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Abstract: 
Variation in cortical cytoarchitecture is the basis for histology-based definition of cortical areas, such as 
Brodmann areas. Single cell transcriptomics enables higher-resolution characterization of cell types in 
human cortex, which we used to revisit the idea of the canonical cortical microcircuit and to understand 
functional areal specialization. Deeply sampled single nucleus RNA-sequencing of eight cortical areas 
spanning cortical structural variation showed highly consistent cellular makeup for 24 coarse cell 
subclasses. However, proportions of excitatory neuron subclasses varied strikingly, reflecting differences 
in intra- and extracortical connectivity across primary sensorimotor and association cortices. Astrocytes 
and oligodendrocytes also showed differences in laminar organization across areas. Primary visual 
cortex showed dramatically different organization, including major differences in the ratios of excitatory 
to inhibitory neurons, expansion of layer 4 excitatory neuron types and specialized inhibitory neurons. 
Finally, gene expression variation in conserved neuron subclasses predicts differences in synaptic 
function across areas. Together these results provide a refined cellular and molecular characterization of 
human cortical cytoarchitecture that reflects functional connectivity and predicts areal specialization. 
 
 
Introduction 
Cytoarchitectural parcellation of the neocortex has a long history in neuroscience, premised on the idea 
that structural variations in cellular architecture (1–3) and myeloarchitecture (4) (representing 
myelinated fibers or connectivity) underlie functional divisions (reviewed in (5)). The neocortex generally 
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has a 6-layered organization that is common across species and areas with a notable exception of 
agranular areas like the primary motor cortex (M1) that lack an obvious layer 4. Cortical layers contain 
excitatory projection neurons with generally stereotyped input and output properties that have been 
hypothesized to represent a “canonical” circuitry (6, 7). Despite this common cortical blueprint, cortical 
areas show relative differences in shape and size, laminar and columnar organization, and proportions 
of neurons in different layers. Indeed, a century of research has identified an enormous range of cellular 
properties that vary as a function of positional topography and cortical area (8–10), although it has been 
difficult to gain a clear view on the degree to which there exists a canonical cortical makeup and how 
reliably to quantify such cytoarchitectural variation. 
 
Single cell and spatial transcriptomic technologies have recently provided new and powerful means to 
define cortical cellular diversity and spatial organization and compare across cortical areas and species 
(11–19). Applied to human (11, 20), marmoset (12), and mouse primary motor cortex (15, 16, 19), single 
cell RNA-seq revealed a complex, hierarchical cell type architecture based on gene expression signatures 
that is quite well conserved across species except at the finest cell type cluster distinctions (16). These 
studies established a subclass level of the hierarchy consisting of 24 well-defined neuronal and non-
neuronal types with highly conserved identities across species, distinct laminar patterning and 
correlated phenotypic properties including cellular anatomy, physiology and broad projection targets 
(Table S1). This cellular architecture provides a comprehensive and discriminatory tool to probe areal 
variation as well, revealing in mouse cortex that all neuronal subclasses are present across the entire 
neocortex (19), and that areal variation is principally in excitatory neurons rather than inhibitory 
neurons (15). In mouse, monkey and human, the agranular primary motor cortex nevertheless contains 
layer 4-like neurons despite the lack of a discernable band of these cells characteristic of layer 4 in most 
other areas (12, 21–23). Single cell RNA-seq, spatial transcriptomics and Patch-seq have revealed a much 
deeper cellular complexity than subclass in any given cortical area and demonstrated major species 
differences in relative proportions, cellular properties and cellular microarchitecture (11, 12, 16, 17, 24–
26). Much like variation in cortical area devoted to different sensorimotor modalities represents species-
specific functional adaptations (27), variation in proportions of different cell types likely represent area-
specific functional specializations in input-output and local connectivity. 
 
The current study aimed to define quantitative cellular cytoarchitecture across a series of human 
neocortical areas representative of topographic, functional and structural variation, using deep sampling 
with single nucleus and spatial transcriptomics methods. The results clearly demonstrate a common 
canonical architecture of neuronal subclasses, but with wide variation in excitatory neuron subclass 
proportions that likely reflect different output connectivity and substantial non-canonical areal variation 
at a finer cell type resolution. Cell type proportions and expression profiles vary as a function of relative 
proximity on the cortical sheet, with most variation in excitatory neurons but also in inhibitory neurons 
and astrocytes. The primary visual cortex (V1) was dramatically different from all other cortical areas, 
with many neuron types only found in V1, reflecting the high degree of specialization for visual 
processing in the human cortex. 
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Within-area cell taxonomies demonstrate common subclass architecture 
To sample variation across the cortex, we analyzed eight neocortical areas that include primary (motor, 
M1; somatosensory, S1; auditory, A1; visual, V1) and association areas (dorsolateral prefrontal cortex, 
DFC, specifically Brodmann area 9 in the superior frontal gyrus; anterior cingulate cortex, ACC; middle 
temporal gyrus, MTG; angular gyrus, AnG), span the rostral to caudal (anterior to posterior in many 
mammals) extent of the cortical sheet, and represent major variations in cortical cytoarchitecture (Fig. 
1A and Table S2) (28). Cortical areas were identified across tissue donors using a combination of surface 
anatomical landmarks and histological verification of cytoarchitecture. Human postmortem brain 
samples were collected from 5 individuals. Three single nucleus RNA-seq (snRNA-seq) datasets were 
generated for all areas (except AnG): a 10x Chromium v3 (Cv3) dataset with >924,000 nuclei sampled 
from all cortical layers, a Cv3 dataset from >231,000 nuclei captured by specific micro-dissection of layer 
5 to enrich for rare deep layer excitatory neuron types including layer 5 extratelencephalic projecting (L5 
ET) neurons, and a SMART-seqv4 (SSv4) dataset composed of over 60,000 nuclei sampled from 
individual cortical layers to provide laminar selectivity for all clusters. For AnG, only a Cv3 dataset of all 
cortical layers was generated (Fig. 1B).  
 
Nuclei were assigned to one of 24 cell subclasses based on transcriptomic similarity to a reference 
taxonomy for human M1 (12, 16), and subclasses were grouped into five neighborhoods (Fig. 1C,D). For 
each area and neighborhood, nuclei profiled with Cv3 and SSv4 were integrated based on shared co-
expression and clustered to identify transcriptomically distinct cell types. Neighborhood clusters were 
aggregated and organized into within-area taxonomies of between 120 and 142 cell types (Fig. 1C, S1-
S8) with distinct marker expression (Table S3). Cellular variation within subclasses was quantified as the 
average entropy of variably expressed genes. Entropy was higher for all neuronal than non-neuronal 
subclasses and not significantly different between excitatory and inhibitory subclasses or across areas 
based on a two-way ANOVA followed by post-hoc Tukey HSD tests (Fig. 1E). Surprisingly, the number of 
distinct cell types within excitatory subclasses varied across areas (Fig. 1F). This within-subclass variation 
was not driven by differential sampling of nuclei across areas, and was unlike the highly similar diversity 
of inhibitory neurons and non-neuronal cell types (Fig. 1G,H). Of note, there were more layer 5 
intratelencephalic projecting (L5 IT) and L4 IT types in V1, the latter expected based on the known 
expansion and specialization of the thalamorecipient layer 4. L6 IT Car3 neurons were more diverse in 
MTG, A1, and AnG compared to other areas reflecting a balanced population of CUX2-expressing and 
non-expressing neurons specifically in these cortical areas that we reported as an evolutionary 
specialization of great apes compared to monkeys (29). L5 ET neurons were least diverse in the most 
rostral area ACC and the most caudal area V1, while layer 6 corticothalamic-projecting (L6 CT) neurons 
were most diverse in M1, S1, MTG and V1. Individual subclasses had hundreds of distinct markers in 
each area (Table S4), and 20-70% of markers were conserved across areas (Fig. 1I). For example, Fig. 1J 
plots expression of a set of chandelier cell markers that were common across areas (left), and a set of 
common markers for all subclasses (right). Non-neuronal subclasses were transcriptomically distinct and 
had the most markers, while excitatory subclasses had the smallest fraction of conserved markers, 
pointing to more variable expression of excitatory neuron gene expression across the cortex as reported 
in mouse (15). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.11.06.515349doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.06.515349
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cross-areal abundance changes reveal areal specification 
The areas analyzed have distinct cytoarchitecture based on conventional Nissl staining that show 
variation in cell size, shape, laminar and columnar organization (Fig. 2A), and spanned the rostrocaudal 
and mediolateral axes of the cortical sheet (Fig. 2B). The relative proportions of transcriptomically 
defined neuronal subclasses varied across areas (Fig. 2C and Table S5). Excitatory neuron subclasses 
showed the greatest differences in proportions across areas that reflect differences in functional 
architecture. For example, M1 lacks a layer 4 but still has L4 IT neurons at lower proportions than other 
areas (12), and the same was true for agranular ACC, which had the lowest proportion of L4 IT neurons. 
In contrast, as noted above, V1 has an expanded and highly specialized layer 4 and a corresponding 
increase in L4 IT neuron proportion. As described previously in mouse cortex (15) and between human 
M1 and MTG areas (12), inhibitory neuron subclasses were similar across areas except for a marked 
increase of the MGE-derived PVALB neurons and fewer CGE-derived interneurons (LAMP5 LHX6, LAMP5, 
SNCG, VIP, PAX6) in V1. These proportion differences in excitatory and inhibitory neurons were 
validated in situ by labeling neuronal subclasses in MTG and V1 using MERFISH spatial transcriptomics 
(Fig. 2C right panels; Table S5), demonstrating they were not an artifact of nuclear isolation and snRNA-
seq processing. 
 
