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ABSTRACT16

Microbiome data obtained after ribosomal RNA or shotgun sequencing represent a challenge for their
ecological and statistical interpretation. Microbiome data is compositional data, with a very different
sequencing depth between sequenced samples from the same experiment and harboring many zeros.
To overcome this scenario, several normalizations and transformation methods have been developed to
correct the microbiome data’s technical biases, statistically analyze these data more optimally, and obtain
more confident biological conclusions. Most existing studies have compared the performance of different
normalization methods mainly linked to microbial differential abundance analysis methods but without
addressing the initial statistical task in microbiome data analysis: alpha and beta-diversities. Furthermore,
most of the studies used simulated microbiome data. The present study attempted to fill this gap. A public
whole shotgun metagenomic sequencing dataset from a USA cohort related to gastrointestinal diseases
has been used. Moreover, the performance comparison of eleven normalization methods and the
transformation method based on the centered log ratio (CLR) has been addressed. Two strategies were
followed to attempt to evaluate the aptitude of the normalization methods between them: the centered
residuals obtained for each normalization method and their coefficient of variation. Concerning alpha
diversity, the Shannon-Weaver index has been used to compare its output to the normalization methods.
Regarding beta-diversity (multivariate analysis), it has been explored three types of analysis: principal
coordinate analysis (PCoA) as an exploratory method; distance-based redundancy analysis (db-RDA) as
interpretative analysis; and sparse Partial Least Squares Discriminant Analysis (sPLS-DA) as machine
learning discriminatory multivariate method. Moreover, other microbiome statistical approaches were
compared along the normalization and transformation methods: permutational multivariate analysis
of variance (PERMANOVA), analysis of similarities (ANOSIM), beta-dispersion and multi-level pattern
analysis in order to associate specific species to each type of diagnosis group in the dataset used. The
GMPR (geometric mean of pairwise ratios) normalization method presented the best results regarding
the dispersion of the new matrix obtained after being scaled. For the case of α diversity, no differences
were detected among the normalization methods compared. In terms of β diversity, the db-RDA and the
sPLS-DA analysis have allowed us to detect the most meaningful differences between the normalization
methods. The CLR transformation method was the most informative in biological terms, allowing us
to make more predictions. Nonetheless, it is important to emphasize that the CLR method and the
UQ normalization method have been the only ones that have allowed us to make predictions from the
sPLS-DA analysis, so their use could be more encouraged.
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INTRODUCTION47

The microbiome is a noun composed of micro and biome (both from Ancient Greece origin), meaning48

small and life, respectively. Even today, there are different microbiome definitions, depending on the49

scientific field of interest. However, based on the work of Berg et al. 2020 [1], a holistic definition of the50

term microbiome could be considered as follows: the microbiome is the sum of the microorganisms and51

their genomes in a particular ecological environment.52

On the other hand, the microbiota concept integrates all the biological living forms that are part of the53

microbiome in a given ecological environment. In other words, if we are interested in the microbiome of54

the human gastrointestinal tract, we will talk about the concept of the human intestinal microbiota. On the55

other hand, if we are interested in the microbiota of a particular region of a National Park, we will use the56

term soil microbiota to refer to it.57

The microbiome is made up of bacteria, fungi, algae and protozoa. Viruses, bacteriophages, and other58

mobile genetic elements, because they are not living beings [2], cannot be included in the definition.59

However, there is still controversy as to whether or not to include them [1].60

To study the microbiome of the human gastrointestinal tract, non-invasive processes are usually61

recommended: stool collection (a representative sample of the intestinal microbiota) and saliva collection62

(a representative sample of the oral microbiota) [3]. From them, and without going into detail because63

it deviates from the objective of this work, they are subjected to a laboratory process of extracting the64

bacterial DNA they contain. Once extracted the genetic material, libraries are prepared to perform the65

sequencing, using two major technologies: 16S rRNA sequencing and shotgun metagenome sequencing66

[4–6]. In summary, and thanks to the cost reduction of shotgun technologies, the use of 16S sequencing67

is reducing because its main limitation is its taxonomic resolution: in the vast majority of cases, it can68

only be reached up to the taxonomic range of genus [7] and not to species. As a result of the sequencing69

process and its subsequent bioinformatic analysis (not described, out of scope), a matrix of counts is70

obtained, for example, at the species level for each sequenced sample. At this point, the microbiome71

dataset becomes compositional data and has been and continues to be a major headache for the applied72

statistics research field [8].73

Compositional Data. Theorical foundation.74

The compositional data is a matrix of non-negative numbers, with I rows and J columns, denoted by X (I x75

J). By convention, the rows I are the observation units (e.g. patients), i=1,2,..., I, while the columns (J) are76

the compositional parts (species in our example), j=1,2,..., J. Furthermore, by definition, the compositions77

in the rows of X are closed (sum up 1):∑
j

xi j = 1, for all I .78

However, as a general definition, we can establish that a data set is compositional when the sum of the79

values for each sample are predefined [9]. The original values, whatever they were, are generally not of80

interest; instead, the relative values, collectively called composition, are relevant to understanding the81

structure of the data set. The components of a composition are called composition parts. If a subset of the82

parts is considered and the data is relativized relative to the new subtotals, this is called a sub composition83

[10] .84

The fact that the sum of the compositional data is constant makes it special. In any other more typical85

situation when the data has been collected on several variables (e.g., the amount of selenium, calcium,86

and bicarbonates in different commercial brands of mineral waters), there is absolutely no restriction87

on the value that each variable can have in each observation. In summary, each measurement collected88

is free to have a specific value in its particular measurement scale (unit of expression). By contrast, in89

compositional data, such as the count of microorganisms per patient, this freedom does not exist since90

they present the constant sum constraint. Generally, this constant sum is defined as 1 or 100%, although91

the original data is expressed, for example, in species counts (microbiome study) [11]. To show a basic92

example of compositional data, let us suppose that we ask four individuals to indicate how much time they93

dedicate to each activity (expressed in hours) on a specific day. In this case, the constant sum constraint94

will be 24 hours, the hours in a day (see Table 1).95

Dividing a data set by its total to obtain the compositional values, which are proportions and sum96

up to 1, is called data closure or closure. Thus, having quantified the number of hours in the six-part97

composition of daily activities (see Table 1), the data would be closed (i.e., divided by 24 in this case) to98

obtain the values as proportions of the day.99
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Individual Sleeping Meals Work Hobbies Volunteering Others Sum

1 8 1 8 3 1 3 24
2 9 1.2 9 0 0 4.8 24
3 7.5 1 5 6 2 2.5 24
4 8 1 4 4 4 3 24

Table 1. Example of compositional data on activities (in hours) in one day for four individuals. In this
example, we have six variables, six components or six parts (sleep, meals, ...) in the terminology used for
compositional data

Three principles define the analysis of compositional data, and they should be followed as closely as100

possible. These are: scale invariance, sub composition coherence, and permutation invariance [11].101

The scale invariance principle states that compositional data only present relative (not absolute)102

information. Therefore, if we multiply the original data by any scalar factor C, the compositional data103

remains the same after its closure.104

The sub composition coherence principle means that results obtained for a subset of parts of a composition105

