	truncation can result in deficient capsular polysaccharide biosynthesis of Kp21r.
193	
194	Discussion
195	Phage therapy is increasingly being recognized as an effective strategy to combat
196	antimicrobial-resistant bacteria, especially nosocomial pathogens (8-10, 19). A recent study
197	demonstrated that inflammation in a mouse model of inflammatory bowel disease (IBD)
198	was suppressed by the eradication of <i>K. pneumoniae</i> using a phage cocktail. This suggests
199	that phage therapy targeting K. pneumoniae successfully treats IBD in humans (20).
200	In this study, we isolated and characterized novel bacteriophages targeting antimicrobial-
201	resistant K. pneumoniae harboring the pKPI-6 plasmid, which encodes bla_{IMP-6} . We isolated
202	29 novel phages from sewage in west Japan against the K. pneumoniae and E. coli
203	harboring pKPI-6 plasmid. Genome sequence analysis suggests that Tevenviridae members

204	in this study except øKp_22 are very similar in genome size and identity; thus, these phages
205	were considered to be variants of the same species (Table S1). We were concerned that our
206	phages encode antimicrobial resistance (AMR) and virulence factor (VF) genes, because
207	phages can transfer these genes in clinical settings (21–23). However, our analysis
208	indicated that neither AMR nor VF genes were detected in isolated phage genomes, thereby
209	allowing the application of these phages in clinical settings.
210	Our host range experiment analysis showed that most of the phages, which were classified
211	as Myoviridae, formed plaques on the 25 K. pneumoniae strains. Specific host strains (K.
212	pneumoniae Kp12 to Kp20) showed higher EOP (Fig. 3) against most phages, suggesting
213	that several strains exhibit high susceptibility to novel phages isolated from west Japan.
214	Moreover, host range experiment results indicated that EOP and plaque size are positively
215	correlated in several phages such as øKp_1, 7, 7-1, 14, 24, 27, and 31. To the best of our
216	knowledge, few reports have described the correlation of these factors (24); however, we
217	hypothesize that phages that show a larger plaque size have a greater burst size and/or
218	adsorption efficacy. These results can facilitate the development of novel phages that have
219	a higher virulence to the host bacteria; moreover, our work can also guide the selection of
220	phage strains for developing a phage cocktail (25, 26).

221	The phage cocktail experiment revealed that Kp21r became newly susceptible to other
222	phages in the phage cocktail. Phage cocktail analysis showed that Kp22 did not retard the
223	emergence of phage-resistant Kp22 (Kp22r), which was in contrast to the results for the
224	Kp21 strain. This antithetical result of the Kp21 and Kp22 cocktail experiment implies that
225	the phage cocktail is not an all-round strategy; however, it remains the most reliable
226	strategy to combat bacteriophages, thus far. No universal methods or guidelines have been
227	established for developing the cocktail, and it is difficult to predict the combination of
228	phages that can inhibit the emergence of phage-resistant bacteria with the greatest
229	efficiency. However, it has been reported that several phages that recognize different
230	receptors of the host should be mixed to efficiently decrease the occurrence of phage-
231	resistant bacteria (27–29).
232	Our experimental results indicate that Kp21r became infected by øKp_16, 17, 18, 19, 20,
233	23, and 26, while Kp21 was only subject to infection by øKp_21 (Fig. 5). This result
234	suggests that phage-resistant bacteria is easily attacked by other phages that exist in
235	environment during evolutionary arms race. Adsorption assays explained that øKp_21 lacks
236	the ability to adsorb Kp21r. SNP analysis of Kp21 and Kp21r revealed that insertion
237	mutations occurred in at least two genes; cpsA, encoding putative capsular biosynthesis

238	protein and <i>thpA</i> , encoding sugar ABC transporter substrate-binding protein. It has been
239	reported that capsular polysaccharide function as the barrier to infect phages (30). A recent
240	article reports a novel phage that recognizes the capsular polysaccharide of K. pneumoniae
241	(31), and accordingly, we speculate that capsular polysaccharide is one of the factors
242	allowing øKp_21 to adsorb to its host Kp21. We found that Myoviridae, in the phage
243	cocktail, diminished the lawn density of Kp21r on the plates. We posit that this
244	phenomenon was caused by lysis mechanisms such as "lysis from without (LO)" or "rapid
245	lysis" (32, 33). Gp5 in T4 phage, which encodes tail lysozyme, is known to cause LO (34).
246	Gp5 forms the complex with T4 phage tail and when T4 phage adsorbs to their host, Gp5
247	degrades the peptidoglycan layer. We found that members of Myoviridae, used for the
248	phage cocktail in this study, encode the baseplate with tail lysozyme (Table S3), which has
249	the capability of peptidoglycan degradation. SNPs analysis of Kp21 and Kp21r suggests
250	that Kp21r possesses deficient capsular polysaccharide, and thus, phage tail protein
251	encoded in Myoviridae may more efficiently degrade Kp21r peptidoglycan and result in
252	rapid lysis. Some studies have reported that phage-resistant bacteria become susceptible to
253	antibiotic due to mutation in the genes involved in antibiotics resistance and showed that
254	phages and antibiotics combination effectively kills the target bacteria (35–38). Our results

255	demonstrate that the combinations of phage and phage-encoded tail lysozyme efficiently			
256	eliminate and/or inhibit the phage-resistant bacterial growth (39).			
257	In conclusion, we isolated and characterized novel phages infecting <i>K. pneumoniae</i> and <i>E</i> .			
258	<i>coli</i> harboring the pKPI-6 plasmid; this is the first step in the construction of a public phage			
259	bank and phage therapy in Japan. Overall, our phage sets can diminish the threat of K .			
260	pneumoniae harboring the pKPI-6 plasmid isolated in clinical settings. Our phage sets also			
261	contain an adequate number of phage types for developing a phage cocktail. However, the			
262	development of a high-throughput method is required for efficiently isolating additional			
263	novel phages.			
264				
204				
265	Materials and Methods			
	Materials and Methods 1. Phage isolation and host information			
265				
265 266	1. Phage isolation and host information			
265 266 267	1. Phage isolation and host information Thirty-two IMP-6-producing isolates of <i>K. pneumoniae</i> and one IMP-6-producing isolate			
265 266 267 268	 1. Phage isolation and host information Thirty-two IMP-6-producing isolates of <i>K. pneumoniae</i> and one IMP-6-producing isolate of <i>E. coli</i> were isolated from clinical settings in western Japan. Further, 29 novel phages 			
265 266 267 268 269	1. Phage isolation and host information Thirty-two IMP-6-producing isolates of <i>K. pneumoniae</i> and one IMP-6-producing isolate of <i>E. coli</i> were isolated from clinical settings in western Japan. Further, 29 novel phages were isolated from sewage in west Japan. Briefly, 100 μl of sewage was mixed with an			