Subclass proportions were highly consistent across donors (Fig. 2D). Examined from a subclass 
perspective, the most dramatic proportion differences were seen in L4 IT (range 10-fold, from 3-30% of 
excitatory neurons), and in the much sparser deep subcortically projecting L5 ET neurons (range 50-fold, 
from 0.1-5%). Unexpectedly, many of these proportion differences varied in a graded fashion generally 
along the rostrocaudal axis. Pairwise correlations in excitatory neuron proportions revealed correlated 
rostrocaudal decreases in L5 ET, L6B, L6 IT and layer 5/6 near-projecting neurons (L5/6 NP), with an 
anticorrelated rostrocaudal increase in L4 IT (Fig. 2E). Among inhibitory subclasses, the rarest types 
(SNCG, PAX6, and SST CHODL) had the most correlated changes in proportions with a decreasing 
rostrocaudal gradient. PVALB interneurons showed the opposite trend and had increasing proportions in 
caudal areas, although this trend was variable across areas.  
 
Smaller-scale areal specializations in proportions were overlaid on these broad trends of conservation or 
rostrocaudal gradients. Notably, many subclasses showed a particularly large difference in V1 (e.g. L5/6 
NP, L6B, PAX6). There were more chandelier inhibitory neurons in primary sensory areas (S1, A1, and 
V1) than expected based on a decreasing rostrocaudal gradient. Also, there were more L4 IT neurons 
and fewer L5 ET neurons in DFC, more L6 IT neurons in M1, and fewer L6 IT Car3 neurons in ACC than 
expected based on the broad trends. In summary, cell subclass proportions define a quantitative 
cytoarchitecture that is canonical in having all 24 subclasses in all areas, with varying proportions and 
gradient properties that likely reflect developmental gradients with additional specializations driven by 
the circuit requirements of functionally distinct cortical areas. 
 
Excitatory to inhibitory neuron ratio varies across cortical areas and layers 
In addition to regional specializations in neuronal subclass proportions, we also found regional 
differences in the relative proportions of excitatory and inhibitory neurons (E:I ratio) (Table S5). As 
previously reported for M1 using snRNA-seq (12), we found an E:I ratio of 2:1 was relatively constant 
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across almost all cortical areas, in contrast to the widely reported E:I ratio of 5:1 in mouse. This ratio was 
much higher in V1 (Fig. 3A), with a 4.5:1 ratio comparable to rodents, and we confirmed these values 
and regional differences with MERFISH analysis (Table S5). 
 
The layer-specific dissections for nuclei profiled with SSv4 from 7 regions (all except AnG) allowed a 
deeper exploration of E:I ratio variation, and demonstrated that a single ratio is insufficient to describe 
that variation. E:I ratios varied by area and layer, and were highly consistent across donors (Fig. 3B). 
Increased variability was seen in MTG that may be due to inconsistent sampling of different subregions 
of this large cortical area. V1 had the highest ratio in all layers, not just in layer 4 (7:1) but also in layers 5 
and 6, where the highest E:I ratio of 10:1 was seen. Moreover, there was a monotonic increase in the E:I 
ratio of the other areas along a rostrocaudal gradient, and this was most apparent in L2/3. E:I ratios 
were more variable in layers 4 and 5, masking the trend in overall E:I ratios (Fig. 3A). Laminar in situ 
counts of excitatory and inhibitory neurons in MTG and V1 using MERFISH confirmed a consistently 
higher E:I ratio in all layers of V1 (Fig. 3C). From a within-area perspective, the E:I ratios consistently 
increased with cortical depth, with the highest ratios in layer 6 for all areas (Fig. 3D). Furthermore, the 
E:I ratio in layer 4 was uniquely elevated in V1 relative to layers 2, 3 and 5, highlighting a further 
specialization of visual processing compared to other sensory modalities. Finally, laminar distributions of 
excitatory and inhibitory neurons were more consistent across cortical areas (Fig. S9), such as SNCG in 
layer 1 (Fig. 3E). Some areal and laminar variation was seen as well, such as LAMP5 LHX6 proportions in 
layer 6 that was seen with RNA-seq and confirmed with MERFISH (Fig. 3F). Taken together, E:I ratios 
vary extensively both by layer and area, with dramatically different ratios in V1 and areal variation that 
is masked by averaging across cortical layers. 
 
Transcriptomic cellular topography 
To characterize the transcriptomic landscape of neuronal subclasses across the cortex, neuronal single 
nuclei were integrated by donor for each of four neighborhoods (IT-projecting glutamatergic, Deep layer 
(Non-IT) excitatory, MGE-derived GABAergic and CGE-derived GABAergic) and visualized as UMAPs 
colored by subclass (Fig. 4A) and cortical area (Fig. 4B). Three clear organizational principles were 
apparent. First, excitatory neurons had strong areal signatures, seen by the clear banding by area, while 
inhibitory neurons were almost completely intermixed across areas similar to reports in mouse cortex 
(15). Second, there were dramatic specializations in V1. For example, there was a massive expansion of 
L4 IT neurons, and V1 appeared as separate islands for most IT-projecting subclasses and particularly for 
L6 CT neurons. Distinct V1 islands were also seen for parts of the PVALB and SST subclasses (arrows in 
MGE-derived UMAPs). Third, the areal similarity of excitatory neurons appeared to vary in a 
rostrocaudal topographic order for many subclasses, similar to prior reports of gene expression 
similarity across human cortex (30). Neighboring areas were extremely similar and intermixed despite 
functional distinctiveness; for example, nuclei from M1 and S1 were extensively intermingled despite 
clear functional specificity for motor and somatosensory functions, respectively. 
 
Areal variation in gene expression mirrored the UMAP trends. The number of differentially expressed 
genes (DEGs, Table S5) across areas was largest for excitatory neurons (Fig. 4C), with the highest 
numbers for L4 IT and L5 ET neurons (over 1000 DEGs). DEGs for inhibitory neuron subclasses varied 
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widely, from over 100 DEGs for SST and PVALB interneurons to fewer than 10 DEGs for SNCG and SST 
CHODL and a single DEG (ADAMTS9-AS2) for PAX6. Non-neuronal cell subclasses similarly displayed few 
areal DEGs. We next identified area-specific markers (Table S7), which were much less common, using a 
previously defined tau score (31). Excitatory neurons expressed the vast majority of these highly specific 
areal markers, and ACC and V1 were the most unique areas (Figs. 4D, S10A,B). IT-projecting neurons 
were specialized in both ACC and V1, while non-IT L6 CT and L5 ET neurons were specialized mostly in 
V1. In other words, the vast majority of area-specific gene markers were found in the rostral most (ACC) 
and caudal most (V1) areas. 
 
The topographic ordering of the excitatory neuron subclasses above suggested systematic graded 
changes as a function of distance, similar to bulk tissue profiling studies reporting gradual changes in 
gene expression across the cortical sheet (30). We therefore calculated transcriptomic similarities of 
excitatory subclasses as a function of the approximate physical distance between pairs of areas on an 
unfolded cortical sheet (Fig. 4E and Table S2). Because V1 was so transcriptomically distinct (Fig. 4A), we 
fit two linear models of subclass similarity versus areal distance, one that included pairwise comparisons 
to V1 and one that did not (Fig. 4E). Strikingly, all excitatory neuron subclasses showed the same 
monotonic decrease of similarity with distance, but had different amounts of transcriptomic 
specialization in V1 (i.e. intercepts but not slopes are significantly different in Fig. 4E). Interneuron 
similarity also decreased with distance at the same rate for all subclasses, albeit at about 40% the rate of 
excitatory neurons, and with much less specialization in V1 (Fig. S10C). In contrast, non-neuronal 
expression did not change systematically with inter-areal distance and was not more specialized in V1 
(Fig. S10D). 
 
To determine more precisely how gene expression varied across the cortical sheet, we performed a 
variance partitioning analysis for each subclass (Fig. S10E and Table S8). More genes were explained by 
area identity and position along spatial gradients for excitatory than inhibitory neurons or non-neuronal 
cells as observed in the UMAPs, although the proportion of variance explained was comparable (Fig. 
S10F). Among IT-projecting neurons, some genes showed unique patterning in a single subclass while 
other genes were topographically patterned in all IT subclasses (Fig. S10G). We calculated the 
expression variance explained by gradients along three axes: rostrocaudal (R-C), mediolateral (M-L), and 
dorsoventral (D-V). For genes with at least 5% of expression variance explained by any gradient, we then 
quantified the relative strength of gradients based on the relative proportion of expression variance that 
was explained (Fig. S10H). For most subclasses, rostrocaudal gradients were dominant, except Non-IT 
subclasses also expressed many genes with mediolateral and dorsoventral gradients (Fig. 4F, S10H). 
 
We robustly defined a set of rostrocaudal genes for each subclass by requiring a Spearman correlation 
>0.7 between expression and areal position along the rostrocaudal axis and a correlation >0.5 after 
excluding V1 and ACC. For the most varying L4 IT and L5 ET neurons, roughly equal numbers of genes 
increased and decreased expression rostrocaudally (Fig. 4G). In contrast, for other subclasses, many 
more genes increased rather than decreased expression along the rostrocaudal axis. For most neuronal 
subclasses, the correlations of rostrocaudal genes were greater than correlations to a randomly shuffled 
ordering of areas (Fig. S10I). Genes with a rostrocaudal gradient in one subclass tended to have a 
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gradient in the same direction in other subclasses that expressed the gene (Fig. S10J), such as CBLN2 in 
L2/3 IT and L4 IT neurons (Fig. 4H), which is expressed in a similar gradient in maturing cortical neurons 
during human prenatal development (32). However, some genes such as DCC had opposing gradients in 
different subclasses (L5/6 NP and VIP), and some functionally related genes had opposing gradients in 
the same subclass, such as the cell adhesion molecules Contactin 5 and 6 (CNTN5 and CNTN6) in L5 IT 
neurons (Fig. 4H). Based on Gene Ontology (GO) analysis, genes with strong areal enrichment or 
rostrocaudal gradients included voltage-gated potassium and calcium channels. Interestingly, only 
rostrocaudal genes were associated with axon guidance pathways including SLIT/ROBO, ephrin, and 
semaphorin signaling molecules (Table S7) that likely reflects developmental patterning of connectivity. 
 