(known as a sub composition), should remain the same as in the composition.106

Finally, the principle of permutation invariance means that the results do not depend on the order of107

the parts (variables) that appear in the composition. Of course, in a compositional data set, the parts are all108

ordered in the same way for each sample (individual), but the parts could be re-ordered without affecting109

the results.110

The graphical representation of the compositional data helps its interpretation. The constant-sum con-111

straint characteristic of compositional data causes the compositional data to have a special geometric112

representation of the compositions in a space known as the simplex. The simplest form of a simplex113

is a triangle (Figure 1), which contains three compositional parts (3 variables). A tetrahedron in three114

dimensions can represent 4-part compositions. Higher dimensional simplexes (with more than four115

compositions) are already challenging to represent.116

Figure 1. Compositon of three parts. Ternary graph. The variables are indicated at the vertices of the
triangle. Most vegetables and doughnut, as opposed to veal and salmon, are high in carbohydrates. To
discover it, draw the line parallel to the Fat-Carbohydrates axis that passes through the point of the food
in question. The projection marks on the Proteins-Fat axis will indicate the percentage of Carbohydrates
for that selected food. Figure adapted and recreated in R from Michael Greenacre’s book [11].
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Characteristics and challenges of the statistical analysis of the microbiome117

The microbiome data, apart from being a microbiological species count matrix for each sequenced sample118

(compositional data), also has the following characteristics that make its subsequent statistical analysis119

difficult:120

• Compositionality of the data121

• Data sparsity122

• High variability of the data123

• Sequencing depth124

Next, we will develop each of these last three characteristics since compositionality has already been125

explained in the previous section.126

One of the characteristics of microbiome data, compared to other compositional data, is its big127

dispersion. The microbiome data contains many null values, meaning that species has not been detected128

for the considered sample x. This percentage of zeros in the microbiome data can be very high. Specifically,129

some human microbiome studies showed more than 80% zeros [12, 13]. This fact will make it challenging130

to find an adequate strategy for zero replacement [14] and is currently a very active field of research with131

the emergence of new strategies to combat the large data dispersion of the microbiome [15].132

Microbiome data is sparse because several detected taxa are rare (uncommon) in the analyzed samples.133

Each sample has a unique microbiome composition, and only a few bacterial taxa will be shared among134

most of the analyzed samples. The rest will be rare taxa and only detected in small proportions [16, 17]. So135

far, only true zeros have been commented on (that particular taxon does not exist in the analyzed sample).136

However, among the zeros obtained in the data matrix, there also exists sampling zeros (null values due137

to sequencing depth inefficiency, discussed later) and technical zeros (null values due to the unwanted138

creation of experimental artifacts in pre-sequencing such as incomplete reverse transcription, polymerase139

chain reaction problems) [16, 18]. Because technical and sampling zeros cannot be distinguished from140

true zeros, all zeros are considered true [18].141

Concerning the characteristic of the high variability of the data and its heterogeneity, it is an intrinsic142

property of the microbiome data. Microbiome data is a collection of counts from a long list of taxa that143

may have high and distinct levels of variability. For example, the set of abundant or rare taxa can vary144

considerably from sample to sample. The proportion of low or non-abundant taxa for most samples145

can be large (discussed in the previous paragraph). Like many other omics, microbiome data exhibit146

considerable natural heterogeneity or variability between samples. In addition to natural variability, there147

is also potential technical variation introduced by differences in sequencing depth and amplification biases148

[19, 20]. Regardless of the source, the total variability in microbiome data can be above and beyond what149

would normally be expected. The large variability coupled with excess zeros makes it difficult to identify150

true biological differences and can lead to biased estimation, and a high proportion of false positives [18].151

Finally, the last fundamental characteristic that defines microbiome data is its sequencing depth, which152

has already been mentioned in previous paragraphs. This is a characteristic that is determined by the153

intrinsic limitations of the sequencing technology. Sequencing technology artificially limits the total154

number of counts observed per sample (also known as library size or sequencing depth). In other words,155

the counts of one taxon are directly affected by those of the others. Therefore, for a particular sample, an156

increase in abundance for one taxon means fewer available counts for all other taxa since the total number157

of counts cannot exceed the specified sequencing depth, which is limited by the sequencer capacity. The158

observed raw counts only reflect relative information, not the actual absolute abundances of the taxa in159

the samples (they are compositional data). In addition, due to the technical limitation of the sequencing160

depth that we have mentioned, we have that the total sum of the rows of the count table is not the same161

between the samples, which supposes an added difficulty in the statistical treatment of the microbiome or162

of other omics. In short, the sequencing depth is different for each sample. See the following Table 2 to163

understand better a real situation we can find in the microbiome analysis.164

Therefore, in summary, these four characteristics of the microbiome data described in the previous165

section make the first step before the statistical analysis of these data a challenge. This challenge process166

is called normalization, and it is an essential step as it will allow us to ensure or not the proper application167

of further statistical analysis [18]. Thus, the main goals of normalization techniques are: to remove168
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Individual E.coli P.micra B.oberum M.smithii H.massiliensis Sum

1 6500 1360 120000 0 0 127860
2 2000 540 11213 1345 50 15148
3 3500 5300 52360 6 1 61167
4 1237 150 3250 467 0 5104

Table 2. Example of the compositional data in microbiome data. It can be seen that the sum (equivalent
to the sequencing depth) is different for each sample, which adds an extra degree of difficulty to this type
of compositional data.

any systematic technical biases, such as differences in sequencing depth or amplification biases that can169

negatively affect comparisons between samples; to take into account the large number of zeros that can be170

present in the data matrix; and try to make the observed counts as close as possible to the absolute counts171

(that is, transform the relative information of the compositional data into absolute terms).172

In the present work, the main normalization techniques most used in microbiome data analysis will be173

presented. In addition, we will focus on alpha and beta-diversity since normalization methods in literature174

have been more focused to differential abundance analysis (see a highly recommended reading [18]), but175

not at the initial statistical analysis of how could affects the estimation of the diversities of the microbiome176

population studied. Finally, the comparison of the normalization methods has been carried out on a public177

microbiome data set and not on simulated data (a common strategy used in the bibliography consulted178

and referenced throughout the work).179

METHODS180

Bibliographic search181

To gather information about microbiome data normalization methods, bibliographic references on compo-182

sitional data have been used. A systematic search has been carried out until July 24, 2022, in PubMed183

database using the following keyword: ”microbio* compositio*”, filtering for revisions and from 2018 (to184

get the most current view possible).185

The review articles found with the filters mentioned above were critically analyzed if they dealt with186

normalization methods, and if so, it was checked if they presented references to other articles that detailed187

a normalization method accompanied by a mathematical development and/or statistical and (if possible)188

validated on some set of data (simulated or real). If not, the article was discarded.189

Microbiome data used190

A search has been made in the 3 main open access databases of processed microbiome data (after191

bioinformatic analysis): microbiomeDB [21] (https://microbiomedb.org/mbio/app), MG-192

nify [22] (https://www.ebi.ac.uk/metagenomics/, and GMrepo [23] (https://gmrepo.193

humangut.info/home).194

Specifically, a public study has been chosen with the use of shotgun technologies that allows for determin-195

ing the taxonomic range of species (commented in the Introduction). Finally, the study by Franzoza et196

al. 2019 [24] has been selected, which is a cohort study with 56 healthy individuals, 88 individuals with197

Crohn’s disease, and 76 individuals with ulcerative colitis.198

The processed data is available under the PRJNA400072 project at the following GMrepo link: https://199

gmrepo.humangut.info/data/project/PRJNA400072. The raw data was downloaded from200

the NCBI SRA webpage: https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA400072.201

Normalization methods202

Three large groups of normalization methods can be distinguished [18, 25]:203

• Rarefaction204

• Scaling methods205

• Log-ratio transformations (CODA school philosophy, started by statistician John Aitchison, that206