272	and thereafter, single-plaque isolation was performed. Plaques were suspended in 1 ml LB
273	medium and incubated for 2 h. Next, 50 µl chloroform (Fujifilm Wako Pure Chemical
274	Corporation, Osaka, Japan) was added to each solution; the mixture was vortexed and then
275	centrifuged at 10,000 $\times g$ for 10 min at 4°C. Supernatants and individual indicator hosts
276	were mixed and incubated at 37°C overnight on LB agar plates. The single-plaque isolation
277	procedure was repeated three times, and isolated phages were stored at 4°C until use. Kp21
278	was renamed from the K. pneumoniae f22 strain.
279	
280	2. Phage propagation and purification
281	Pre-cultured host strains were inoculated into 3 ml fresh LB medium (1:100) and
282	
	incubated at 37°C until the OD_{600} reached 0.5. Thereafter, each phage that was originally
283	incubated at 37° C until the OD ₆₀₀ reached 0.5. Thereafter, each phage that was originally isolated using the indicated host was added and incubated at 37° C with shaking at 200 rpm
283 284	
	isolated using the indicated host was added and incubated at 37°C with shaking at 200 rpm
284	isolated using the indicated host was added and incubated at 37°C with shaking at 200 rpm for 4–6 h. Following lysis, 50 µl chloroform (FUJIFILM Wako Pure Chemical
284 285	isolated using the indicated host was added and incubated at 37°C with shaking at 200 rpm for 4–6 h. Following lysis, 50 μl chloroform (FUJIFILM Wako Pure Chemical Corporation) was added to 1 ml of the phage lysate, vortexed, and then centrifuged at 9,100

289	6000 (FUJIFILM Wako Pure Chemical Corporation) and 0.5 M NaCl were added to phage
290	lysates and kept at 4°C for 1.5 h. Thereafter, phage lysates were centrifuged at 10,000 $\times g$
291	for 30 min. Phage pellets were suspended in 1 ml TM buffer (10 mM Tris-HCl, and 5 mM
292	MgCl ₂ [pH 7.5]), and 100 μ g/ml DNase I (Roche, Basel, Switzerland) and RNase I
293	(Thermo Fisher Scientific, MA, USA) were added to the phage solution and incubated at
294	37°C for 30 min. CsCl (FUJIFILM Wako Pure Chemical Corporation) at three different
295	weights ($\rho = 1.3, 1.5, \text{ and } 1.7$) and phage solution were overlaid in tubes and
296	ultracentrifuged (Optima MAX-TL; Beckman Coulter, California, USA) at 100,000 $\times g$ for
297	1 h. Phage bands were then collected and dialyzed in SM buffer (25 mM Tris-HCl [pH, 7.5],
298	100 mM NaCl, and 8 mM MgSO ₄).
299	
300	3. Phage propagation and electron microscopic imaging
301	Copper mesh grids coated with formvar and carbon (Veco grids; Nissin EM, Tokyo,
302	Japan) were glow-discharged and placed on drops of the phages for 1 min. Thereafter, they
303	were rinsed with distilled water and stained with a 2% uranyl acetate solution. Samples

305 Japan) at 80 kV.

306

307	4. Host range determination and EOP assay
308	Each host was incubated at 37°C overnight, and 100 μ l of each overnight culture was
309	mixed with 100 μl of each phage. Thereafter, 5 ml of 0.6 % soft agar was added to the
310	host-phage mixture and inoculated onto LB agar. The plates were then incubated at 37°C
311	overnight, and the number of plaques in each plate counted. EOP was calculated using the
312	formula below:
313	EOP = plaques of individual phage and host combination/plaques of indicator host and
314	phage combination.
315	The detection limit of EOP was set as 10^{-4} pfu. EOP was measured for all phage–bacteria
316	combinations. Each plaque image was taken using scan1200 (Interscience, Montpellier,
317	France) for measuring plaque sizes. Plaque size (mm ²) was measured using Fiji
318	(https://fiji.sc) version 2.3.0, with 1 mm being 11 pixels. For very small plaques, the edge
319	of individual plaques was detected using the "find edge" tool in Fiji. Ten plaque areas were
320	measured in each phage-host combination if the number of plaques on the plate was more
321	than 10.

323 5. OD₆₀₀ kinetics and cocktail experiment

- 324 The host colony was pre-cultured in LB medium overnight at 37°C. Subsequently, the pre-
- 325 cultured bacteria were inoculated (1:100) into fresh LB medium and incubated at 37°C with
- shaking at 200 rpm until $OD_{600} = 0.1$. Each indicated phage was added to the culture at 1.0
- 327 $\times 10^8$ pfu/ml and the mixed culture incubated at 37°C with shaking at 200 rpm. OD₆₀₀ was
- 328 measured at appropriate times for 24 h. In phage cocktail experiments, 10 phages (øKp_16,
- 329 17, 18, 19, 20, 21, 22, 23, 24, and 26) were mixed at 1.0×10^7 pfu/ml of each individual

330 phage. All experiments in this section were performed in triplicate.

331

332 6. Host and phage genome sequences

All phage genomic DNA was extracted using Norgen phage DNA isolation kit (Norgen
Biotak, Birmingham, UK) following the manufacturer's instructions. Each phage DNA
library was constructed using the QIA seq FX DNA library kit (Qiagen), and sequencing
was performed using the Illumina MiSeq platform. Genome assembly was performed using
Shovill with default settings. Phage contigs were filtered with the contig length < 200 and
coverage < 25. Bacteria strains and phage strains were annotated using prokka (42) or
PGAP (43) version 2021-07-01.build5508. For Nanopore long-read sequencing, we used

340	the Monarch HMW DNA Extraction Kit for Tissue (NEB, MA, USA) following the	
341	manufacturer's instructions.	
342	A long-read library was prepared using the Rapid Barcoding kit (Oxford Nanopore	
343	Technologies, Oxford, United Kingdom, catalog number: SQK-RBK004) and sequenced	
344	with an R9 flow cell (Oxford Nanopore Technologies, catalog number: FLO-MIN106) and	
345	a GridION device (Oxford Nanopore Technologies). Basecalling was performed using	
346	Guppy version 5.0.12 with high accuracy mode. The obtained long reads and MiSeq short	
347	reads that were trimmed using fastp v0.20.1 were assembled using Unicycler v0.4.8 with	
348	default parameters. Annotation was conducted using PGAP version 2021-07-01.build5508.	
	1 8	
349	1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	7. Bioinformatics analysis	
349		
349 350	7. Bioinformatics analysis	
349 350 351	7. Bioinformatics analysisFor protein prediction in phages, we constructed the phage protein databases from	
349 350 351 352	 7. Bioinformatics analysis For protein prediction in phages, we constructed the phage protein databases from International Committee on Taxonomy of Viruses (ICTV), which consists of 4,312 	
349 350 351 352 353	 7. Bioinformatics analysis For protein prediction in phages, we constructed the phage protein databases from International Committee on Taxonomy of Viruses (ICTV), which consists of 4,312 genomes and 4,62,579 proteins 	