Cross-areal consensus taxonomy 
We next moved from the relatively coarse level of cell subclasses to understand areal variation at the 
finer level of cell types, by clustering the integrated cell neighborhoods shown in Figure 4 to identify a 
set of cell types either common to or varying across cortical areas (Fig. 5A). We defined and organized 
153 cell types by transcriptomic similarity into a consensus taxonomy (Fig. 5B). Consensus cell types had 
consistent markers across areas (Table S9), were represented in all donors (Fig. 5C) and ranged from 
0.01% to 20% of excitatory and inhibitory neurons and from 0.1% to 30% of non-neuronal cells (Fig. 5D). 
The majority of types were found in all eight areas, with particularly uniform representation across areas 
for most inhibitory neuron types and non-neuronal cells (Fig. 5E). However, there were clearly area-
enriched or area-specific cell types, most notably in V1 (dark blue). V1-enriched clusters were seen in 
nearly all excitatory subclasses, particularly L4 IT, as well as SST, and a few PVALB and VIP types. There 
was also one ACC-selective VIP type. Other notable patterns included the frequent cross-areal excitatory 
cell types common to M1 and neighboring S1, or nearby MTG and A1, again reflecting a similarity by 
proximity.  
 
To determine significant changes in the relative abundances of cell types while accounting for the 
compositional nature of the data, we applied a Bayesian model (scCODA) to the snRNA-seq data.  
Grouping nuclei by consensus types and iteratively testing for consistent differences using each type as 
the “unchanged” reference population, all subclasses included consensus types with both increased and 
decreased proportions (Table S10), with the exception of PAX6 inhibitory types that had uniformly 
decreased abundances in V1. V1 had the most consensus types with consistent abundance changes (92 
of 153, 60%), including two types with the largest changes (L4 IT_5 and L2/3 IT_2). While excitatory 
neurons were the most specialized in V1, several SST, PVALB, and VIP consensus types were also specific 
to V1. Specialized types were also found in other areas, including L2/3 IT and L5/6 NP excitatory types 
(L2/3 IT_3, L2/3 IT_4, L5/6 NP_3 and L5/6 NP_6) in M1 and S1, SST types (SST_4 and SST_10) in ACC, and 
distinct L5 ET types across the rostrocaudal axis. These dramatic changes, along with more subtle 
abundance changes (median 17 consensus types were affected in each area), likely contribute to the 
specialized functional role of each area. 
 
V1 specializations 
The striking distinctiveness of V1 was reflected in the transcriptomic uniqueness of specific cell types. 
Considering cell types with >60% membership in V1 compared to other areas to be V1-specialized, there 
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were specialized cell types in every excitatory subclass except L5/6 NP, with the greatest number of V1-
specialized types in the L2/3 IT and L4 IT subclasses (Fig. 6A and Table S11). Surprisingly, given prior 
reports of common GABAergic neurons across the mouse neocortex (15, 19), V1 had a number of 
specialized CGE- and MGE-derived types.  
 
MERFISH analysis of V1 provided the spatial organization of all cell types (Fig. S11A,B). The L2/3 IT types 
showed distinct markers (Table S12) and spatial distributions in terms of sublaminar organization and 
relative proportions (Fig. 6B). For example, L2/3 IT5 and L2/3 IT2 clearly delineated layer 2 and layer 3 
from one another, respectively. Other L2/3 IT types were more sparsely distributed in layer 2 (L2/3 IT4), 
layer 3 (L2/3 IT3), or both layers 2 and 3 (L2/3 IT1 and 6). Interestingly, multiple L2/3 IT types were also 
found in layer 4A (e.g. L2/3 IT2) and even the superficial part of layer 4B (L2/3 IT3), and these types were 
V1-specialized. Conversely, the distributions of several L4 IT types were found in layers 4A and 4B and 
even into the deep part of layer 3 (e.g. L4 IT1 and 3, Fig. 6D). Thus, the specialized layers 4A and B 
contain not only L4 IT-type neurons, but also L2/3 IT-type neurons. This finding may help resolve 
ongoing questions about primate V1 layer 4A and 4B, which contains both stellate (L4 IT-like) and 
pyramidal corticocortical projection neurons (L2/3 IT-like) (33). 
 
Layer 4 of primary visual cortex, or striate cortex, is highly distinctive even in unlabeled tissues, due to 
the band of myelinated thalamocortical axons entering layer 4 that form the stria of Gennari. This 
distinctiveness was also seen at the level of L4 IT neuron types, all but one of which were V1-specialized 
(Fig. 6C, D). As in layers 2 and 3, different L4 IT types showed different markers (Table S12) and 
sublaminar distributions, from dense pan-layer 4 (L4 IT3) to sublayer-specific distributions. Layers 4C𝛼 
and 4C𝛽 receive selective inputs from magnocellular and parvocellular layers of the thalamic lateral 
geniculate nucleus, respectively. Corresponding to these functionally segregated visual inputs, selective 
localization of specific types was found in each sublayer. L4 IT5 was selectively localized in layer 4C𝛽, 
while L4 IT2 was enriched in layer 4C𝛼 but extending into layer 4B. This latter localization is consistent 
with the fuzzy boundary between 4C𝛼 and 4B described in other human studies (34). Other sparser L4 IT 
types were scattered across layers. Together these illustrate the cellular specialization of the distinctive 
input layer of V1, and a complexity of putative thalamorecipient stellate neurons that offers many 
avenues for future exploration.  
 
L6 CT neurons that send reciprocal projections to the LGN were also highly specialized in V1 (Fig. 6A), 
with two unique types that expressed many V1-enriched genes that suggest significant specialization of 
physiological and connectional properties (Fig. S11C). Gene set enrichment analysis showed highly 
significant enrichment for calcium signaling and axon guidance and axonal and synaptic compartments 
(Fig. S11D). For example, axon guidance molecules CDH7, EPHA6, and SEMA6A showed V1 enrichment, 
the latter previously shown to have V1-selective developmental expression presumably involved in 
establishing connections to the lateral geniculate nucleus (35). Various ion channels (e.g. KCNT2 and 
SCN1B) and synaptic genes (e.g. SYT6 (36)), as well as calcium and calmodulin signaling associated genes 
(e.g. PCP4 (37), NPY2R (36)) were similarly enriched with several showing conserved V1 enrichment in 
monkey (36), as well as myelin basic protein (MBP), normally described in oligodendrocytes but known 
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to function in certain neurons as part of a Golli-MBP complex, including in developing human visual 
cortex where it is hypothesized to play a role in developmental plasticity (38).  
 
In addition to specialized excitatory neurons, V1 also contained specialized GABAergic interneuron 
types. The bulk of these were SST types (Fig. 6E, F and Table S12), and also one PVALB and two VIP types 
(Fig. S11A). Interestingly, the SST types common across V1 and other areas were concentrated in layer 2 
with sparser representation in other layers. In contrast, the V1-specialized types were concentrated in 
layer 4, in close proximity to the V1-specialized L4 IT types, suggestive of a relationship between these 
specialized excitatory and inhibitory types as discussed below.  
 
L5 ET neuron diversity 
Neocortical extratelencephalic (subcerebral) projecting axons originate from excitatory neurons in layer 
5 that have distinctive electrophysiological properties and gene expression patterns (12, 39). The 
hallmark morphologies of these cells have historically been key defining features of the cytoarchitecture 
of cortical areas, with M1 characterized by the presence of gigantopyramidal Betz cells and ACC (along 
with the frontoinsular cortex) characterized by spindle-shaped von Economo neurons (VENs), for 
example (Fig. 7A). Capturing these sparse neuron populations required additional sampling with 10x Cv3 
on dissected layer 5 samples. As noted above, L5 ET neurons were most abundant in ACC and their 
abundance generally decreased along the rostrocaudal axis (Fig. 2D). V1 had the lowest proportion of L5 
ET neurons (~0.1% of excitatory neurons), consistent with data from macaque monkeys demonstrating 
projections to subcortical targets such as the superior colliculus from large, very sparse neurons 
localized to deep layers in V1 (e.g., Meynert cells, Fig. S12A) (40–42). 
 
We identified 4 consensus L5 ET types (Fig. 5; Fig. 7B), several of which were dominated by nuclei 
derived from one or two cortical areas in close proximity to each other. For example, M1 and S1 
predominantly contributed to L5 ET_1, whereas L5 ET_3 was largely composed of nuclei from nearby 
areas MTG and A1 (and to a lesser extent AnG), again suggesting similarity in gene expression signatures 
based on the topographic position of cortical areas. V1 specialization was also apparent in L5 ET 
consensus types, with only a single type, L5 ET_4, consisting of nuclei almost exclusively isolated from V1 
(Fig. 7B). L5 ET neurons could be further divided into at least two transcriptomically distinct subtypes in 
most regions (Fig. 7C), and M1 had 3 distinct subtypes as reported in our previous study (12) where we 
determined that at least 2 L5 ET M1 subtypes included Betz cells. Interestingly, despite having the 
highest proportion of L5 ET neurons of all cortical areas, only one subtype was identified in ACC, 
suggesting that VENs in ACC likely do not represent a distinct transcriptomic cluster but rather are 
transcriptionally similar to other L5 ET morphological types, consistent with our findings in frontoinsula 
(43). 
 
L5 ET neurons have more genes with variable expression across areas than any other cell type (Fig. 
S10F). Up to 32% of variation in gene expression across areas was explained by gradients along 
mediolateral, dorsoventral, and rostrocaudal axes (Fig. 7D). Top gradient genes included a glutamate 
receptor subunit (GRID2), a semaphorin (SEMA3D), and a neuropilin (NRP1) that are involved in trans-
synaptic signaling and connectivity (Fig. 7D). Some gene expression varied across areas but not as a 
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gradient, such as DGKB, which was selectively down-regulated in primary sensory areas (A1, S1, V1) and 
has been shown to regulate spine formation of medium spiny neurons in the striatum (44). L5 ET 
neurons also expressed distinct areal markers (Fig. 7E and Table S13), including the voltage-gated 
potassium channel KCNG2 in ACC, glutamate receptor subunit GRIK1 in MTG and AnG, and ANK1 in V1, a 
gene that encodes for the scaffolding protein Ankyrin 1 and was shown to be enriched in mouse 
cerebellar neurons (45). Gene ontology (GO) enrichment analysis of L5 ET areal markers identified 
significantly enriched pathways associated with synaptic signaling, connectivity, and intrinsic neuronal 
firing properties (Fig. 7F), consistent with known areal variation in firing properties. 
 