2022 marks the 40th anniversary of his first publication on compositional data assessment).207
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Rarefaction208

The rarefaction method is the oldest normalization strategy, and it comes from the discipline of Ecology209

for the calculation of species richness [26]. Rarefaction is a method that adjusts for differences in library210

sizes between samples to aid comparisons of alpha diversity and beta diversity [27, 28]. Alpha diversity211

measures the diversity of species within a sample, while beta diversity accounts for differences in species212

composition between samples [29].213

Rarefaction involves selecting a specific number of samples equal to or less than the number of samples214

in the smallest sample and then randomly discarding reads from the largest samples until the number of215

remaining samples equals this threshold. Based on these equal-sized subsamples, diversity metrics can be216

calculated that can contrast ecosystems "fairly", regardless of differences in sample sizes [27]. Therefore,217

rarefaction solves the problem of the different sizes of the sequencing libraries between the samples that218

make up the data. It is important to emphasize that the sum of sequencing library sizes is related to the219

overall throughput of a particular sequencing run. Therefore samples sequenced on different sequencing220

machines or platforms will typically differ significantly in the library sizes. Also, and here is the kit for221

the matter, in a single batch of sequencing, you would expect to get approximately equal library sizes222

for all samples. However, in reality, after sequencing, each sample is associated with a very different223

number of reads. The different numbers of reads for each sample reflect the differential efficiency of the224

sequencing process between samples (for example, uncertainties in library quantitation and/or variation in225

loading concentrations or volumes) rather than the biological variation of interest[28]. Therefore, and in226

microbiome data, we will encounter the problem of different library sizes between samples.227

To facilitate its understanding, the rarefaction process is explained below again but in a more pleasant228

way, based on Hong et al. 2022 [28]:229

Let L* be the (arbitrarily) chosen sequencing library size:230

1. Specify a library size (L* ⩽ maxi(Li)) where i indexes all samples;231

2. Discard all those samples with library size Li < (L∗); and232

3. For the samples left over from the previous step ( Li ≥ (L∗)), separately for each sample, randomly233

subsamples its reads without replacement to L*.234

The selected sequencing library size (L*) for the set of samples considered is often chosen to be the235

smallest library size observed, assuming that all samples in question have been correctly sequenced (for236

example, ignoring/eliminating those samples that have very small library values compared to the rest237

of the samples, due to errors during sequencing discussed above) [28]. However, the larger (L*) is, the238

amount of artificial variation introduced in diversity analyses is minimized but may require the omission239

of samples with small library sizes [30].240

The classic R packages for microbiome analysis (phyloseq and vegan) incorporate functions to calculate241

rarefaction but only by performing a single iteration. Recently a new R package (myrlin) defaults to 1000242

iterations [30]. In addition, this year a rarefaction index has been developed that, the closer its value is to243

1, the rarefaction will not imply any distortion of the results [28], since the rarefaction has been criticized244

[28, 31] but is still used today as it is a method that works very well in the ecology and microbiology245

disciplines [28, 32].246

Scaling methods247

The following scaling methods will be described in this section: TSS, CSS, TMM, DESEq2, ELib-TMM,
ELib-UQ, UQ, GMPR, Wrench, and ANCOM-BC. Scale normalization methods attempt to correct
observed counts for systematic bias using a scale factor that is often sample-specific.

The scaling factor can be defined through the following Equation 1 where the basic idea is to divide the
observed counts in the species table by a "scaling factor" (or "normalization factor") to remove those
biases due to sequencing depth difference [33].

Õi j =
Oi j

s j
(1)

where Õi j is the normalized observed abundance for taxon i for each sample j; Oi j is the observed248

abundance of the i-jth taxon (species) in the j-th sample; and s j is the scaling/normalization factor for249

sample j.250

Since a large part of the technical variability comes from the differences in the total reads per sam-251

ple (sequencing library size), some commonly used normalizations such as Total Sum Scaling (TSS),252
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Trimmed Mean of M-values (TMM), and Upper Quartile (UQ) attempt to correct for observed counts and253

compensate for differences in sequencing depths. Other methods, such as Wrench and the ANCOM-BC254

[33] attempt to provide additional scaling for data compositionality and sparsity [18].255

256

The simplest and most direct scaling normalization method that corrects for differences in sequenc-257

ing depth is the TSS method. TSS normalization scales individual read counts by the total number258

of reads, thus transforming the observed abundances into relative abundances. However, the relative259

abundances remain compositional since the sum total of abundances for a sample is set to 1. The TSS260

method scaling factor formula is presented in Eq. 2.261

S j =
Yi j

n j
(2)

where i= 1, ..., p is the index of the taxon (eg species), j = 1, ...,N is the index of the samples (individuals);262

Yi j the untransformed counts of the i-th taxon in the j-th sample; S j is the scaling factor for the j-th sample;263

and n j the size of the sample library j.264

The CSS method (Eq. 3) uses robust statistics to provide an alternative to TSS that is less influenced265

by preferentially sampled taxa. CSS is defined as the cumulative sum of observed counts up to a threshold266

that is determined using a heuristic that minimizes the influence of preferentially sampled taxa. Thus,267

CSS attempts to scale each sample using only the relatively invariant part of the count distribution [18].268

However, neither TSS nor CSS do not take into account the compositionality of the data or the dispersion269

of the data.270

S j = ∑
∑i:Yi j≤qi

j
Yi j+1

N
(3)

where i = 1, ..., p is the index of the taxon (for example species), j = 1, ...,N is the index of the samples271

(individuals);Yi j the untransformed counts of the i-th taxon in the j-th sample; S j is the scaling factor for272

the j-th sample; and qi
j is the i-th quantile of the sample j.273

The TMM method (Eq. 4), for each sample, chooses a reference that will be the weighted trimmed274

mean of the logarithmic abundance indices after exclusion of the most abundant taxa that have the highest275

values of log ratio, and uses this scaling factor to normalize the size of the corresponding library. Like the276

DESeq2 method, TMM assumes that most taxa are not differentially abundant.277

log2(S j) = ∑
i∈G∗

wi jlog2
Xi j

Xir
(4)

where i= 1, ..., p is the index of the taxon (eg species), j = 1, ...,N is the index of the samples (individuals);278

Xi j represents the relative abundance of taxon i and displays j; S j is the scaling factor for the j-th sample;279

G∗ represents the trimmed set of taxa by j; wi j represents the specific weight for each method; and Xir is280

the reference sample for taxon i.281

The DESeq2 method (Differential gene expression analysis based on the negative binomial distribution)282

(Eq. 5) chooses as reference for each taxon the geometric mean of the abundances in all the samples. The283

DESEq scaling factor of the observed abundances for each sample is calculated as the median of all ratios284

between the sample and reference counts.285

(S j) = median
Yi j

(∏N
j′=1 Yi j′)

1
N

(5)

where i= 1, ..., p is the index of the taxon (eg species), j = 1, ...,N is the index of the samples (individuals);286

Xi j represents the relative abundance of taxon i and displays j; and S j is the scaling factor for the jth287

sample.288

The ELib-TMM method is a modified version of the TMM method that takes into account the289

corresponding library size for each sample (Eq. 6).290
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log2(S j)O. j (6)

where log2(S j) is the result of TMM (Eq. 4) and O. j = ∑
m
i=1 Oi j where Oi j is the size of the library for291

the i-th taxon for the j-th sample; and m the total number of taxa.292

The UQ method (Eq. 7) observations of each taxon are divided by the upper quartile of the (non-zero)293

counts associated with each sample and multiplied by the mean upper quartile of all the dataset samples294

[34].295

(uqS j) =UQi:Oi j>0(
Oi j

O. j
) (7)

where uqS j is the scaling factor for the j-th sample, UQ is the upper quartile, and O. j = ∑
m
i=1 Oi j in which296

Oi j is the size of the library for the i-th taxon for the j-th sample; and m the total number of taxa.297

The ELib-UQ (Effective library size using UQ) method is a modified version of the UQ method that
takes into account the corresponding library size (Eq. 8).