357	database at e-value of < 1e-10. Phage classification was determined according to National
358	Center for Biotechnology Information (NCBI) GenBank and ICTV. Average nucleotide
359	identity was conducted using the average_nucleotide_identity.py program in pyani
360	packages (45). MUMmer was used to align nucleotide sequences. AMR genes and
361	virulence genes were detected using ABRicate version 1.0.1
362	(https://github.com/tseemann/abricate) under default settings. The ResFinder database was
363	used to extract AMR genes (46), and the Virulence Factors Database (VFDB) was used to
364	extract virulence genes (47). The packaging mechanism and terminal repeats were analyzed
365	using Phagetermvirome version 4.0.1 (48), and tRNA was detected using tRNAscan-SE 2.0.
366	(49). Kp21 and Kp21r SNPs analysis was performed using SNIPPY at default settings (50).
367	
368	8. Phage-resistant Kp21 (Kp21r) and Kp22 (Kp22r) strain
369	Kp21 and Kp22 were cultured with øKp_21or øKp_22, respectively at 37°C. After 24 h of
370	incubation, 1 ml of each culture was centrifuged at 4,400 $\times g$ for 10 min. The supernatant
371	was discarded and the pellets washed with LB medium. This procedure was repeated twice.
372	Thereafter, the pellet was resuspended using saline (0.85 $\%$ NaCl) and the suspension
373	plated on LB agar and incubated at 37°C overnight. A single colony was incubated

overnight at 37°C with shaking at 200 rpm. Glycerol stock of Kp21r culture was stored at –

 $375 \quad 80^{\circ}C \text{ until use.}$

376

377 9. Adsorption assay

- 378 Kp21 and Kp21r were cultured in LB medium and incubated at 37° C until OD₆₀₀ = 0.5.
- 379 Subsequently, 3.0×10^6 pfu øKp21 was added and incubated at 37°C with shaking at 200

380 rpm for 5 min. Next, 20 μ l chloroform was added to 200 μ l of the mixture and vortexed.

- 381 The samples were then centrifuged at 9,100 $\times g$ for 1 min and the supernatant collected. A
- 382 100 µl aliquot of the supernatant was mixed with Kp21 and plaque assays performed to
- 383 measure the number of unadsorbed phages. The percentage of the unadsorbed phages was
- 384 calculated using the formula below:
- 385 Unadsorbed phage % = the number of phages in supernatant/added phages \times 100

386

10. Characterization of switched phage sensitivity between Kp21 and Kp21r

- 388 The phage sensitivity of Kp21 and Kp21r were examined. Briefly, 1.0×10^9 pfu of
- individual phages used in the phage cocktail was mixed with 100 µl of overnight Kp21 or
- 390 Kp21r culture. Thereafter, 5 ml of 0.6 % soft agar was added to the host and phage mixture

391	and then poured onto LB agar and incubated at 37°C overnight. The colony count was	
392	examined as follows. Kp21 and Kp21r were incubated at 37° C until OD ₆₀₀ = 0.1.	
393	Subsequently, Kp21 was added to 1.0×10^9 pfu, and the mixture was incubated at 37°C.	
394	The mixture was collected 2 h after phages were added and centrifuged at 3,300 $\times g$ for 15	
395	min. The supernatant was discarded, and the pellet was suspended in 500 μ l phosphate-	
396	buffered saline (0.137 M NaCl, 0.27 mM KCl, 0.1 M Na ₂ HPO ₄ , 18 mM KH ₂ PO ₄). The	
397	suspension was diluted to 10^{-2} and 10^{-4} , and 100 µl of these dilutions was lawned onto LB	
398	agar.	
399		
400	11. Data availability	
401	Row sequence reads for all phages were deposited to DDBJ/EMBL/GenBank under	
402	Bioproject (number: PRJDB14376), and DRA numbers are listed in Table S1. Complete	
403	genome sequences of Kp21 and Kp21r were deposited in GenBank (accession numbers	
404	AP026912 and AP026913).	
405		
406	Acknowledgment	

407	This v	vork was partially supported by JSPS KAKENHI (21K1633 to K.K., 18K08455 and		
408	22K08592 to M.K.) from the Ministry of Education, Culture, Sports, Science and Technology			
409	(MEXT), Japan; grants (19lm0203008j0003 A058 and 22ym0126811j0001 A255 to M.K.) from the			
410	Japan Agency for Medical Research and Development (AMED) and grants (JP21fk0108604j0001,			
411	22fk0	22fk0108604j0002, 21fk0108132j0002 to M.S.) from Research Program on Emerging and Re-		
412	emerging infection Diseases (AMED).			
413				
414	Refe	ences		
415	1.	Effah CY, Sun T, Liu S, Wu Y. 2020. Klebsiella pneumoniae: An increasing threat to public health.		
416		Ann Clin Microbiol Antimicrob 19:1–9.		
417	2.	Yamagishi T, Matsui M, Sekizuka T, Ito H, Fukusumi M, Uehira T, Tsubokura M, Ogawa Y,		
418		Miyamoto A, Nakamori S, Tawa A, Yoshimura T, Yoshida H, Hirokawa H, Suzuki S, Matsui T,		
419		Shibayama K, Kuroda M, Oishi K. 2020. A prolonged multispecies outbreak of IMP-6		
420		carbapenemase-producing Enterobacterales due to horizontal transmission of the IncN plasmid. Sci		
421		Rep 10:1–9.		
422	3.	Abe R, Akeda Y, Sugawara Y, Takeuchi D, Matsumoto Y, Motooka D, Yamamoto N, Kawahara R,		
423		Tomono K, Fujino Y, Hamada S. 2020. Characterization of the Plasmidome Encoding		

424		Carbapenemase and Mechanisms for Dissemination of Carbapenem-Resistant Enterobacteriaceae .
425		mSystems 5.
426	4.	Nordmann P, Naas T, Poirel L. 2011. Global spread of carbapenemase producing Enterobacteriaceae.
427		Emerg Infect Dis 17:1791–1798.
428	5.	Kayama S, Shigemoto N, Kuwahara R, Oshima K, Hirakawa H, Hisatsune J, Jové T, Nishio H,
429		Yamasaki K, Wada Y, Ueshimo T, Miura T, Sueda T, Onodera M, Yokozaki M, Hattori M, Ohge H,
430		Sugai M. 2015. Complete nucleotide sequence of the IncN plasmid encoding imp-6 and CTX-M-2
431		from emerging carbapenem-resistant Enterobacteriaceae in japan. Antimicrob Agents Chemother
432		59:1356–1359.
433	6.	Shigemoto N, Kuwahara R, Kayama S, Shimizu W, Onodera M, Yokozaki M, Hisatsune J, Kato F,
434		Ohge H, Sugai M. 2012. Emergence in Japan of an imipenem-susceptible, meropenem-resistant
435		Klebsiella pneumoniae carrying bla IMP-6. Diagn Microbiol Infect Dis 72:109–112.
436	7.	Cao F, Wang X, Wang L, Li Z, Che J, Wang L, Li X, Cao Z, Zhang J, Jin L, Xu Y. 2015. Evaluation
437		of the efficacy of a bacteriophage in the treatment of pneumonia induced by multidrug resistance
438		klebsiella pneumoniae in mice. Biomed Res Int 2015.