Glial specialization 
Non-neuronal cells comprised at least 40-65% of cortical cells across areas based on FACS analysis of 
dissociated nuclei labeled with the neuronal marker NeuN and gated based on NeuN fluorescence 
intensity (Fig. S12A). However, these proportions are an underestimate of the total non-neuronal 
population because vascular cells, including endothelial cells and VLMCs, are difficult to dissociate (46) 
and are undersampled in the snRNA-seq dataset based on in situ labeling with MERFISH (Fig. S12B) (17). 
M1 and S1 had a higher proportion of non-neuronal (NeuN-negative) cells than other areas by FACS, and 
snRNA-seq data showed this was driven by an expansion of oligodendrocytes relative to OPCs, 
astrocytes, and microglia (Fig. S12B,C,D), consistent with previous neuroimaging studies showing that 
these areas are the most heavily myelinated of all cortical areas (47, 48) and with the presence of 
heavily myelinated axons of deep excitatory neurons in these areas (49). By contrast, areas previously 
described to be among the most lightly myelinated in cortex (ACC and DFC) (47) had the lowest 
proportion of oligodendrocytes (Fig. S12B,C). 
 
Non-neuronal cells were grouped into major subclasses based on conserved marker expression across 
cortical areas (Fig. S12F), and many subclasses could be further divided into transcriptomically distinct 
subtypes. Astrocytes could be subdivided into previously described protoplasmic, interlaminar (ILM), 
and fibrous types, which also had robust markers across areas (Fig. S12G). Consistent with previous 
reports of shared non-neuronal types across cortical areas (15), there was little areal expression 
signature for most non-neuronal cell types (Fig. 8A, Fig. S12E). By contrast, areal variation in 
protoplasmic, but not ILM or fibrous astrocytes, was apparent and this was consistent with previous 
reports describing brain-wide astrocyte heterogeneity (20, 50) and variation in astrocytes across cortical 
and hippocampal areas in mouse (51). Interestingly, protoplasmic astrocytes from ACC grouped together 
on the UMAP and expressed distinct areal markers (NRP2, NR4A3, and LGR6) (Fig. 8B). 
 
Laminar distributions varied across areas for all glial subclasses (Fig. 8C, S12H). In particular, there was a 
striking depletion of astrocytes in L4A and L4B of V1 but not in L4 of other sensory or granular cortical 
areas (Fig. 8C). To validate this finding, we examined in situ expression of the astrocyte marker GFAP in 
V1 and another granular area, DFC. We confirmed that GFAP protein and gene expression was reduced 
in L4B of V1 (Fig. 8D), and only protein expression was reduced in L4 of DFC (Fig. S12I) based on 
immunofluorescence (IF) and in situ hybridization (ISH) labeling of adult human tissue. In V1, a band of 
dense GFAP labeling was apparent in layers 6A and 6B, which tapered off in the underlying white 
matter. Further examination of GFAP IF in V1 revealed a population of astrocytes that extended long 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.11.06.515349doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.06.515349
http://creativecommons.org/licenses/by-nc-nd/4.0/


GFAP-positive processes away from the white matter and into L5, similar to descriptions of varicose 
projection astrocytes (VPA) that are unique to humans and great apes and not found in the cortex of 
other anthropoid primates (52, 53) (Fig. 8D, S12I). Deep layer astrocytes in DFC did not extend long 
processes and had morphology typical of protoplasmic and fibrous astrocytes (Fig. S12I). 
 
To investigate the transcriptomic identities of astrocytes in V1 further, we used MERFISH to map the 
spatial distributions of the five astrocyte subtypes identified in V1 by snRNA-seq (Fig. S8). Based on 
laminar distributions (Fig. 8E) and marker gene expression (Fig. 8F), there were two subtypes of 
protoplasmic (Astro_1 and Astro_3) and ILM (Astro_2 and Astro_5) astrocytes and one fibrous subtype 
(Astro_4). Contrary to prior descriptions of protoplasmic astrocytes as relatively homogenous cells, 
protoplasmic subtypes in V1 displayed distinct laminar patterns with Astro_1 localized predominantly to 
the sublayers of layer 4 and Astro_3 spread across layers 2-6 but strikingly absent in layers 1, 6B and 
white matter. Astro_1 markers were related to energy metabolism, including mitochondrial genes COX1 
(Fig. 8F), COX2, and COX3, and Astro_1 cells may be highly active protoplasmic astrocytes (i.e. an 
Astro_3 cell state) rather than a developmentally distinct type. Astro_5 cells were almost entirely 
restricted to the layer 1-pial border, while Astro_2 cells were enriched in the deeper part of layer 1, and 
these subtypes likely represent pial and subpial ILMs (54), respectively. Interestingly, the putative 
subpial ILM type (Astro_2) included a small number of cells localized to deep L6. Since ILMs and VPAs 
have previously been shown to express shared marker genes (e.g. AQP4 and CRYAB, Fig. 8F) and have 
similar morphologies (53, 55), these deep layer Astro_2 cells may represent a type of VPA. However, 
further work will be needed to fully characterize the diversity of astrocyte morphologies across cortex 
and their relationships to transcriptomic astrocyte types.  
 
Discussion 
The cellular complexity of the neocortex has challenged generations of neuroscientists aiming to 
understand the structural basis of cognitive function. Single cell genomics has rapidly matured to 
provide the scale and information content to quantitatively define cellular diversity and map the spatial 
tissue organization of these cell types in a remarkably comprehensive fashion. The BRAIN Initiative Cell 
Census Network established a paradigm for mapping cortical cellular diversity, developed methods to 
work across species including human, and established the concordance of a transcriptomic cellular 
classification with other cellular properties in a way that integrates a vast prior literature while 
identifying a much greater cellular diversity than appreciated with prior studies (12, 16). Among the 
lessons learned from those studies is that most cortical cell types are rare, but can be aggregated 
hierarchically in subclasses that reflect major divisions with laminar, developmental and projection 
target consistency. Characterizing this full diversity requires deep cellular coverage (80-100k nuclei per 
area), and very rare cell types like L5 ET may require additional sampling or selection to adequately 
represent. Furthermore, co-expression patterns of cortical cells are sufficiently conserved across 
mammals to align and transfer cell type labels from a well annotated cortical area in mouse to 
homologous cell types across species or to other cortical areas. 
 
Here we used these principles to perform cross-areal analysis across a series of human cortical areas, 
building on our highly annotated M1 taxonomy to understand similarities, differences and 
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organizational principles. Since the neocortex has a common organization and also graded changes and 
areal specializations, we applied two complementary analysis strategies to define cell types. The first 
strategy was to analyze each area independently, transferring labels from the most highly annotated 
area (M1 in this case) to other areas. The advantage of this strategy is that it provides the highest 
resolution clustering in each area and clearly identifies a common subclass-level organization. The other 
strategy was to analyze data from all areas jointly, identifying a set of consensus clusters that may be 
present in multiple areas, but that also captures cell types that are unique to a single area. This latter 
approach more clearly illustrates common cell types across areas (especially neighboring areas) and 
highly specialized types. Each of these approaches illustrate different aspects of cortical organization, 
which has aspects of areal uniqueness and also graded effects that clustering algorithms may attempt to 
split when those differences along the gradient become large. Similar joint analysis strategies have been 
used recently on the entire mouse cortex with similar results (19). 
 
 A key finding is that all 24 subclasses identified in M1 are found in all other cortical areas, substantiating 
the idea that there is a common organization across the entire neocortex at that level of granularity. 
This was true for L4 IT-like neurons, which were found even in agranular ACC and M1 (12) despite the 
lack of a histologically obvious layer 4. Each cortical area analyzed could be defined as a unique 
proportional makeup of cell subclasses. The majority of proportional variation was due to variation in 
excitatory neuron subclasses, which could be dramatic (10 to 50-fold), in particular in L4 IT and L5 ET 
neurons. At a finer level of analysis, there was a substantial areal variation such that distant areas had 
distinct cellular expression and some cell types clustered separately. Thus, both a canonical and a non-
canonical architecture were apparent, depending on the level of cellular detail analyzed. 
 
Topographic variation as a function of rostrocaudal position was an obvious organizational feature. Prior 
microarray-based analysis of human (30) and macaque (36) cortex has shown molecular similarity varies 
as a function of distance on the cortical sheet, strongly reflecting topographic organization that likely 
mirrors early developmental gradients of transcription factors and morphogens (56, 57). Here we see 
similar variation by rostrocaudal position and similarity as a function of distance, but predominantly in 
select cell types. As in mouse cortex (15), most areal variation was in the excitatory neuron populations 
and not the inhibitory neuron populations (except V1 as discussed below). These results are consistent 
with the fact that most inhibitory neurons migrate in from the ganglionic eminences and are complex 
but relatively homogeneous across the cortex, whereas excitatory neurons are generated from 
progenitor cells with strong developmental gradients that are maintained in postmitotic neurons in the 
adult cortex. Interestingly, rostrocaudal variation was seen not just in gene expression characteristics 
but also in excitatory neuron proportions. L4 IT neuron proportions appeared to increase from rostral to 
caudal, while L5 ET neurons proportions were inversely correlated. These observations suggest that 
there are developmental processes based on early gradients that sculpt cortical cellular makeup in many 
ways. Similar rostrocaudal variation in cellular morphology in primate species supports this idea as well 
(58). 
 