(uqS j)O. j (8)

where (uqS j) is the result of UQ (Eq. 7) and O. j = ∑
m
i=1 Oi j where Oi j is the size of the library for the298

i-th taxon for the j-th sample; and m the total number of taxa.299

The GMPR (geometric mean of pairwise ratios) method (Eq. 9) is a compositional normalization
method specifically designed to deal with sparse data (eg, microbiome data) and takes into account the
sizes of their libraries. It is a method that represents an extension to the DESEq2 method by reversing the
steps of DESEq2 to deal with data sparsity (sparsity). First, the median of all pairwise proportions of
counts ̸= 0 from two samples is computed. The scale factor for a sample is then calculated by combining
the pairwise results for the sample to obtain the geometric mean of the median values for that sample and
all other samples.

S j = (
n

∏
k=1

mediani|Yi jYik ̸=0

{
Yi j

Yik

}
)

1
N (9)

where i= 1, ..., p is the index of the taxon (eg species), j = 1, ...,N is the index of the samples (individuals);300

Xi j represents the relative abundance of taxon i and displays j; Yi j the untransformed counts of the i-th301

taxon in the j-th sample; and S j is the scaling factor for the jth sample.302

The Wrench method (Eq. 10) is considered a generalization of TMM for zero-inflated data (zero-303

inflated data) that reduces the estimated biases that occur with normalization methods that ignore the zeros304

(like the TMM). The Wrench method attempts to eliminate library size biases and allows absolute (not305

relative) observations to be obtained after normalization. To achieve this, it estimates a "compositional306

correction factor" which is the value that estimates the systematic bias in a group.307

S j =
1
p ∑

i j
wi j

Xi j

Xi.
(10)

where i= 1, ..., p is the index of the taxon (eg species), j = 1, ...,N is the index of the samples (individuals);308

Xi j represents the relative abundance of taxon i and displays j; wi j represents the specific weight for each309

method; and S j is the scaling factor for the jth sample.310

The ANCOM-BC method (Analysis of Compositions of Microbiomes with Bias Correction) (Eq.311

11) allows Wrench to infer absolute abundance from relative abundance. The authors of this method312

incorporate the term sampling fraction (sampling fraction) as the ratio of the expected observed abundance313

of the taxon in a random sample. See Figure 1 of the article by Huang Lin et al. 2020 [33] to delve into314

this interesting concept.315

log(S j) =
1
p

p

∑
i=1

(Yi j − xT
j β̂i) (11)

where i= 1, ..., p is the index of the taxon (eg species), j = 1, ...,N is the index of the samples (individuals);316

Yi j the untransformed counts of the i-th taxon in the j-th sample; β̂i represents the estimate obtained in317

ANCOM-BC (sample fraction); and S j is the scaling factor for the jth sample.318
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Log-ratio transformations319

Transformations are not proper normalization methods like the scaling and rarefaction methods discussed320

above. In the transformations, the counts are transformed based on a reference to perform statistical321

inferences based on the chosen reference [18, 25].322

Within the wide range of data transformations that we could think of, the analysis methods to analyze323

compositional data (CODA) (method introduced by Join Aitchison [35]) use the log-ratio transformation.324

The most well-known and used log-ratio transformation in microbiota (and which we will focus on in325

this work) is the centered log-ratio (CLR) followed by the additive log-ratio (alr) and the inter-quartile326

log-ratio (iqlr) [Street_2019, 11, 18, 25].327

The CLR transformation uses as a reference the geometric mean of the vector of each sample (Eq. 12).328

log

(
Yi j

[∏i Yi j]
1
p

)
(12)

where i= 1, ..., p is the index of the taxon (eg species), j = 1, ...,N is the index of the samples (individuals);329

and Yi j the untransformed counts of the i-th taxon in the j-th sample.330

Depending on the calculation of logarithms, CODA methods cannot compute zeros, which are very331

common in omics analyses, such as microbiota. To overcome this scenario, before calculating the CLR, a332

pseudo value must be added to all the zeros or (more recommended) an imputation of the zeros should be333

made based on a Bayesian multiplicative replacement strategy [11, 25].334

Statistical analysis335

Statistical software336

All data have been analyzed with the statistical software R version 4.1.2 [36] with its interface RStudio337

2021.09.01 [37]. The SessionInfo() together with all the R script codes are available from Zenodo338

repository (https://doi.org/10.5281/zenodo.7134538).339

Comparison between normalization methods and CLR transformation340

For the evaluation of the different of normalization methods and CLR transformation, the following R341

libraries have been used: ANCOM-BC (ANCOM-BC package) [38]; CSS (metagenomeSeq package)342

[39]; DESeq2 (DESeq2 package) [40]; TMM, UQ, ELib-TMM and ELib-UQ (edgeR package) [41];343

GMPR (GMPR package) [42]; rarefaction (phyloseq and mirlyn packages) [30, 43]; TSS (base package)344

[36]; Wrench (Wrench package) [44]; and centered log-ratio (easyCODA package) [11].345

The 11 normalization methods have been compared with each other and to the original non-normalized346

data. As discussed and discussed below, the CLR method is not a normalization method [29][29] and its347

suitability for use in microbiome data has been evaluated in another way described in the next subsection.348

Two approaches have been made to compare the normalization methods between them: (i) comparing349

the centered residuals between normalized methods from the code available from [33, 38], and (ii) the350

comparison of the coefficient of variation (expressed in %) between the normalization methods obtained351

through the rowMeans functions () from the base package [36] and rowSds() from the matrixStats package352

[45] (see R code for further details).353

Microbiome statistical analysis354

To compare the results obtained using the different normalization and transformation methods for a public355

data set, alpha diversity (diversity of species in a specific sample analyzed) [46] has been evaluated using356

the Shannon- Weaver (Eq. 13) that takes into account both the abundance and the uniformity of the357

species [47] and is highly popular in microbiota studies [48]. For this, the R package used has been that358

of phyloseq [43] and ggplot2 [49].359

H =−
R

∑
i=1

pilnpi (13)

where pi is the proportion of individuals belonging to species i.360

On the other hand, their possible differences in the beta-diversity of the studied community (difference361

in species between samples) [46] have been evaluated between the different methods using the Bray-Curtis362

distance (Eq. 14). Bray-Curtis distance is widely used in the fields of ecology, and microbiome [32, 50].363
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BCi j = 1−
2Ci j

Si +S j
(14)

where given a sample i and a sample j, Ci j is the sum of the lower values for those species common364

between the two compared samples. Si and S j are the total number of species for each sample.365

For the statistical analysis of beta-diversity, the multivariate analysis is used [51]. Within the multi-366

variate analysis, we distinguish three large groups: exploratory, interpretative, and discriminatory methods367

[52]. Exploratory methods are used to evaluate the relationship between objects based on the values368

of variables measured in that objects. Those similar objects will be distributed close to each other,369

while dissimilar objects will be distributed at non-close points on the graph. Interpretative methods370

are "constrained techniques", which in addition to the main set of measured variables, also use another371

set of additional explanatory variables (for example, known environmental gradients between objects).372