439	8.	Petrovic Fabijan A, Lin RCY, Ho J, Maddocks S, Ben Zakour NL, Iredell JR, Khalid A, Venturini C,
440		Chard R, Morales S, Sandaradura I, Gilbey T. 2020. Safety of bacteriophage therapy in severe
441		Staphylococcus aureus infection. Nat Microbiol 5:465–472.
442	9.	Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K, Harris K, Gilmour KC,
443		Soothill J, Jacobs-Sera D, Schooley RT, Hatfull GF, Spencer H. 2019. Engineered bacteriophages for
444		treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med 25:730-
445		733.
446	10.	Eskenazi A, Lood C, Wubbolts J, Hites M, Balarjishvili N, Leshkasheli L, Askilashvili L, Kvachadze
447		L, van Noort V, Wagemans J, Jayankura M, Chanishvili N, de Boer M, Nibbering P, Kutateladze M,
448		Lavigne R, Merabishvili M, Pirnay JP. 2022. Combination of pre-adapted bacteriophage therapy and
449		antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae.
450		Nat Commun 13.
451	11.	Oechslin F. 2018. Resistance development to bacteriophages occurring during bacteriophage therapy.
452		Viruses 10.
453	12.	Oechslin F, Piccardi P, Mancini S, Gabard J, Moreillon P, Entenza JM, Resch G, Que YA. 2017.
454		Synergistic interaction between phage therapy and antibiotics clears Pseudomonas Aeruginosa
455		infection in endocarditis and reduces virulence. J Infect Dis 215:703-712.

456	13.	Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L, Barr JJ, Reed SL,
457		Rohwer F, Benler S, Segall AM, Taplitz R, Smith DM, Kerr K, Kumaraswamy M, Nizet V, Lin L,
458		McCauley MD, Strathdee SA, Benson CA, Pope RK, Leroux BM, Picel AC, Mateczun AJ, Cilwa KE,
459		Regeimbal JM, Estrella LA, Wolfe DM, Henry MS, Quinones J, Salka S, Bishop-Lilly KA, Young R,
460		Hamilton T. 2017. Development and use of personalized bacteriophage-based therapeutic cocktails to
461		treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents
462		Chemother 61.
463	14.	Yerushalmy O, Khalifa L, Gold N, Rakov C, Alkalay-Oren S, Adler K, Ben-Porat S, Kraitman R,
464		Gronovich N, Ginat KS, Abdalrhman M, Coppenhagen-Glazer S, Nir-Paz R, Hazan R. 2020. The
465		israeli phage bank (IPB). Antibiotics 9:1–7.
466	15.	Nagel T, Musila L, Muthoni M, Nikolich M, Nakavuma JL, Clokie MR. 2022. Phage banks as
467		potential tools to rapidly and cost-effectively manage antimicrobial resistance in the developing world.
468		Curr Opin Virol 53:101208.
469	16.	Savalia D, Westblade LF, Goel M, Florens L, Kemp P, Akulenko N, Pavlova O, Padovan JC, Chait
470		BT, Washburn MP, Ackermann HW, Mushegian A, Gabisonia T, Molineux I, Severinov K. 2008.
471		Genomic and Proteomic Analysis of phiEco32, a Novel Escherichia coli Bacteriophage. J Mol Biol
472		377:774–789.

473	17.	Mirzaei MK, Eriksson H, Kasuga K, Haggård-Ljungquist E, Nilsson AS. 2014. Genomic, proteomic,
474		morphological, and phylogenetic analyses of vB-EcoP-SU10, a Podoviridae phage with C3
475		morphology. PLoS One 9:1–19.
476	18.	Koonjan S, Cooper CJ, Nilsson AS. 2021. Complete genome sequence of vb_ecop_su7, a
477		<i>Podoviridae</i> coliphage with the rare c3 morphotype. Microorganisms 9:1–11.
478	19.	Terwilliger A, Clark J, Karris M, Hernandez-Santos H, Green S, Aslam S, Maresso A. 2021. Phage
479		therapy related microbial succession associated with successful clinical outcome for a recurrent
480		urinary tract infection. Viruses 13.
481	20.	Federici S, Kredo-Russo S, Valdés-Mas R, Kviatcovsky D, Weinstock E, Matiuhin Y, Silberberg Y,
482		Atarashi K, Furuichi M, Oka A, Liu B, Fibelman M, Weiner IN, Khabra E, Cullin N, Ben-Yishai N,
483		Inbar D, Ben-David H, Nicenboim J, Kowalsman N, Lieb W, Kario E, Cohen T, Geffen YF, Zelcbuch
484		L, Cohen A, Rappo U, Gahali-Sass I, Golembo M, Lev V, Dori-Bachash M, Shapiro H, Moresi C,
485		Cuevas-Sierra A, Mohapatra G, Kern L, Zheng D, Nobs SP, Suez J, Stettner N, Harmelin A, Zak N,
486		Puttagunta S, Bassan M, Honda K, Sokol H, Bang C, Franke A, Schramm C, Maharshak N, Sartor RB,
487		Sorek R, Elinav E. 2022. Targeted suppression of human IBD-associated gut microbiota commensals
488		by phage consortia for treatment of intestinal inflammation. Cell 185:2879-2898.e24.

489	21.	Anand T, Bera BC, Vaid RK, Barua S, Riyesh T, Virmani N, Hussain M, Singh RK, Tripathi BN.
490		2016. Abundance of antibiotic resistance genes in environmental bacteriophages. J Gen Virol
491		97:3458–3466.
492	22.	Gómez-Gómez C, Blanco-Picazo P, Brown-Jaque M, Quirós P, Rodríguez-Rubio L, Cerdà-Cuellar M,
493		Muniesa M. 2019. Infectious phage particles packaging antibiotic resistance genes found in meat
494		products and chicken feces. Sci Rep 9:1–11.
495	23.	Kohei K, Mitsuoki K, Motoyuki S, Mariana C. 2021. Distribution of Antimicrobial Resistance and
496		Virulence Genes within the Prophage-Associated Regions in Nosocomial Pathogens. mSphere
497		0:e00452-21.
498	24.	Haines MEK, Hodges FE, Nale JY, Mahony J, van Sinderen D, Kaczorowska J, Alrashid B, Akter M,
499		Brown N, Sauvageau D, Sicheritz-Pontén T, Thanki AM, Millard AD, Galyov EE, Clokie MRJ. 2021.
500		Analysis of Selection Methods to Develop Novel Phage Therapy Cocktails Against Antimicrobial
501		Resistant Clinical Isolates of Bacteria. Front Microbiol 12:1–15.
502	25.	Molina F, Simancas A, Ramírez M, Tabla R, Roa I, Rebollo JE. 2021. A New Pipeline for Designing
503		Phage Cocktails Based on Phage-Bacteria Infection Networks. Front Microbiol 12:1–14.
504	26.	Molina F, Flores MM, Fernández L, Rodríguez MAV. 2022. Systematic analysis of putative phage -
505		phage interactions on minimum - sized phage cocktails. Sci Rep 1–12.