The most dramatic observation was the distinctiveness of V1, mirroring the specialized cytoarchitecture 
of V1 in human, primates and other binocular mammals. Unlike in mouse cortex where VISp is not highly 
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different from other cortical areas (19), V1 in human was an outlier in terms of molecular 
distinctiveness, cellular proportions and cell type makeup. V1 was more molecularly distinctive than 
expected by topographic position, as shown previously with bulk microarray analysis (28), with most 
excitatory neuron types appearing as separate islands on UMAP representations. L4 IT proportions were 
dramatically expanded, as expected given the increased size of the thalamorecipient layer 4. In contrast, 
L5 ET neurons in V1, presumably containing Meynert cells, were by far the most sparse among cortical 
areas. The corticothalamic L6 CT neurons were extremely distinctive from those of other areas, including 
the other primary sensory areas S1 and A1. At the more granular cell type level, V1 had many unique cell 
types. This included 7 layer 4 types in Layer 4A, 4B and 4C𝛼/𝛽 that may reflect different thalamic input 
specificity known to vary by layer 4 sublayer. However, every excitatory neuron subclass except L5 NP 
had a V1-specific type; furthermore, there were V1-specific SST and PVALB types. Interestingly, the V1-
specific SST types were found in layer 4 as well, suggesting either converging evolutionary or 
developmental sculpting of the excitatory and inhibitory neuron types.  
 
Finally, there has been long-standing debate about the cellular makeup of V1 layers 4A and 4B, which 
have alternatively been called 3BP and 3C in the Hassler nomenclature (33, 59). Cells in 4A and 4B have 
features of both layer 3 long-range projection neurons and also thalamorecipient local circuit spiny 
stellate cells normally found in layer 4 (and spiny stellate projection neurons not seen in other areas). 
Cytochrome oxidase labeling in human V1 that typically labels thalamocortical afferent termination is 
also inconclusive, failing to show a clear 4A or a clear 4C𝛼/4B border (60). Our results provide an 
explanation for this confusion: Layers 4A and 4B contain both L4 IT-like neuron types and also L2/3 IT-
like neuron types, in particular with a V1-specific L2/3 IT neuron type that extends into layer 4. 
Additional cellular diversity that does not strictly obey laminar boundaries complicates this organization, 
similar to previous work showing lack of strictly laminar cell organization in human MTG (11). These data 
now provide both an explanation and a map to guide characterization of the properties of the various 
V1 cell types using Patch-seq methods in monkey cortex, which is likely to have highly conserved cellular 
makeup to human. 
 
The balance of excitation and inhibition is thought to be critical to proper balance of neuronal circuitry, 
with disruption of E:I balance as a potential mechanism underlying epilepsies, neurodevelopmental and 
neuropsychiatric diseases(61). Reported ratios based on immunohistochemistry for GABA have been 
widely ranging from ~4:1 in human frontal cortex (62) to 4:1 in monkey V1 (63, 64). Transcriptomic 
analysis offers a more reliable method than antibody labeling to define and quantify cell proportions, 
and recent reports had shown a significant species variation in the cortical E:I ratio of excitatory to 
inhibitory neurons (12). Whereas this ratio is about 5:1 in mouse cortex, the ratio in human MTG and 
M1 is closer to 2:1. This finding was confirmed by MERFISH here and in (17), and also by analysis of EM 
volumes of mouse and human layer 2 (65), although the latter finding that there may be homeostatic 
processes that achieve similar synaptic E:I balance despite differences in cell numbers. We find that the 
human E:I ratio of 2:1 is consistent across all areas except V1, where the ratio is 5:1, similar to mouse. 
This is likely due largely to the increase in L4 IT neurons in V1 as a whole. However, we observed that 
this ratio varies substantially by layer as well, with the laminar variation most dramatic in V1 where the 
E:I ratio in layer 6 is closer to 10:1. Whether this variation can be compensated by homeostatic 
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processes remains to be studied, but these results indicate that the E/I ratio can vary quite dramatically 
in human cortex, with both laminar variation and V1-specific areal variation. 
 
The current results illustrate the power of single cell genomics to provide a comprehensive cellular map 
of the cortex that can be thought of as a new form of quantitative cytoarchitectonics based on the genes 
that give the cell types their properties. These analyses provide a new map for the field to understand 
organizational principles and place a cellular lens on thinking about cortical functional variation as 
variation in the proportions and properties of the component cell types that define the input-output 
properties of those areas. Recent studies have shown that morphological and anatomical characteristics 
are correlated with transcriptomic identity and gradient properties (16, 24, 66), indicating that the 
transcriptomic maps are also highly predictive for cell phenotype variation. Challenges for the future will 
be to map the entire human neocortex, understand graded features versus discrete boundaries, and 
directly measure the relationship between transcriptomically defined cell types, cellular phenotypes and 
functional architecture. 
 
 
Methods 
 
Post-mortem tissue donors 
Males and females 18 – 68 years of age with no known history of neuropsychiatric or neurological 
conditions (‘control’ cases) were considered for inclusion in this study. De-identified postmortem human 
brain tissue was collected after obtaining permission from the decedent’s legal next-of-kin. Tissue 
collection was performed in accordance with the provisions of the United States Uniform Anatomical 
Gift Act of 2006 described in the California Health and Safety Code section 7150 (effective 1/1/2008) 
and other applicable state and federal laws and regulations. The Western Institutional Review Board 
(WIRB) reviewed the use of de-identified postmortem brain tissue for research purposes and 
determined that, in accordance with federal regulation 45 CFR 46 and associated guidance, the use de-
identified specimens from deceased individuals did not constitute human subjects research requiring 
IRB review. Routine serological screening for infectious disease (HIV, Hepatitis B, and Hepatitis C) was 
conducted using donor blood samples and donors negative for all three infectious diseases were 
considered for inclusion in the study. Tissue RNA quality was assessed using samples of total RNA 
derived from the frontal and occipital poles of each donor brain which were processed on an Agilent 
2100 Bioanalyzer using the RNA 6000 Nano kit to generate RNA Integrity Number (RIN) scores for each 
sample. Specimens with average RIN values ≥7.0 were considered for inclusion in the study. 
  
Processing of whole brain postmortem specimens  
Whole postmortem brain specimens were transported to the Allen Institute on ice and processed as 
previously described (https://dx.doi.org/10.17504/protocols.io.bf4ajqse). Briefly, brain specimens were 
bisected through the midline and individual hemispheres were embedded in Cavex Impressional 
Alginate for slabbing. Coronal brain slabs were cut at 1 cm intervals and individual slabs were frozen in a 
slurry of dry ice and isopentane. Frozen slabs were vacuum sealed and stored at -80°C until the time of 
use.  
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Tissue microdissection, nucleus isolation and capture 
Cortical areas of interest were identified on tissue slab photographs taken at the time of autopsy and 
were removed from frozen slabs held on a -20°C custom cold table during dissection. Dissections of DFC 
were targeted to the superior frontal gyrus corresponding to the lateral and medial subdivisions of 
Brodmann Area (A) 9. Dissections of ACC corresponded to A24 in the rostral (anterior) cingulate gyrus. 
A1 was localized in the transverse temporal gyrus (Heschl’s gyrus) corresponding approximately to A41. 
For M1 and S1 dissections, putative hand and trunk-lower limb sub-regions of each cortical area were 
identified on tissue photographs, removed from slabs of interest, and subdivided into smaller blocks. 
One block from each donor was processed for cryosectioning and fluorescent Nissl staining (Neurotrace 
500/525, ThermoFisher Scientific) and stained sections were screened for histological hallmarks of each 
cortical area (e.g., the presence of Betz cells in L5 of M1) to verify that dissected regions were 
appropriately localized to either M1 or S1. MTG sampling targeted predominantly the caudal subdivision 
of A21 and the area of AnG sampled corresponded approximately to A39 located lateral to the 
intraparietal sulcus. V1 was grossly identifiable on tissue slab photographs by the presence of the Stria 
of Gennari.  
 
For SMART-seqv4 (SSv4) processing, tissue blocks were placed in ice-cold 1X PBS supplemented with 
10mM DL-Dithiothreitol (DTT, Sigma Aldrich) and mounted on a vibratome (Leica) for sectioning at 
500µm in the coronal plane. Sections were placed in fluorescent Nissl staining solution (Neurotrace 
500/525, ThermoFisher Scientific) prepared in 1X PBS with 10mM DTT and 0.5% RNasin Plus RNase 
inhibitor (Promega) and stained for 5 min on ice. After staining, sections were visualized on a 
fluorescence dissecting microscope (Leica) and cortical layers were individually microdissected using a 
needle blade micro-knife (Fine Science Tools) as previously described 
(https://dx.doi.org/10.17504/protocols.io.bq6ymzfw). Nuclear suspensions were prepared from 
microdissected tissue pieces as described (https://dx.doi.org/10.17504/protocols.io.ewov149p7vr2/v2). 
For 10xv3 (Cv3) processing, tissue blocks encompassing all cortical layers were placed directly into a 
Dounce homogenizer after removal from the -80°C freezer and processed as described 
(https://dx.doi.org/10.17504/protocols.io.bq64mzgw). For L5 specific dissections, tissue blocks were 
sectioned using a vibratome as described above and L5 was specifically dissected from Nissl stained 
vibratome sections using a micro-knife. Dissected L5 tissue pieces were pooled across multiple sections 
per cortical area and were processed for nuclear isolation as described above.  
 