This constrained ordination analysis aims to find axes in the space of the multidimensional data set that373

maximizes the association between the explanatory variable(s) and the measured variables (response374

variables). Therefore, the ordination axes are constrained to be functions of the explanatory variables. The375

coefficients for each explanatory variable used to calculate each ordination axis indicate the contribution of376

that variable to the dispersion of the observed object along that axis. Finally, the discriminatory methods377

aim to define discriminant functions (synthetic variables) that maximize the separation of the objects378

between the different classes. The discriminant function(s) are restricted to a specific combination of379

explanatory variables. Variable coefficients (also known as weight or loadings) are used to calculate380

each discriminant function, and they indicate the relative contribution of each explanatory variable to the381

observed separation of the object along each discriminant function [52].382

It exists a wide range of multivariate analyzes applicable to ecology and to our particular case of the383

gastrointestinal microbiota. For pedagogical reasons and the length of the present suty, one type of384

technique has been selected from each type of multivariate analysis. Principal Coordinate Analysis385

(PCoA) has been selected as an exploratory method, which is an extension to Principal Component386

Analysis (PCA), but while PCA organizes the objects by an analysis of the eigenvalues of the correlation387

matrix, PCoA is can be applied to any distance measure, including the Bray-Curtis distance that we have388

used in this work. The PCoAs have been carried out through the phyloseq package [43].389

As an interpretative method, the distance-based redundancy analysis (db-RDA) method has been chosen390

since it allows using the Bray-Curtis distance [53]. To analyze the db-RDA, the vegan [54] package has391

been used.392

Finally, the sPLS-DA (sparse Partial Least Squares Discriminant Analysis) technique has been used as a393

discriminative method, which represents an improvement over PLS-DA because it allows for a selection394

of variables, discarding those variables that are not informative [55]. For the sPLS-DAs, the mixOmics395

package [56] has been used.396

For the analysis of db-RDA and sPLS-DA in the set of additional explanatory variables that contained397

missing data, an imputation based on the random forest machine learning technique was performed398

through the package missForest [57]. In addition, to represent it correctly, all the categorical variables of399

the matrix of additional explanatory variables have been converted to dummy variables (with a value of 0400

or 1) through the use of the fastDummies [58] package. Also, due to the overlapping of the species in the401

resulting graphs, and to achieve a more pleasant reading of them, a graph has been made with a subset of402

47 species selected by the alternative method to SIMPER detailed later.403

Regarding the case of the CLR transformation and according to the consulted bibliography [11, 29,404

59], the beta diversity cannot be evaluated with the Bray-Curtis distance but Euclidean, then the PCoA405

transforms into a PCA [29]. To do this, the pco() function of the ecodist package [60] is used, having406

performed previously the imputation of zeros with the cmultRepl() function of the zCompositions package407

[61] . The other two types of multivariate analysis could be compared with the other normalization408

methods using the same analysis strategy. However, alpha diversity has not been studied with the CLR409

transformation because alpha diversity formulas only support Z+ [43]. The R scripts used are found in410

Zenodo repository.411

Finally, the differences between diagnoses (control, ulcerative colitis, and Chron’s disease) in the412

composition of the intestinal microbiota have been evaluated in a complementary way with the following413

approaches: (i) PERMANOVA through the adonis() function [54], (ii) analysis of similarities (ANOSIM)414

[54], (iii) the beta dispersion [54] , and (iv) an alternative to SIMPER from the vegan package [54]415
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(multipatt) of the indicspecies package [62] that has allowed to associate specific species to groups of416

specific diagnosis, unlike SIMPER that only allowed comparisons between groups of diagnoses. The417

multipatt function is a multilevel pattern analysis that calculates an indicator value for each species418

in association with the input groups and then finds the group with the highest association with each419

species. The statistical significance of the associations is then tested using the indicator value as the420

test statistic in a permutation test. The PERMANOVA posthoc test has been performed through the421

pairwise.perm.manova() function of the RVAideMemoire package [63].422

RESULTS423

Brief description of the analyzed data424

As indicated in the Materials section, they have used public microbiome analysis data [24]. A brief425

summary of the general descriptive statistics of these data is indicated in the following Table 3. Of426

a total of 220 patients, 56 did not present a pathology associated with the digestive system while 88427

presented Chron’s disease and 76 ulcerative colitis. The overall mean age was 43 years and information428

was collected on the content of calprotectin in feces (numerical variable) and the consumption or not of429

antibiotics, immunosuppressants, mesalamine and steroids (categorical variables).430

Individuals Diagnostic Age Calprotectin Antibiotic Immunosupressants Mesalamine Steroids

Control: 56 Min: 19 Min:0.67 No:199 No:131 No:133 No:157
220 CD: 88 Mean: 43 Mean: 146 Sí:18 Sí:67 Sí:63 Sí:39

UC: 76 Max: 82 Max:2440 NR:3 NR:22 NR:24 NR:24

Table 3. Statistical summary of the analyzed data. CD: Crohn’s disease. CU: ulcerative colitis. NR: not
collected/answered.

Comparison between normalization methods431

As has been commented in the Material and methods section for the comparison between the normalization432

methods, a public data set it has been used (they are not simulated data), and two strategies have been433

followed. The first strategy has been to compare the centered residuals through a box plot between434

the true sample fraction and its estimate for each sample. See Figure 2. In this first strategy, only the435

scaling-type normalization methods have been compared. From the graph, we can indicate that the most436

desired box plot output will be the one with a lower height (less variability) and no (or few) peripheral437

points. Consequently, the most recommended scaling methods for our analyzed public data would be438

ANCOM-BC, TSS, ELib-TMM, GMPR and DESeq. ELib-UQ presents the smallest height of its box but439

presents a high variability (3.7) and many "peripheral" points. It is also noteworthy that there has been no440

scaling normalization for the residuals to appear grouped according to the diagnosis.441

In the second strategy (see Figure 3), all the normalization methods have been taken into account, and442

the original data without normalizing. We can see that three methods (rarefaction, TSS (equivalent to443

calculating relative abundances), and UQ) have presented identical results. However, the methods that444

have presented a better aptitude (based on the criteria discussed in the previous figure) compared to the445

original data (NOT_NORM) have been Wrench, TMM, and GMPR.446

α diversity447

The Shannon-Weaver index has been selected to compare the α diversity between the different normal-448

ization methods (Figure 4). The TSS, ELib-TMM, and ELib-UQ normalization methods do not appear449

for the reason mentioned in Materials and Methods. Although some small differences were detected in450

the p-values (Wilcoxon test) between the control group and CD (Chron’s disease), all the normalization451

methods converge to the same results, and there are no differences in the Shannon index according to the452

normalization method employed.453

454

Before analyzing the diversity α , for the rarefaction method, it has been chosen as the cut-off value455

of the library in 10000 reads from the rarefaction curve obtained with the myrlin R package. In the456

Supplementary Material 1, a rarefaction plot from phyloseq at 10000 reads are attached.457
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Figure 2. Box plot of the residuals between the true sample fraction and its estimate for each sample.
The lower and upper hinges correspond to the first and third quartiles (25th and 75th percentiles,
respectively). The median is represented by the solid black line inside the box. The upper whisker extends
from the hinge to the largest value no more than 1.5 times the interquartile range (distance between the
first and third quartiles). The equivalent in the lower whisker. Data beyond the whiskers is called "outer"
points. The value in parentheses associated with each normalization method is the variance.