506	27.	Tanji Y, Shimada T, Yoichi M, Miyanaga K, Hori K, Unno H. 2004. Toward rational control of
507		Escherichia coli O157:H7 by a phage cocktail. Appl Microbiol Biotechnol 64:270–274.
508	28.	Hesse S, Rajaure M, Wall E, Johnson J, Bliskovsky V, Gottesman S. 2020. Phage Resistance in
509		Multidrug-Resistant Klebsiella pneumoniae ST258 Evolves via Diverse Mutations That Culminate in
510		Impaired Adsorption. MBio 11:1–14.
511	29.	Gordillo Altamirano FL, Barr JJ. 2021. Unlocking the next generation of phage therapy: the key is in
512		the receptors. Curr Opin Biotechnol 68:115–123.
513	30.	Olszak T, Shneider MM, Latka A, Maciejewska B, Browning C, Sycheva L V., Cornelissen A, Danis-
514		Wlodarczyk K, Senchenkova SN, Shashkov AS, Gula G, Arabski M, Wasik S, Miroshnikov KA,
515		Lavigne R, Leiman PG, Knirel YA, Drulis-Kawa Z. 2017. The O-specific polysaccharide lyase from
516		the phage LKA1 tailspike reduces Pseudomonas virulence. Sci Rep 7:1-14.
517	31.	Hao G, Shu R, Ding L, Chen X, Miao Y, Wu J, Zhou H, Wang H. 2021. Bacteriophage SRD2021
518		recognizing capsular polysaccharide shows therapeutic potential in serotype K47 Klebsiella
519		pneumoniae infections. Antibiotics 10.
520	32.	Chegini Z, Khoshbayan A, Taati Moghadam M, Farahani I, Jazireian P, Shariati A. 2020.
521		Bacteriophage therapy against Pseudomonas aeruginosa biofilms: A review. Ann Clin Microbiol
522		Antimicrob 19:1–17.

523	33.	Liao Y-T, Zhang Y, Salvador A, Harden LA, Wu VCH. 2022. Characterization of a T4-like
524		Bacteriophage vB_EcoM-Sa45lw as a Potential Biocontrol Agent for Shiga Toxin-Producing
525		Escherichia coli O45 Contaminated on Mung Bean Seeds. Microbiol Spectr 10.
526	34.	Ye N, Nemoto N. 2004. Processing of the tail lysozyme (gp5) of bacteriophage T4. J Bacteriol
527		186:6335–6339.
528	35.	Burmeister AR, Fortier A, Roush C, Lessing AJ, Bender RG, Barahman R, Grant R, Chan BK, Turner
529		PE. 2020. Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. Proc
530		Natl Acad Sci U S A 117.
531	36.	Gurney J, Pradier L, Griffin JS, Gougat-Barbera C, Chan BK, Turner PE, Kaltz O, Hochberg ME.
532		2020. Phage steering of antibiotic-resistance evolution in the bacterial pathogen, Pseudomonas
533		aeruginosa. Evol Med Public Heal 2020:148–157.
534	37.	Liu CG, Green SI, Min L, Clark JR, Salazar KC, Terwilliger AL, Kaplan HB, Trautner BW, Ramig
535		RF, Maresso AW. 2020. Phage-antibiotic synergy is driven by a unique combination of antibacterial
536		mechanism of action and stoichiometry. MBio 11:1-19.
537	38.	Nakamura K, Fujiki J, Nakamura T, Furusawa T, Gondaira S, Usui M, Higuchi H, Tamura Y, Iwano
538		H. 2021. Fluctuating Bacteriophage-induced galU Deficiency Region is Involved in Trade-off Effects
539		on the Phage and Fluoroquinolone Sensitivity in Pseudomonas aeruginosa. Virus Res 306:198596.

540	39.	Roach DR, Donovan DM. 2015. Antimicrobial bacteriophage-derived proteins and therapeutic
541		applications. Bacteriophage 5:e1062590.
542	40.	Uchiyama J, Rashel M, Maeda Y, Takemura I, Sugihara S, Akechi K, Muraoka A, Wakiguchi H,
543		Matsuzaki S. 2008. Isolation and characterization of a novel Enterococcus faecalis bacteriophage
544		φEF24C as a therapeutic candidate. FEMS Microbiol Lett 278:200–206.
545	41.	Kitamura N, Sasabe E, Matsuzaki S, Daibata M, Yamamoto T. 2020. Characterization of two newly
546		isolated Staphylococcus aureus bacteriophages from Japan belonging to the genus Silviavirus. Arch
547		Virol 165:2355–2359.
548	42.	Seemann T. 2014. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069.
549	43.	Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki P, Zaslavsky L, Lomsadze A, Pruitt
550		KD, Borodovsky M, Ostell J. 2016. NCBI prokaryotic genome annotation pipeline 44:6614–6624.
551	44.	Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J
552		Mol Biol 215:403–410.
553	45.	Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. 2016. Genomics and taxonomy in
554		diagnostics for food security: Soft-rotting enterobacterial plant pathogens. Anal Methods 8:12-24.

555	46.	Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen
556		MV. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother
557		67:2640–2644.
558	47.	Chen L, Zheng D, Liu B, Yang J, Jin Q. 2016. VFDB 2016: Hierarchical and refined dataset for big
559		data analysis - 10 years on. Nucleic Acids Res 44:D694–D697.
560	48.	Garneau JR, Legrand V, Marbouty M, Press MO, Vik DR, Fortier LC, Sullivan MB, Bikard D, Monot
561		M. 2021. High-throughput identification of viral termini and packaging mechanisms in virome
562		datasets using PhageTermVirome. Sci Rep 11:1–9.
563	49.	Chan PP, Lin BY, Mak AJ, Lowe TM. 2021. TRNAscan-SE 2.0: Improved detection and functional
564		classification of transfer RNA genes. Nucleic Acids Res 49:9077–9096.
565	50.	Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T, Keane JA, Harris SR. 2016. SNP-sites: rapid
566		efficient extraction of SNPs from multi-FASTA alignments. Microb genomics 2:e000056.
567		