All samples were immunostained for fluorescence activated cell sorting (FACS) with mouse anti-NeuN 
conjugated to PE (EMD Millipore, FCMAB317PE) at a dilution of 1:500 with incubation for 30 min at 4°C. 
Control samples were incubated with mouse IgG1,k-PE Isotype control (BD Pharmingen). A subset of 
SSv4 samples was immunostained with rabbit anti-SATB2 conjugated to Alexa Fluor 647 (Abcam, 
ab196536) at a dilution of 1:500 to discriminate excitatory (SATB2+/NeuN+) and inhibitory (SATB2-
/NeuN+) nuclei. After immunostaining, samples were centrifuged to concentrate nuclei and were 
resuspended in 1X PBS, 1% BSA, and 0.5% RNasin Plus for FACS. DAPI (4ʹ, 6-diamidino-2-phenylindole, 
ThermoFisher Scientific) was applied to samples at a concentration of 0.1µg/ml. Single nucleus sorting 
was carried out on either a BD FACSAria II SORP or BD FACSAria Fusion instrument (BD Biosciences) 
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using a 130µm nozzle. A standard gating strategy was applied to all samples as previously described 
(Hodge et al., 2019). Briefly, nuclei were gated on their size and scatter properties and then on DAPI 
signal. Doublet discrimination gates were applied to exclude multiplets. Lastly, samples were gated on 
NeuN signal (PE) and SATB2 (Alexa Fluor 647) signal where applicable. For Cv3 experiments, NeuN+ and 
NeuN- nuclei were sorted into separate FACS tubes and combined at defined ratios (90% NeuN+, 10% 
NeuN-), except for L5 dissected samples where only neuronal (NeuN+) nuclei were captured. Samples 
were then centrifuged and resuspended in 1XPBS, 1% BSA, 0.5% RNasin Plus, and 5-10% DMSO and 
frozen at -80°C until the time of chip loading. Samples were processed according to the following 
protocol for chip loading (https://dx.doi.org/10.17504/protocols.io.774hrqw). For SSv4, single nuclei 
were sorted into 8-well strip tubes containing 11.5µl of SMART-seq v4 collection buffer (Takara) 
supplemented with ERCC MIX1 spike-in synthetic RNAs at a final dilution of 1x10-8 (Ambion). Strip tubes 
containing sorted nuclei were briefly centrifuged and stored at -80°C until the time of further 
processing.  
 
SMART-seqv4 RNA-sequencing 
We used the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing (Takara #634894) per the 
manufacturer’s instructions for reverse transcription of RNA and subsequent cDNA amplification as 
described (https://dx.doi.org/10.17504/protocols.io.8epv517xdl1b/v2). Standard controls were 
processed alongside each batch of experimental samples. Control strips included: 2 wells without cells, 2 
wells without cells or ERCCs (i.e. no template controls), and either 4 wells of 10 pg of Human Universal 
Reference Total RNA (Takara 636538) or 2 wells of 10 pg of Human Universal Reference and 2 wells of 
10 pg Control RNA provided in the Clontech kit. cDNA was amplified with 21 PCR cycles after the reverse 
transcription step. cDNA libraries were examined on either an Agilent Bioanalyzer 2100 using High 
Sensitivity DNA chips or an Advanced Analytics Fragment Analyzer (96) using the High Sensitivity NGS 
Fragment Analysis Kit (1bp-6000bp). Purified cDNA was stored in 96-well plates at -20°C until library 
preparation. 
 
The NexteraXT DNA Library Preparation (Illumina FC-131-1096) kit with NexteraXT Index Kit V2 Sets A-D 
(FC-131-2001, 2002, 2003, or 2004) was used for sequencing library preparation as described (11). 
NexteraXT DNA Library prep was done at either 0.5x volume manually or 0.4x volume on the Mantis 
instrument (Formulatrix, https://dx.doi.org/10.17504/protocols.io.brdjm24n). Samples were 
quantitated using PicoGreen on a Molecular Bynamics M2 SpectraMax instrument. Sequencing libraries 
were assessed using either an Agilent Bioanalyzer 2100 with High Sensitivity DNA chips or an Advanced 
Analytics Fragment Analyzer with the High Sensitivity NGS Fragment Analysis Kit for sizing. Molarity was 
calculated for each sample using average size as reported by Bioanalyzer or Fragment Analyzer and 
pg/µl concentration as determined by PicoGreen. Samples were normalized to 2-10 nM with Nuclease-
free Water (Ambion). Libraries were multiplexed at 96 samples/lane and sequenced on an Illumina 
HiSeq 2500 instrument using Illumina High Output V4 chemistry.  
 
SMART-seqv4 RNA-seq gene expression quantification 
Raw read (fastq) files were aligned to the GRCh38 human genome sequence (Genome Reference 
Consortium, 2011) with the RefSeq transcriptome version GRCh38.p2 (current as of 4/13/2015) and 
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updated by removing duplicate Entrez gene entries from the gtf reference file for STAR processing. For 
alignment, Illumina sequencing adapters were clipped from the reads using the fastqMCF program (67). 
After clipping, the paired-end reads were mapped using Spliced Transcripts Alignment to a Reference 
(STAR)(68) using default settings. Reads that did not map to the genome were then aligned to synthetic 
constructs (i.e. ERCC) sequences and the E.coli genome (version ASM584v2). The final results files 
included quantification of the mapped reads (raw exon and intron counts for the transcriptome-mapped 
reads), and percentages of reads mapped to the RefSeq transcriptome, to ERCC spike-in controls, and to 
E.coli. Quantification was performed using summerizeOverlaps from the R package GenomicAlignments 
(69). 
 
Expression levels were calculated as counts per million (CPM) of exonic plus intronic reads, and 
log2(CPM + 1) transformed values were used for a subset of analyses as described below. Gene 
detection was calculated as the number of genes expressed in each sample with CPM > 0. CPM values 
reflected absolute transcript number and gene length, i.e. short and abundant transcripts may have the 
same apparent expression level as long but rarer transcripts. Intron retention varied across genes so no 
reliable estimates of effective gene lengths were available for expression normalization. Instead, 
absolute expression levels were estimated as fragments per kilobase per million (FPKM) using only 
exonic reads so that annotated transcript lengths could be used. 
 
10x Chromium RNA-sequencing and expression quantification 
Samples were processed using the 10x Chromium Single-Cell 3’ Reagent Kit v3 following the 
manufacturer’s protocol as described (https://dx.doi.org/10.17504/protocols.io.bq7cmziw). Gene 
expression was quantified using the default 10x Cell Ranger v3 (Cell Ranger, RRID:SCR_017344) pipeline. 
The human reference genome used included the modified genome annotation described above for 
SMART-seq v4 quantification. Introns were annotated as “mRNA” and intronic reads were included in 
expression quantification. 
 
RNA-sequencing processing and clustering 
Cell type label transfer. Human M1 reference taxonomy subclass labels (12) were transferred to nuclei in 
the current MTG dataset using Seurat’s label transfer (3000 high variance genes using the ‘vst’ method 
then filtered through exclusion list). This was carried out for each RNA-seq modality dataset; for 
example, human-Cv3 and human-SSv4 were labeled independently. Each dataset was subdivided into 5 
neighborhoods – IT and Non-IT excitatory neurons, CGE- and MGE-derived interneurons, and non-
neuronal cells – based on marker genes and transferred subclass labels from published studies of human 
and mouse cortical cell types and cluster grouping relationships in a reduced dimensional gene 
expression space. 
 
Filtering low-quality nuclei. SSv4 nuclei were included for analysis if they passed all QC criteria: 

> 30% cDNA longer than 400 base pairs  
> 500,000 reads aligned to exonic or intronic sequence  
> 40% of total reads aligned  
> 50% unique reads  
> 0.7 TA nucleotide ratio 

QC was then performed at the neighborhood level. Neighborhoods were integrated together across all 
areas and modality; for example, deep excitatory neurons from human-Cv3, human-Cv3-Layer5 and 
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human-SSv4 datasets were integrated using Seurat integration functions with 2000 high variance genes. 
Integrated neighborhoods were Louvain clustered into over 100 meta cells, and Low-quality meta cells 
were removed from the dataset based on relatively low UMI or gene counts (included glia and neurons 
with greater than 500 and 1000 genes detected, respectively), predicted doublets (include nuclei with 
doublet scores under 0.3), and/or subclass label prediction metrics within the neighborhood (ie 
excitatory labeled nuclei that clustered with majority inhibitory or non-neuronal nuclei). 
 
RNA-seq clustering. Nuclei were normalized using SCTransform (70), and neighborhoods were 
integrated together within an area and across individuals and modalities by identifying mutual nearest 
neighbor anchors and applying canonical correlation analysis as implemented in Seurat (71). For 
example, deep excitatory neurons from human-Cv3 were split by individuals and integrated with the 
human-SSv4 deep excitatory neurons. Integrated neighborhoods were Louvain clustered into over 100 
meta cells. Meta cells were then merged with their nearest neighboring meta cell until merging criteria 
were sufficed, a split and merge approach that has been previously described (12). The remaining 
clusters underwent further QC to exclude Low-quality and outlier populations. These exclusion criteria 
were based on irregular groupings of metadata features that resided within a cluster. 
 
Defining cross-area consensus cell types 
For each neighborhood, Cv3 nuclei were integrated together across individuals. The integrated latent 
space was Louvain clustered into over 100 meta cells. Meta cells were then merged with their nearest 
neighboring meta cell until merging criteria were sufficed, a split and merge approach that has been 
previously described (12) and was also used to define the within-area cluster identities. The process was 
repeated for each neighborhood, with an example diagram of the workflow shown in Figure 5A. 
 
Cell type taxonomy generation 
For each area, a taxonomy was built using the final set of clusters and was annotated using subclass 
mapping scores, dendrogram relationships, marker gene expression, and inferred laminar distributions. 
Within-area taxonomy dendrograms were generated using build_dend function from scrattch_hicat R 
package. A matrix of cluster median log2(cpm + 1) expression across the 3000 High-variance genes for 
Cv3 nuclei from a given area were used as input. The cross-area dendrogram was generated with a 
similar workflow but was downsampled to a maximum of 100 nuclei per cross-area cluster per area. The 
3000 High-variance genes used for dendrogram construction were identified from the downsampled 
matrix containing Cv3 nuclei from all eight areas. 
 