β diversity458

This is the main parameter on which this manuscript has been focused in order to be able to evaluate the459

possible differences in results obtained depending on the normalization/transformation method used. For460

this reason, given its length, it has been considered appropriate to present the results separately for each461

type of statistical analysis performed.462

Species associated with pathology groups463

This subsection presents the results of the alternative analysis to SIMPER that has been carried out464

(multipatt() function, see Materials and Methods) to infer those species that define each of the groups465

of the analyzed microbiome study : control group, a group with Chron’s disease (CD) and a group with466

ulcerative colitis (UC). Specifically, 25 species define the control group, 20 the CD group and two the UC467

group. Table 4 provides a list of the species selected for each diagnostic group.468

Statistical tests469

Next, Table 5 presented the results of certain statistical analyzes that have been carried out at the level of470

β diversity in which the Bray-Curtis distance measure has been used for the normalization methods and471

the Euclidean distance for the CLR (centered log-ratio) transformation method.472

Exploratory analysis: PCoA473

The exploratory analysis of principal coordinate analysis (PCoA) has ordered the three pathology groups474

of the study in space in a different way depending on the normalization method studied and, in addition,475

the first two components explain a different percentage of variability (see Figure 5). As indicated in476

Materials and Methods, only the first two components are indicated. In each graph, the name of the477

sample that is further away from the center of the PCoA has been indicated according to the following478
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Figure 3. Box plot of the coefficients of variation in the different normalization methods studied. The
lower and upper hinges correspond to the first and third quartiles (25th and 75th percentiles, respectively).
The median is represented by the solid black line inside the box. Data beyond the whiskers are possible
outliers.

color code: green (control group), purple (CD group), and blue (UC group).479

The rarefaction normalization methods, TSS, DESeq2, GMPR, and ELib-TMM have presented a very480

similar organization in space, with the rarefaction method and TSS explaining a higher percentage of481

variability (22.4%).482

From the PCoA obtained, we can see that the control group (green dots) is the one with a more evident483

cluster (the differences in species between the control samples are lower than that of the other groups).484

The blue color group (UC) is also quite close together but is already more dispersed than the control485

group. The CD group (purple color) is the most dispersed of the 3, especially along the first component486

(PCoA1, axis 1). In addition, it is important to point out that the two methods that explain the most487

variability (rarefaction and TSS) also coincide with the samples of the group UC (purple) and CD (blue)488

that present the composition of species further away from the rest of the samples corresponding to their489

group. Specifically, they are samples PRISM_8815 for the CD group and PRISM_7989 for the UC group.490

Finally, in the case of the CLR transformation, and as indicated in the Materials and Methods section,491

it was not possible to perform a PCoA but rather a PCA with the Aitchison distance (equivalent to the492

Euclidean distance). The PCA obtained (Figure 6) is similar to the two normalization methods that explain493

more variability, although the control group (green) does not appear as a group, as we can see in the TSS494

and rarefaction method.495

Interpretative analysis: db-RDA496

Figure 7 shows the graphs obtained from the redundancy analysis based on the Bray-Curtis distance for497

all the normalization methods. For the case of the "centered log-ratio" transformation, see Figure 6 since498

we could not use the Bray-Curtis distance, and we used another R package (easyCODA) as mentioned499

in Material and Methods. For all the representations, we can see that the arrangement of the species in500

the first two dimensions is the same among all the normalization methods, except for the TMM method501

(Figure 7h), which is inverted. As can be seen, what changes are the explanatory variables that the db-RDA502
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Figure 6. a) β diversity of the CLR (centered log-ratio) transformation method through a PCA with
Aitchison distance.b) Redundant analysis with the CLR transformation method on the subset of 47
species to facilitate interpretation of the graph.
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Control CD UC

Coprococcus catus Veillonella parvula Bifidobacterium bifidum
Coprococcus comes Leuconostoc citreum Bifidobacterium dentium
Eubacterium hallii Clostridium clostridioforme
Dorea formicigenerans Dialister invisus
Subdoligranulum unclassified Lachnospiraceae bacterium 2 1 58FAA
Roseburia hominis Lachnospiraceae bacterium 5 1 57FAA
Ruminococcus bromii Veillonella atypica
Dorea longicatena Clostridiales bacterium 1 7 47FAA
Coprococcus sp ART55 1 Lachnospiraceae bacterium 9 1 43BFAA
Alistipes shahii Collinsella intestinalis
Eubacterium ramulus Blautia hansenii
Ruminococcus obeum Pediococcus acidilactici
Ruminococcus sp 5 1 39BFAA Coprobacillus unclassified
Gordonibacter pamelaeae Acidaminococcus unclassified
Lachnospiraceae bacterium 3 1 46FAA Dorea unclassified
Bacteroidales bacterium ph8 Clostridium bolteae
Eubacterium rectale Lachnospiraceae bacterium 4 1 37FAA
Akkermansia muciniphila Lactobacillus salivarius
Barnesiella intestinihominis Fusobacterium nucleatum
Bifidobacterium catenulatum Clostridium hathewayi
Prevotella copri
Phascolarctobacterium succinatutens
Eubacterium ventriosum
Ruminococcus lactaris
Parabacteroides goldsteinii

Table 4. Species that define each pathology group: control group, Chron’s disease group (CD) and
ulcerative colitis group (UC).

model has automatically selected "forward" (see R script for details) and the direction of these variables503

in the space. From all the graphs, for example, we can conclude that the species Ruminococcus gnavus504

is related to the diagnosis of CD (Chron’s disease). However, also, according to another normalization505

method, it is related to taking immunosuppressants.506

Discriminant analysis: sPLS-DA507

Figure 8 shows the two main graphs obtained by each type of normalization and transformation method508

analyzed: the graph of the individuals and the corresponding circular correlation graph that both graphs509

complement each other to be able to draw conclusions. For all the methods compared, the circular510

correlation graph does not change, and only the groupings in the graphs of the individuals change511

depending on the method used. Of all the methods, the method that has explained the most variability in512

the first two components has been the CLR method. However, the results of the circular correlation graphs513

when all the species have been considered (see Supplementary Material 3) showed different species spatial514

organization depending on the normalization method.515

In addition, as supplementary material (Supplementary Material 4), it is possible to visualize which516

variables have contributed the most to the first component through the plotLoadings() function of the517

mixOmics R package. All methods have presented the same species for each type of group. Finally, also518

in the Supplementary material 3, the background prediction graphs are attached, which offer an idea of519

the prediction for new samples in which diagnostic group they would be included.520

DISCUSSION521

Comparison between normalization methods522

An adequate normalization method will eliminate (reduce as much as possible) the biases and varia-523

tions introduced during the sampling and sequencing process; therefore, the normalized data will reflect524

biological differences. Due to its great importance, it is highly recommended to validate all possible525

post-normalization analyses [64].526
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Method ANOSIM Beta-dispersion PERMANOVA* PERMANOVA posthoc*

ANCOM-BC R:0.06/Sig.:0.001 <0.001 0.001 Control vs CD:0.001
Control vs UC:0.001
CD vs UC:0.001

CSS R:0.02/Sig.:0.048 <0.001 0.001 Control vs CD:0.003
Control vs UC:0.02
CD vs UC:0.006

DESeq2 R:0.03/Sig.:0.02 <0.001 0.001 Control vs CD:0.001
Control vs UC:0.001
CD vs UC:0.001

ELib-TMM R:0.03/Sig.:0.02 <0.001 0.001 Control vs CD:0.001
Control vs UC:0.001
CD vs UC:0.001

ELib-UQ R:0.02/Sig.:0.04 <0.001 0.001 Control vs CD:0.001
Control vs UC:0.001
CD vs UC:0.001