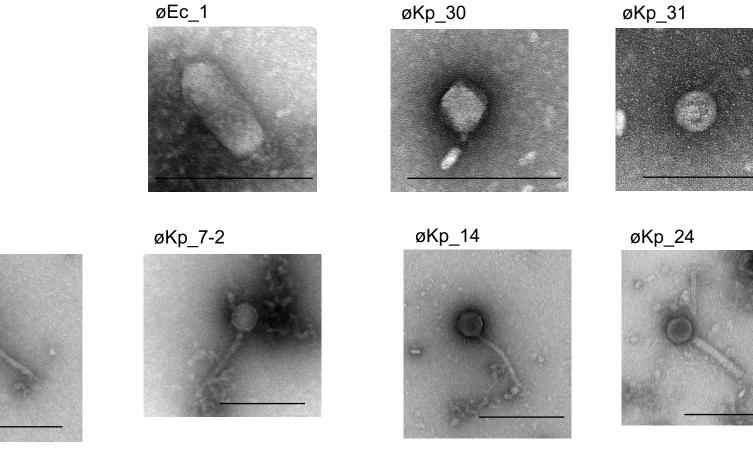
568 Figure Legends

569	Fig. 1 Transmission electron microscopy images of 29 isolated phages. Each sample was
570	negatively stained and magnified at \times 50,000. øKp_1 and øKp_22 are shown as
571	representative Tevenviridae. All Podoviridae and Siphoviridae are shown. The bar
572	represents 200 nm in individual images.
573	
574	Fig. 2 Heatmap of the host range in each phage. X and Y axes represent phages and host
575	strains, respectively. Klebsiella pneumoniae ATCC BAA 1705 and ATCC BAA
576	1706 were used as standard strains, and Escherichia coli SK191 and BL21 were used
577	as control strains. The color in the heatmap represents the EOP. Bar charts on the X-
578	and Y-axes represent the number of infections in each phage and host, respectively.
579	
580	Fig. 3 OD ₆₀₀ kinetics indicator bacteria incubated with phage. Bacterial strains were
581	incubated up to $OD_{600} = 0.1$, following which each phage was added at 10^9 pfu/ml.
582	OD_{600} was monitored at appropriate times until 24 h. No phage was added in Kp21
583	and Kp22 for the negative control. All experiments in this section were performed in
584	triplicate.

585	Fig. 4 Cocktail experiment of Kp21r and Kp22r. Phage-resistant Kp21 (Kp21r) and Kp22
586	(Kp22r) were derived from the culture medium after 24 h incubation with øKp_21 or
587	øKp_22. The cocktail consisted of 10 phages, and each phage was at 10^7 pfu/ml.
588	OD ₆₀₀ was monitored at appropriate times until 24 h. All experiments in this section
589	were performed in triplicate.
590	
591	Fig. 5 Analysis of the shifting in susceptibility to the phage cocktail in f22 and f22r. (A) the
592	host range in f22 and f22r was investigated against 10 phages comprising a phage
593	cocktail. "S" represents a sparse bacterial lawn. (B) Colony forming units are
594	mentioned under each phage. f22 or f22r were mixed with individual phages, and 2 h
595	after phage addition, samples were diluted to 10^{-2} and 10^{-4} , and lawned onto LB
596	plates. n.d. means that colonies were not detected at the 10 ⁻² condition.
597	
598	Fig. 6 Characterization of phage-resistant Kp21r strain. (A) Adsorption assay of øKp_21
599	against Kp21 and Kp21r strains. Kp21 and Kp21r were incubated until $OD_{600} = 0.5$,
600	following which α Kp_21 was added at 10^7 pfu/ml and incubated at 37°C with
601	shaking at 200 rpm. After 5 min, 200 μ l of the mixture was withdrawn and

602	centrifuged at 9,100 $\times g$ for 1 min. The number of phages in the supernatant was
603	measured. (B) 1.0×10^9 pfu of øKp_21 was mixed with 100 µl of overnight Kp21 or
604	Kp21r culture. Thereafter, 5 ml of 0.6 % soft agar was added to the host and phage
605	mixture and incubated at 37°C overnight. n.d. means that plaques were not detected.
606	(C) Nucleotide sequences of <i>cpsA</i> in Kp21 and Kp21r were aligned using ClustalW
607	(http://clustalw.ddbj.nig.ac.jp/). Insertion mutation (A) is shown by an arrow, and the
608	stop codons of <i>cspA</i> in f22 and f22r are shown by a square.
609	
610	
611	
612	Fig. S1 All TEM images of Myoviridae in this study. The bar represents 200 nm in
613	individual images.
614	
615	Fig. S2 Correlation between plaque size and EOP. Plaque size (mm ²) and EOP in the
616	phages were measured in representative phage strains. The X- and Y-axes show the
617	EOP in each phage and plaque size, respectively. A maximum of 10 plaques were
618	randomly selected in individual phage-host combinations and plaque sizes were

619	measured using ImageJ. Python packaging Seaborn was used to visualize the
620	correlation, and R correlation in each combination was calculated using Scipy
621	version 1. 8. 1.
622	
623	Tables
624	Table S1 The genomic information of phages isolated in Japan. Genome assembly was
625	performed using Shovill with default settings. Phage contigs were filtered with the
626	contig length < 200 and/or coverage < 25. "CDS after filtered" and "contigd_filtered"
627	columns represent the number of CDS from the filtered contigs. The packaging
628	mechanism and terminal repeats in each phage were presumed using
629	Phagetermvirome.
630	
631	Table S2 The table of host range and EOP for all host-phage combination. EOP was
632	calculated by plaques of individual phage and host combination divided by plaques
633	of indicator host and phage combination.
634	


- Table S3 The list of the domain prediction for each phage protein. Pfam-A 27 was used as
- 636 phage database.

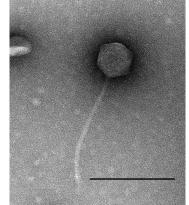
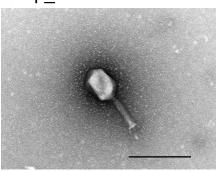
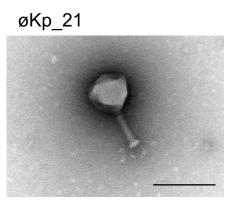
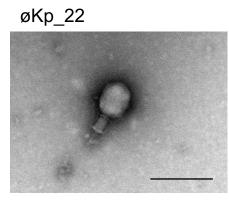

637

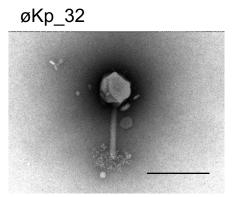
Table S4 The list of SNPs between Kp21 and Kp21r. SNPs were detected using Snippy as

639 default settings.