Cell type comparisons across cortical areas 
Differential gene expression. To identify subclass marker genes within an area, Cv3 datasets from each 
area were downsampled to a maximum of 100 nuclei per cluster per individual. Differentially expressed 
marker genes were then identified using the FindAllMarkers function from Seurat, using the Wilcoxon 
sum rank test on log-normalized matrices with a maximum of 500 nuclei per group (subclass vs. all other 
nuclei as background). Statistical thresholds for markers are indicated in their respective figures. To 
identify area marker genes across subclasses, Cv3 datasets from each area were downsampled to a 
maximum of 50 nuclei per cluster per individual. Downsampled counts matrices were then grouped into 
pseudo-bulk replicates (area, individual, subclass) and the counts were summed per replicate. DESeq2 
functionality was then used to perform a differential expression analysis between area pairs (or 
comparisons of interest) for each subclass using the Wald test statistic. 
 
Transcriptomic entropy across areas. To quantify inter-cell transcriptomic heterogeneity across areas for 
each subclass we calculated the transcriptomic entropy in the observed data (structured) and compared 
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against entropy in permuted data (unstructured).  Transcriptomic heterogeneity is defined as the 
difference between the structured and unstructured entropy. To compute transcriptomic entropy we 
followed these steps: (1) Randomly down-sample the cells within each subclass by taking 250 cells from 
each cross area cell type. (2) Identify the highly variable genes in each area and take the union of genes 
as our set of interest. (3) Then, by following a recently reported computational approach to quantify 
transcriptomic heterogeneity (72), we computed the per-area transcriptomic entropy for each subclass. 
 
Identifying changes in cell type proportions across areas. Cell type proportions are compositional, where 
the gain or loss of one population necessarily affects the proportions of the others, so we used scCODA 
(73) to determine which changes in cell class, subclass, and cell type proportions across areas were 
statistically significant. We analyzed neuronal and non-neuronal populations separately since nuclei 
were sorted based on NeuN immunostaining to enrich for neurons. The proportion of each cell type was 
estimated using a Bayesian approach where proportion differences across individuals were used to 
estimate the posterior. All compositional and categorical analyses require a reference population to 
describe differences with respect to and, because we were uncertain which populations should be 
unchanged, we iteratively used each cell type and each area as a reference when computing abundance 
changes. To account for sex differences, we included it as a covariate when testing for abundance 
changes. Separately for neuronal and non-neuronal populations, we reported the effect size of each 
area for each cell type (Table S9) and used a mean inclusion probability cutoff of 0.7 for calling a 
population consistently different. 
 
Partitioning variation in gene expression across areas. Variation partitioning analysis was performed to 
prioritize the drivers of variation across areas within each subclass. Using linear mixed-effect models 
implemented in the variancePartitioning bioconductor package: 
http://bioconductor.org/packages/variancePartition (74) we identify genes whose variance is best 
explained along the mediolateral, rostrocaudal and dorsoventral axes as well as by cortical area and 
donor. The order of areas along these axes was defined based on the approximate x, y, and z 
coordinates of tissue samples based on a common coordinate framework of the adult human brain (28) 
(Table S2). Genes were removed from the analysis based on the following criteria: (1) expressed in less 
than 10 cells, (2) greater than 80% dropout rate, (3) zero variance in expression, and (4) expression less 
than 1 CPM on average. The variance partitioning linear mixed-effect model was then defined as:  

𝑔𝑒𝑛𝑒	~	𝑚𝑒𝑑𝑖𝑎𝑙_𝑙𝑎𝑡𝑒𝑟𝑎𝑙	 + 	𝑟𝑜𝑠𝑡𝑟𝑎𝑙_𝑐𝑎𝑢𝑑𝑎𝑙	 + 𝑑𝑜𝑟𝑠𝑎𝑙_𝑣𝑒𝑛𝑡𝑟𝑎𝑙	 +	(1|𝑎𝑟𝑒𝑎) 	+	(1|𝑑𝑜𝑛𝑜𝑟)	 
and passed into the variancePartition function `fitVarPartModel()`. We determined the amount of 
variation explained per covariate for each gene from the `extractVarPart()` function. 
 
In situ profiling of gene expression 
Human postmortem frozen brain tissue was embedded in Optimum Cutting Temperature medium 
(VWR,25608-930) and sectioned on a Leica cryostat at -17 C at 10 um onto Vizgen MERSCOPE coverslips 
(VIZGEN 2040003). These sections were then processed for MERSCOPE imaging according to the 
manufacturer’s instructions. Briefly: sections were allowed to adhere to these coverslips at room 
temperature for 10 min prior to a 1 min wash in nuclease-free phosphate buffered saline (PBS) and 
fixation for 15 min in 4% paraformaldehyde in PBS. Fixation was followed by 3x5 minute washes in PBS 
prior to a 1 min wash in 70% ethanol. Fixed sections were then stored in 70% ethanol at 4 C prior to use 
and for up to one month. Human sections were photobleached using a 150W LED array for 72 h at 4 C 
prior to hybridization then washed in 5 ml Sample Prep Wash Buffer (VIZGEN 20300001) in a 5 cm petri 
dish. Sections were then incubated in 5 ml Formamide Wash Buffer (VIZGEN 20300002) at 37 C for 30 
min. Sections were hybridized by placing 50 ul of VIZGEN-supplied Gene Panel Mix onto the section, 
covering with parafilm and incubating at 37 C for 36-48 h in a humidified hybridization oven. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.11.06.515349doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.06.515349
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Following hybridization, sections were washed twice in 5 ml Formamide Wash Buffer for 30 min at 47 C. 
Sections were then embedded in acrylamide by polymerizing VIZGEN Embedding Premix (VIZGEN 
20300004) according to the manufacturer’s instructions. Sections were embedded by inverting sections 
onto 110 ul of Embedding Premix and 10% Ammonium Persulfate (Sigma A3678) and TEMED (BioRad 
161-0800) solution applied to a Gel Slick (Lonza 50640) treated 2x3 glass slide. The coverslips were 
pressed gently onto the acrylamide solution and allowed to polymerize for 1.5 h. Following embedding, 
sections were cleared for 24-48 h with a mixture of VIZGEN Clearing Solution (VIZGEN 20300003) and 
Proteinase K (New England Biolabs P8107S) according to the Manufacturer’s instructions. Following 
clearing, sections were washed twice for 5 min in Sample Prep Wash Buffer (PN 20300001). VIZGEN 
DAPI and PolyT Stain (PN 20300021) was applied to each section for 15 min followed by a 10 min wash 
in Formamide Wash Buffer. Formamide Wash Buffer was removed and replaced with Sample Prep Wash 
Buffer during MERSCOPE set up. 100 ul of RNAse Inhibitor (New England BioLabs M0314L) was added to 
250 ul of Imaging Buffer Activator (PN 203000015) and this mixture was added via the cartridge 
activation port to a pre-thawed and mixed MERSCOPE Imaging cartridge (VIZGEN PN1040004). 15 ml 
mineral oil (Millipore-Sigma m5904-6X500ML) was added to the activation port and the MERSCOPE 
fluidics system was primed according to VIZGEN instructions. The flow chamber was assembled with the 
hybridized and cleared section coverslip according to VIZGEN specifications and the imaging session was 
initiated after collection of a 10X mosaic DAPI image and selection of the imaging area. For specimens 
that passed the minimum count threshold, imaging was initiated and processing completed according to 
VIZGEN proprietary protocol. Following processing and segmentation via MERSCOPE software, cells with 
fewer than 50 counts, or with an area outside the 100-300 um2 range were eliminated from the 
mapping process.  
 
The 140 gene human cortical panel was selected using a combination of manual and algorithmic based 
strategies requiring a reference single cell/nucleus RNA-seq data set from the same tissue, in this case 
the human MTG snRNAseq dataset and resulting taxonomy (11). First, an initial set of High-confidence 
marker genes are selected through a combination of literature search and analysis of the reference data. 
These genes are used as input for a greedy algorithm (detailed below). Second, the reference RNA-seq 
data set is filtered to only include genes compatible with mFISH. Retained genes need to be 1) long 
enough to allow probe design (> 960 base pairs); 2) expressed highly enough to be detected (FPKM >= 
10), but not so high as to overcrowd the signal of other genes in a cell (FPKM < 500); 3) expressed with 
low expression in off-target cells (FPKM < 50 in non-neuronal cells); and 4) differentially expressed 
between cell types (top 500 remaining genes by marker score20). To more evenly sample each cell type, 
the reference data set is also filtered to include a maximum of 50 cells per cluster.  
The main step of gene selection uses a greedy algorithm to iteratively add genes to the initial set. To do 
this, each cell in the filtered reference data set is mapped to a cell type by taking the Pearson correlation 
of its expression levels with each cluster median using the initial gene set of size n, and the cluster 
corresponding to the maximum value is defined as the “mapped cluster”. The “mapping distance” is 
then defined as the average cluster distance between the mapped cluster and the originally assigned 
cluster for each cell. In this case a weighted cluster distance, defined as one minus the Pearson 
correlation between cluster medians calculated across all filtered genes, is used to penalize cases where 
cells are mapped to very different types, but an unweighted distance, defined as the fraction of cells 
that do not map to their assigned cluster, could also be used. This mapping step is repeated for every 
possible n+1 gene set in the filtered reference data set, and the set with minimum cluster distance is 
retained as the new gene set. These steps are repeated using the new get set (of size n+1) until a gene 
panel of the desired size is attained. Code for reproducing this gene selection strategy is available as part 
of the mfishtools R library (https://github.com/AllenInstitute/mfishtools). 
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Cell type mapping of MERSCOPE data. Any genes not matched across both the MERSCOPE gene panel 
and the snRNASeq mapping taxonomy were filtered from the snRNASeq dataset. We calculated the 
mean gene expression for each gene in each snRNAseq cluster. We assigned MERSCOPE cells to 
snRNAseq clusters by finding the nearest cluster to the mean expression vectors of the snRNASeq 
clusters using the cosine distance. All scripts and data used are available at: 
https://github.com/AllenInstitute/human_cross_areal. 
 