GMPR R:0.03/Sig.:0.02 <0.001 0.001 Control vs CD:0.001
Control vs UC:0.001
CD vs UC:0.001

Original data R:0.04/Sig.:0.007 <0.001 0.001 Control vs CD:0.001
Control vs UC:0.001
CD vs UC:0.001

Rarefaction R:0.04/Sig.:0.006 <0.001 0.001 Control vs CD:0.001
Control vs UC:0.001
CD vs UC:0.001

TMM R:0.03/Sig.:0.02 <0.001 0.001 Control vs CD:0.001
Control vs UC:0.001
CD vs UC:0.001

TSS R:0.04/Sig.:0.003 <0.001 0.001 Control vs CD:0.001
Control vs UC:0.001
CD vs UC:0.001

UQ R:0.02/Sig.:0.047 <0.001 0.001 Control vs CD:0.001
Control vs UC:0.001
CD vs UC:0.001

Wrench R:0.03/Sig.:0.01 <0.001 0.001 Control vs CD:0.001
Control vs UC:0.001
CD vs UC:0.001

CLR R:0.2/Sig.:0.001 <0.001 0.001 Control vs CD:0.001
Control vs UC:0.001
CD vs UC:0.001

Table 5. Summary of the results obtained in the statistical tests. * p-value adjusted by the false discovery
rate method.

Figures 2 and 3 have evaluated the scaling factor (and random sub-sampling for the rarefaction case)527

in creating a new species matrix (species rows, sample columns) between the different normalization528

methods evaluated in this work. Therefore, in this first analysis, a subsequent analysis of the normalized529

data has not been addressed, but an attempt has been made to evaluate the normalization itself.530

In Figure 2, centered residuals have been evaluated on real microbiome data set following the strategy used531

by [33, 38] who used it to evaluate their ANCOM-BC normalization method on simulated data. From the532

results obtained in the real dataset, it is a bit suspicious the spectacular result obtained by the ANCOM-BC533

method [33, 38]. To calculate the true sample fraction (needed in ANCOM-BC method), it has been in-534

ferred through the same ANCOM-BC method (see script of R in Zenodo repository and the original script535

of the authors that show the functions that it is has been used to calculate it: https://github.com/536

FrederickHuangLin/Microbiome-Review-Code-Archive/blob/master/scripts/data_537

generation.R#L142. However, it is very interesting to mention that in the public dataset used in the538

present study, it has not found any grouping by diagnostic groups for any type of method, an undesirable539
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Figure 8. sPLS-DA plots for the 47 species subset. For all the species, see Supplementary Material 3.

aspect, and that they did detect Huang Lin’s studies for their simulated data [33, 38].540

The initial idea was to reproduce figure 6 of the article by Li Chen et al. 2018 [42], but it was not possible541

to receive some hints from their corresponding author. However, an alternative strategy has also offered542

us valuable information through the coefficient of variations. In Figure 3, a box plot has been presented,543

taking into account the difference in the coefficient of variation in percentage, which is a standardized544

measure of the dispersion of the data. The GMPR method for the public dataset has presented a good545

aptitude in terms of data dispersion (assessed through the coefficient of variation) as occurred in [42] but546

the good results for the TMM and Wrench methods should also be highlighted, the latter not evaluated in547

[42].548

α diversity549

The Shannon index has been used to compare the α diversity between the different normalization methods550

(Figure 4). As indicated in the Materials and Methods section, for its calculation, it is necessary (as is551

logical) that the counts of the species be Z+. Consequently, prior to calculating the diversity index, an552

upward rounding was performed once the scaling factor was applied because we had decimal values. In553

addition, for those methods that normalized the matrix of species in relative abundances between 0 and554

1 (TSS, ELib-TMM and ELib-UQ), and given that for each species of the 201 in the dataset they had a555

relative abundance <0.5, it was rounded to 0. Therefore, its Shannon index could not be calculated, so it556

does not appear in Figure 4.557

No differences were observed in determining the Shannon diversity index between the different normaliza-558

tion methods considered. To the best of my knowledge, it has not found any literature that has evaluated559

normalization methods against α diversity. Only, a comment from the developer of the GMPR method560

on GitHub said that it would not affect diversity α https://github.com/jchen1981/GMPR/561

issues/2. Finally, mention that the diversity α for the CLR data has not been studied since it is an562

analysis that has not been considered [11, 59] until very recently with the recent appearance of the R563

coda4microbiome [65], which allows the calculation of the Shannon index but not other biodiversity564

indices, at least at present.565

Statistical tests related to β diversity566

Table 5 shows the p-values for the similarity analysis tests (ANOSIM), beta-dispersion (equivalent to567

Levene’s test but for multivariate analysis), and PERMANOVA. The beta dispersion and PERMANOVA568

have been practically identical for all the normalization and transformation methods, demonstrating that569

the normalization/transformation method does not affect this type of analysis. However, for ANOSIM,570

some nuances have been obtained that it is considered appropriate to highlight briefly. ANOSIM is571

a non-parametric method that tests the hypothesis that there are no differences between two or more572

groups of samples based on the permutation test of similarities between and within groups [66]. That573

is, it compares the variation in the abundance and composition of species between samples taking into574

account a grouping factor (in our case, the patient’s Diagnosis). The null hypothesis is that there are575

no differences between members of the treatment groups (patient Diagnosis). In addition, to correctly576
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interpret its results, it must consider the two values it gives us: R and significance. First, it is necessary to577

check that the significance value is less than 0.05. Once checked, the value of R is checked. If it is less578

than 0.2, it means that the chosen grouping factor (Diagnosis) has a small effect in explaining the dif-579

ference between the species ://www.researchgate.net/post/Can_anyone_help_me_in_580

understanding_and_clearly_interpreting_ANOSIM_Analysis_of_Similarityand_581

SIMPER_Similarity_percentage_analysisresults.582

Going back to Table 5, we can see that all the methods turned out to be significant except almost for583

the CSS and UQ method. Regarding the value of R, all have presented a very small value of R, except for584

the CLR transformation method on the border (0.2). In summary, except for the CLR method, we can585

conclude that Diagnosis is not a factor variable essential to explain the difference in species presented by586

the three diagnostic groups considered in the analyzed study. To the best of our knowledge, it has not587

found any bibliographic reference that has compared ANOSIM between different normalization methods.588

In relation to PERMANOVA, it is noteworthy to mention that Weiss et al. 2017 [64] detected differences589

depending on the normalization method used and using several public datasets.590

Multivariate analysis of β diversity591

As indicated in the Materials and Methods section, one method was performed for each large group592

of multivariate analyses: PCoA (exploratory analysis), db-RDA (interpretative analysis) and sPLS-DA593

(discriminative analysis). In all of them, the Bray-Curtis distance has been used (except for the Euclidean594

for the CLR method) since it is the distance par excellence in disciplines such as Ecology and the analysis595

of the microbiota, since, for example, Bray-Curtis gives us a better idea of the dissimilarity of the species596

between samples compared to the Euclidean distance, since with Bray-Curtis the maximum distance is597

obtained when the samples that are compared do not have species in common, among many other aspects598

commented on in several articles of Carlo Ricotta [67, 68].599

In addition, it is very important to highlight that both the α and β diversity analyzes have traditionally600

been calculated (at least in Ecology and Microbiology) based on relative abundances (TSS method), but601

also by the rarefaction method [28, 64]. From an Ecological (and Microbiological) point of view, the main602

reason for using relative abundances of species rather than absolute abundances for the calculation of603

functional dissimilarity is that ecologists (microbiologists) are often interested in exploring how species604

changes the ecological strategies or evolutionary pathways of species among samples of each diagnostic605

type (i.e., how functional traits change and phylogenetic characteristics are proportionally distributed606

among species), regardless of the absolute abundances of species in each parcel (sampling unit) [68].607