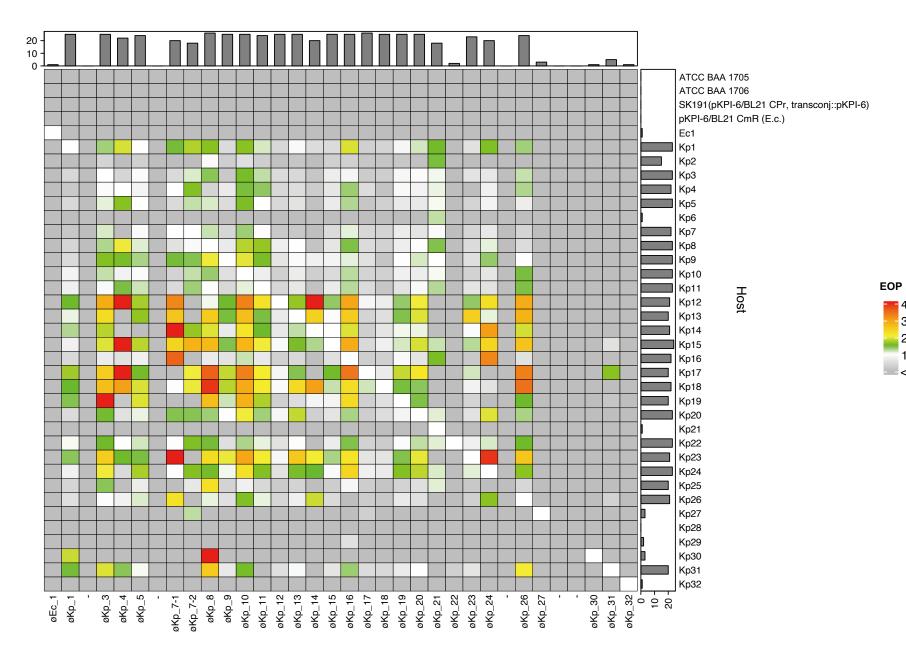

Fig. 1






øKp_1

øKp_7-1



4

3 2


1

<10⁻⁴

Fig. 2

Phage

Fig. 3

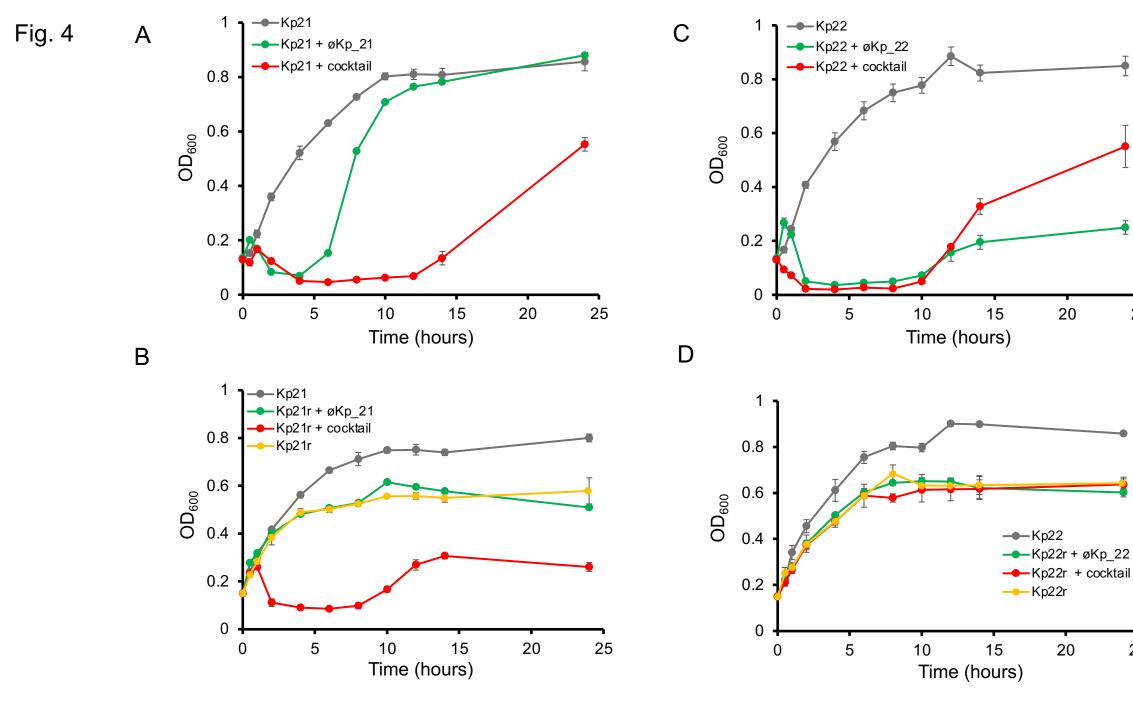
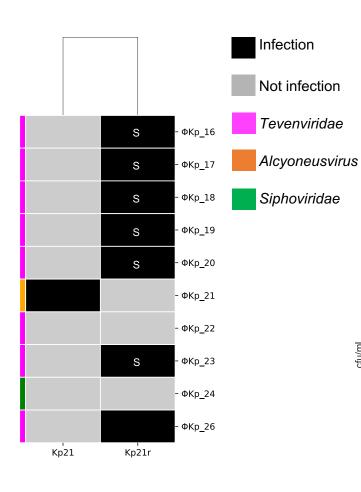