GFAP Immunofluorescence  
Tissue blocks from cortical areas of interest were removed from fresh-frozen tissue slabs as described 
above. Immediately after dissection, tissue blocks were drop-fixed in cold 4% paraformaldehyde 
overnight in a 4°C fridge. Tissue blocks were then rinsed in multiple washes of 1X PBS, cryoprotected in 
sequential 15% and 30% sucrose solutions, and embedded in OCT. Sections were cut free floating at 
30µm in the coronal plane on a Leica cryostat into 1X PBS and were stored at 4°C or at -20°C in 
cryoprotectant solution until the time of use. Sections were processed for immunofluorescence using a 
rabbit polyclonal anti-GFAP antibody (Agilent, Z0334) at a dilution of 1:1000 and mouse monoclonal 
anti-NeuN antibody (Millipore Sigma, MAB377) at a dilution of 1:1000. Primary antibodies were 
incubated overnight at 4°C, followed by incubation in Alexa Fluor conjugated secondary species-specific 
antibodies for 2 hours at room temperature. Sections were counterstained with DAPI and Neurotrace 
500 fluorescent Nissl stain and were mounted in ProLong Gold Antifade Mountant (ThermoFisher 
Scientific). Sections were imaged on a Nikon TiE fluorescence microscope equipped with NIS-Elements 
Advanced Research imaging software (v4.20). GFAP processes were traced using the SNT plugin in the 
Fiji distribution of ImageJ.  
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Figure 1 

 
Fig. 1. Transcriptomic cell type diversity across human cortical areas. (A) Eight areas of the neocortex 
were sampled from four lobes of the adult human brain. (B) snRNA-seq sampling across areas grouped 
by RNA-seq platform and layer dissection strategy and number of male and female donors. (C) 
Schematic of snRNA-seq clustering to generate cell type taxonomies for each area. (D) UMAPs of single 
nuclei from each area based on variable gene expression and colored by cell subclass as in panel J. (E) 
Distributions of subclass transcriptomic entropy are significantly different (P < 0.05) between neuronal 
(Exc and Inh) and non-neuronal (NN) classes and not between areas based on a two-way ANOVA and 
post-hoc Tukey HSD tests. (F,G,H) Summary of within-area taxonomies showing the number of nuclei 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.11.06.515349doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.06.515349
http://creativecommons.org/licenses/by-nc-nd/4.0/


sampled from each subclass and the number of distinct clusters (cell types) identified for excitatory (F) 
and inhibitory (G) neurons and non-neuronal cells (H). (I) Number of subclass markers in each area (box 
plots) and shared across areas (blue points). Box plots show median, interquartile range (IQR), up to 
1.5*IQR (whiskers), and outliers (points). (J) Heatmaps of conserved marker expression for 50 random 
nuclei sampled from each area for chandelier interneurons and horizontally compressed for all 
subclasses.  
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Figure 2 

 
Fig. 2. Cell subclass composition reflects cytoarchitecture and varies systematically along the 
rostrocaudal axis. (A) Images of Nissl-stained sections of cortical areas are labeled with approximate 
layer boundaries and show distinct cytoarchitecture. Areas are ordered by position along the 
rostrocaudal axis of the cortex. (B) Cortical locations of sampled tissue. (C) Relative proportions of 
neuronal subclasses as a fraction of all excitatory or inhibitory neurons in each area and estimated based 
on snRNA-seq profiling or in situ labeling using MERFISH. (D) Subclass proportions as a fraction of all 
neurons in the same class (excitatory or inhibitory) and grouped by neighborhood. Mean +/- standard 
deviation across donors. Significant differences across regions (ANOVA; *nominal P < 0.05; 
**Bonferroni-corrected P < 0.05). (E) Spearman correlations of excitatory and inhibitory subclass 
proportions across areas. Scale bar on A, 200 µm.  
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Figure 3 

 
Fig. 3. E:I ratio variation across cortical areas and layers. (A) Relative number of excitatory neurons to 
inhibitory neurons (E:I ratio) in each area. Bar plots indicate average and standard deviation across 
donors. (B) E:I ratios estimated for a common set of layers dissected from each area. Box plots show 
median, interquartile range (IQR), up to 1.5*IQR (whiskers), and outliers (points) across multiple donors. 
(C) Validation of increased E:I ratios in all cortical layers in V1 compared to MTG based on MERFISH 
experiments. Bar plots and whiskers indicate average and standard deviation of E:I ratios across donors, 
respectively. (D) E:I ratios estimated for all layers dissected from each area. (E) Laminar distributions of 
interneurons were conserved (SNCG) or divergent (LAMP5 LHX6) across areas based on counts of layer-
dissected nuclei. Note that primary sensory areas (S1, A1 and V1) have a distinct distribution of LAMP5 
LHX6 neurons. (F) MERFISH in situ labeling of LAMP5 LHX6 cells shows a decreased proportion of cells in 
layer 6 of V1 compared to MTG.  
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Figure 4 

 
Fig. 4. Transcriptional topography across cortical areas. (A,B) UMAPs showing transcriptomic 
similarities of single nuclei dissected from eight cortical areas and colored by neuronal subclass (A) and 
area (B) for excitatory and inhibitory neuron neighborhoods. Arrows mark V1-specialized PVALB and SST 
neurons. (C) The number of genes that are significantly differentially expressed across areas for each 
subclass grouped by neighborhood (ANOVA, Bonferroni adjusted P-value < 0.05). Subclasses with 0 or 1 
DEG are labeled. See Table S6 for all DEGs. (D) The number of genes that have highly enriched 
expression in a single area for each subclass. (E) Spearman correlations of expression similarity between 
pairs of areas as a function of the approximate physical distance along an unfolded neocortical sheet. 
Pairwise comparisons that include V1 (blue points) or do not include V1 (red) are grouped separately 
because V1 is so transcriptomically distinct. Intercepts but not slopes are significantly different across 
subclasses based on a linear model. (F) Ternary plot summarizing the relative proportion of variance 
explained by expression gradients across areas along rostrocaudal (R-C), mediolateral (M-L), and 
dorsoventral (D-V) axes for each subclass. Point size indicates the number of genes with >5% of variance 
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explained by at least one gradient, and point location shows the weighted mean proportion across all 
genes (shown in Fig. S10H). Points are colored by cell neighborhood, and most cells have predominantly 
R-C gradients, while deep layer (non-IT) neurons have more variable expression across the cortex (blue 
points are near the center of the plot). (G) For each subclass, the number of genes with expression that 
increases (R-C) or decreases (C-R) in areas ordered by their position along the rostrocaudal axis. (H) 
Examples of genes with rostrocaudal gradient expression that have been previously described in 
development (CBLN2) (32), has opposing gradients in different subclasses for the same gene (DCC) or for 
two related genes (CNTN5 and CNTN6) involved in neuronal connectivity for the same subclass.  
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Figure 5 

 
Fig. 5. Cross-areal consensus taxonomy. (A) Schematic of data integration across donors used for each 
neighborhood (e.g. deep excitatory neurons) to generate the cross-area consensus taxonomy. (B) 
Consensus taxonomy of cell types across eight areas. (C) Proportion of nuclei in each consensus type 
dissected from each donor. (D) Consensus type proportion including nuclei from all areas as a fraction of 
cell class. Error bars indicate mean and standard deviation across donors. (E) The relative number of 
nuclei dissected from areas that contribute to each consensus cell type. (F) Significant changes in 
consensus type proportions across areas based on compositional analyses of neurons and non-neuronal 
cells using scCODA. Larger magnitude changes are indicated by darker colors. See Table S10 for 
proportion effect sizes.  
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Figure 6 

 
Fig. 6. V1 cell type specialization. (A) Transcriptional uniqueness of cell types in the V1 taxonomy. Cell 
types with specificity >0.6 are considered V1-specialized and are highlighted in blue (see Table S11). (B) 
Laminar distributions of specialized (blue text) and common (grey) L2/3 IT types based on MERFISH in 
situ labeling experiments. (C,E) Scaled expression of marker genes of V1 specialized (blue labels) and 
common (black) L4 IT (C) and SST (E) types across areas. Dendrograms were pruned from the V1 
taxonomy in panel A. (D,F) Laminar distributions of specialized and common L4 IT (D) and SST (F) types 
based on MERFISH experiments. L4 IT8 neurons are labeled by arrowheads. 
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Figure 7 

Fig. 7. L5 ET-projecting neuronal diversity. (A) L5 ET morphology varies across areas based on 
fluorescent Nissl stains. (B) UMAPs of L5 ET neurons labeled by area and cross-area consensus type. (C) 
Within-area L5 ET subtypes for each area shown in the same UMAP space as panel B. (D) Bar plots 
summarizing the expression variance explained by human donor, L5 ET subtype, and four types of 
variation across areas: rostrocaudal (R-C), mediolateral (M-L), and dorsoventral (D-V) gradients and 
more complex patterns or in a single area (Area). For the four types of areal variation, the distribution of 
expression across areas is shown for one of the top five genes. (E) Examples of genes with L5 ET neuron 
expression restricted to one or a few areas. (F) Number of genes in the top 10 significantly enriched 
terms from Gene ontology (GO) analyses (biological process, BP; cellular component, CC; molecular 
function, MF) of L5 ET areal markers (Table S13). Scale bars on A = 250µm and 50µm (inset).  
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Figure 8 

 
Fig. 8. Areal specialization of astrocytes. (A) UMAP of non-neuronal cells labeled by cortical area. (B) 
UMAPs of astrocyte expression for genes with areal enrichment. (C) Laminar distributions of astrocytes 
vary across areas. (D) GFAP immunofluorescence (IF) and in situ hybridization (ISH) illustrates variable 
laminar distributions and morphologies of astrocytes in V1. Single channel IF images were inverted to 
increase visibility of GFAP IF. Scale bars: IF columns (100µm), GFAP tracing images (15 µm), ISH (200 
µm). (E) Laminar distributions of astrocyte subtypes in V1 based on MERFISH in situ labeling 
experiments. (F) Pan-astrocyte and subtype marker expression. 
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