However, the disciples of the CODA school created by the statistician Aitchison defend the non-use of the608

Bray-Curtis metrics distance and also that the Bray-Curtis distance can be used for the original counts609

(not only for relative counts) http://www.econ.upf.edu/~michael/stanford/; https:610

//www.youtube.com/watch?v=c7VUrViGmQU.611

The first multivariate analysis that was carried out was the exploratory analysis using principal coordinate612

analysis (PCoA). Principal component analysis (PCA) establishes the conserved distance between two613

objects: the Euclidean distance. If it is desired to order the objects based on another distance measure614

(for example, the Bray-Curtis distance) then PCoA is the method of choice. PCoA provides a Euclidean615

representation of a set of objects whose relationships are measured by any user-chosen measure of616

similarity or distance. As in the case of PCA, PCoA produces a set of orthogonal axes whose importance617

is measured by the eigenvalues (eigen values) [53]. As expected from the discussion above, those618

methods based on rarefaction and relative abundances (TSS in particular) have presented an identical619

spatial arrangement with a higher % of variability explained by the first two components. Furthermore,620

normalization methods have been shown to modify beta-diversity in PCoA representation, at least in our621

analyzed real data, which contradicts the comment by the developer of the GMPR method in a GitHub622

thread https://github.com/jchen1981/GMPR/issues/2623

The next multivariate analysis performed on the public data analyzed was the Bray-Curtis distance-based624

redundancy analysis (db-RDA). The db-RDA is an ordering method similar to redundancy analysis (RDA),625

but that allows the use of non-Euclidean dissimilarity indices (Bray-Curtis, for example). Despite this non-626

Euclidean feature, the db-RDA analysis is strictly linear, and metric [53]. The db-RDA (and the RDA as627

well) is an extension of multiple regression, which models the effect of an explanatory matrix X (nxp) on a628

response matrix Y (nxm). The difference here is that we can model the effect of an explanatory matrix on629

a response matrix rather than a single response variable. Therefore, the db-RDA (RDA) allows us to model630
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the effect of medical variables (consumption of antibiotics, immunosuppressants, mesalamine..., presence631

of occult blood in faeces) in the entire population studied, not just in a single sample. This is achieved by632

sorting Y to obtain sort axes that are linear combinations of the variables in X, which X is the species633

matrix [53], http://r.qcbs.ca/workshop10/book-en/redundancy-analysis.html.634

It will not expand further on this method, but we will add the concept of constrained (constrained) and635

unconstrained proportions that appear during the db-RDA parsing. The constrained proportion refers to636

the variance of Y explained by X, while the unrestricted proportion refers to the unexplained variance in637

Y. All the values obtained by each method can be consulted in detail in the R scripts.638

As it has been commented in the Results section for Figure 7, no differences have been observed in639

the arrangement of the species, but yes in the direction of the explanatory variables. However, practically640

all the species appear superimposed on the axis (0,0) of the graph, which does not allow any interpretation641

beyond separated species. The most extreme case has been for the species Ruminococcus gnavus related642

to Diagnosis CD that was not identified by the alternative SIMPER strategy followed (see Table 4). Apart643

from the biplot presented in Figure 7, a triplot has also been made (contains sample information) with the644

use of the ggord() function, and its graphs have been included as Supplementary Material 2.645

For the case of the CLR transformation method, an RDA has been performed since the Euclidean distance646

has been used (see Figure 6b). As can be seen, the RDA triplot of the CLR method allowed us to make647

many more groupings of species per diagnostic group and also relate them to more explanatory variables.648

Therefore, in summary, the CLR method has turned out to be more informative than any other method649

in the interpretive analysis through redundancy analysis, and it could be more advisable to follow an650

approximation of the microbiome data as compositional data as sustented by several authors [11, 29].651

The third and last multivariate analysis was the sPLS-DA as a discriminative analysis technique [53].652

sPLS-DA is an extension of the sPLS method, a regression technique initially applied to chemometrics653

but was found to be useful on omics data. The sPLS adds sparsity into the PLS with a Lasso penalty654

combined with an SVD computation. For complete detail, see [69]. Although the PLS method was655

primarily designed for regression problems, it works well on classification problems. SPLS-DA performs656

the selection of variables and classification in a single step and is a machine learning technique because it657

will allow us to make predictions and find a microbiological species signature for each diagnostic group658

[70, 71] .659

As commented in the results section for Figure 8, no differences were observed between the normalization660

methods and the circular graphic’s CLR transformation method. However, a great difference has been661

detected when we consider the graph of the individuals. For example, we have the species Bifidobacterium662

dentium that in Table 4 we found to be related to the ulcerative colitis (UC) group, and if we look again at663

Figure 8, we can infer that for the UQ and CLR methods they would be inside the UC ellipse (fucsia color).664

However, when we consider the background graphs (attached as Supplementary Material 3), we see that665

apart from CLR and UQ that would present the same prediction commented above for Bifidobacterium666

dentium , the DESeq2 method, ELib-UQ and GMPR would also match. Finally, it is important to highlight667

the results of the loading plots (Supplementary Material 4 that indicate the contribution of each variable668

for each component). The loading graphs for the first component are attached. For all normalization669

methods, for the first component, indicated the same signature of species for each diagnostic group. The670

only study found that compared normalization methods with sPLS- DA found no difference between the671

two methods compared: CSS vs TSS+CLR [71]. The study [71], also like the present work, used public672

data.673

CONCLUSIONS674

A composition describes the parts of a whole quantitatively. The compositional information it contains is675

considered to reside in the ratios between any of the parties considered. Microbiome data are composi-676

tional data that are also characterized, like other omics disciplines, by presenting a high percentage of677

zeros (to denote, for example, that a certain taxon has not been detected for a specific sample) and a high678

dispersion in the values of taxa counts. For this reason, since the decade of the 70s, and thanks to the679

work of several scientists in the discipline of Ecology and Statistics, it has allowed the appearance of680

several methods of normalization and transformation of taxa counts, which a posteriori, have been applied681

to the statistical analysis of various omics, such as the case of the microbiome.682

683

The present work has attempted to present and compare the vast majority of available normalization684
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methods (11 methods) for the microbiome analysis in any discipline (soil ecology, clinical medicine...)685

and emphasize its main alternative: centered log-ratio, CLR, from CODA school disciples.686

687

To achieve the main objective discussed in the previous section, public results of a microbiome study688

conducted in the United States have been used instead of simulated data (a common strategy detected689

in the literature consulted). Analyzes have been carried out to compare the output obtained between the690

different normalization methods and how each normalization and transformation method affects the α691

and β diversity, which are rarely addressed in the scientific literature.692

The GMPR (geometric mean of pairwise ratios) normalization method presented the best results693

regarding dispersion of the new matrix obtained after being scaled. For the case of α diversity, no694

differences were detected among the normalization method compared. In terms of β diversity, the695

redundancy analysis as well as the sPLS-DA analysis have allowed us to detect meaningful differences696

between the normalization methods, being the CLR transformation method the most informative, allowing697

us to make more predictions. It is important to emphasize that the CLR method and the UQ normalization698

method have been the only ones that have allowed us to make predictions from the sPLS-DA analysis, so699

their use could be recommended for other real datasets.700
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