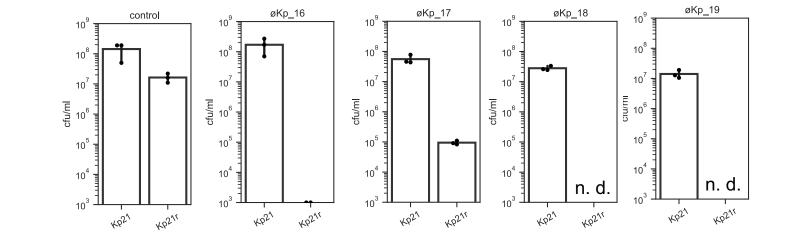
Fig. 5

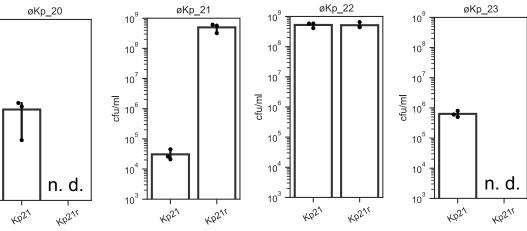
А

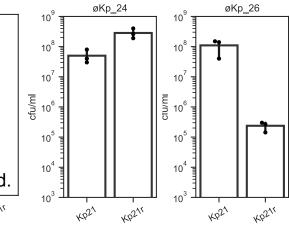
В

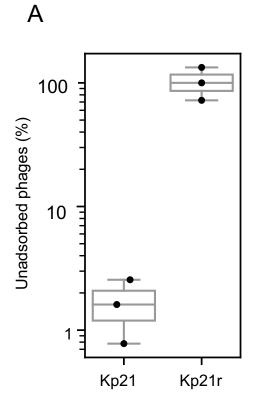
10⁹

10⁸

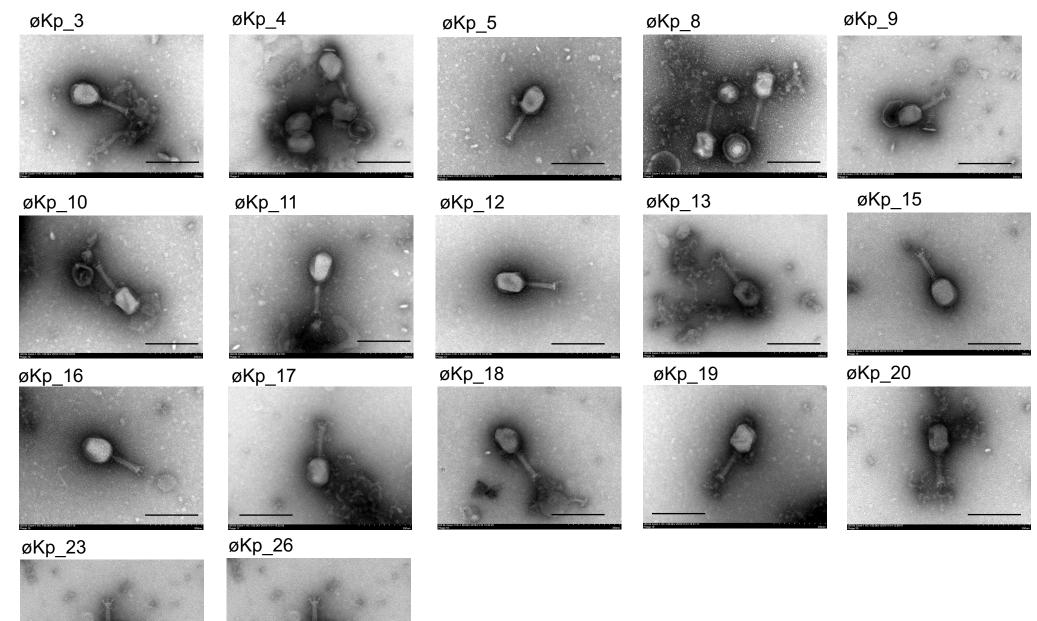

10⁷


10⁵


10⁴


10³

u/m/ 10⁶



			AGTTTTAAAA						
Kp21r_cpsA	ATGCAATATT	TTTTTGTTAA	AGTTTTAAAA	AAACTAAGTG	CCTTTTTTAG	AATAAAATTC	TTATCCGATT	TGTATAAAAA	80
			ATAAAAGTAT						
Kp21r_cpsA	TGTTTTTTG	TTTTTTTGG	ATAAAAGTAT	TGGCAGCCCA	GATTATGAAA	AATACAATCA	TCTTAGTGAA	GATAGTATAA	160
			TATTGGGCCC						
Kp21r_cpsA	TAAATCGAAC	TATTTGGGTT	TATTGGGCCC	AAGGATTAGA	TAATGCACCT	CCAGTAGTTC	AGAATTGTGT	CAAAACTCTC	240
			TTTTGTAGTA						
Kp21r_cpsA	AAAGAGAATT	CATCTCCAGA	TTTTGTAGTA	CAGGTGGTTG	ATGATTTTAA	TTTGGTTGAT	TATATTGATA	TACCAGAGAT	320
			AGGGAGTAAT						
			AGGGAGTAAT						
			AGTACAGTAT						
Kp21r_cpsA	ATGGCGGAGT	CTGGATTGAT	AGTACAGTAT	TGGTTGCTGA	GAACTTTAGG	GAGGGTTTTA	АА <u>ТАА</u> АТТСТ	CAAAATTTAT	480
			ATAACCCTTA						
Kp21r_cpsA	TACATTGAAC	CATAATGATC	ATAACCCTTA	TACTGCAATA	ACCGAAGGCA	GATGGACATC	CTTCTTTATA	GGCATGCCGA	560
			TTTATGTCGG						
Kp21r_cpsA	AGCATTCCGC	ACTTGCCGAT	TTTATGTCGG	ATGCATTTGT	GTCCTATTGG	ΑΑΑΑΑGAATA	GCAAACTTAT	AGACTATGTT	640
			CTTGGCTTAT						
Kp21r_cpsA	CTTGTGGATT	ATCTGATTGC	CTTGGCTTAT	AAGAAAATAC	CAGCAGTACA	AGAAATGATA	ATTGGGCAAA	ATGAGCTCAT	720
			TACAAAAAGT						
Kp21r_cpsA	TGGTAACTCT	CGTTGGTTTC	TACAAAAAGT	TTATGATAAA	ΑΑΑΑΤΑΤCTA	TTGATATTGA	TGAGGCAATA	AATTCAGATA	800
			ACTTATAAGC						
			ACTTATAAGC	TAACTCCACC	GATGGATAAG	GATACCTATT	ATTATAAGTT	TTTTTGCCCT	880
Kp21_cpsA	GAGAAATGA 8	88							

Kp21_cpsA GAGAAATGA 888 Kp21r_cpsA GAGAAATGA 889

С

Fig. S1

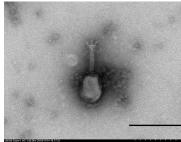
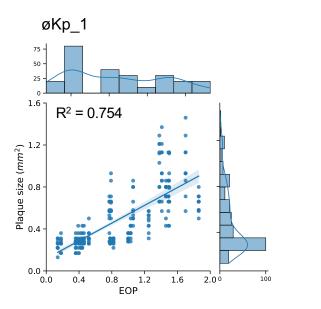
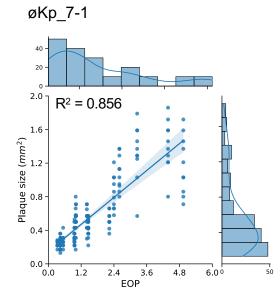
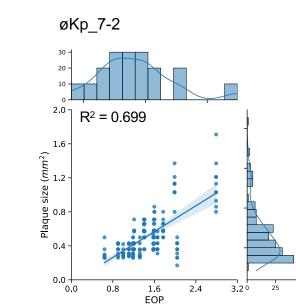
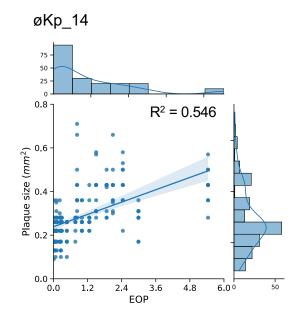
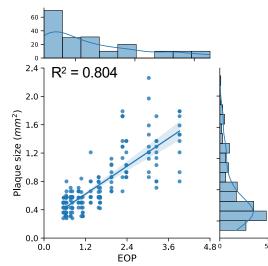
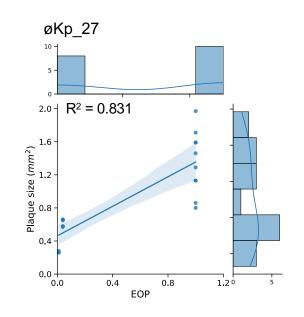
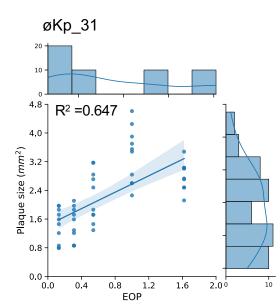






Fig. S2







øKp_21 40 -20 $R^2 = 0.253$ 0.8 Plaque size (*mm*²) 88 88 88 ... 0.2 | 0.7 1.3 EOP 0.9 1,5 1.70 1.1 50

øKp_24

