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Abstract 

Background:  

Cancer drugs often kill cells independent of their putative targets, suggesting the limitation of 

existing drug target information. The lack of understanding of a drug's mechanism of action 

may prevent biomarker identification and ultimately lead to attrition in clinical trials. Current 

experimental strategies, such as binding affinity assays provide limited coverage at the 

proteome scale. In this study, we explored whether the integration of loss-of-function genetic 

and drug sensitivity screening data could define a novel signature to better understand the 

mechanisms of action of drugs. 

 

Methods:  

Loss-of-function genetic screening data was collected from the DepMap database, while 

drug sensitivity data were collected from three extensive screening studies, namely CTRP (n 

= 545), GDSC (n = 198), and PRISM (n = 1448). An L1 penalized regression model using 

the gene essentiality features was constructed for each drug to predict its sensitivity on 

multiple cell lines. The optimized model coefficients were then considered as the gene 

essentiality signature of the drug. We compared the gene essentiality signature with 

structure-based fingerprints and the gene expression signature of cancer drugs in 

predictions of their known targets. Finally, we applied the gene essentiality signature to 

predict the novel targets for a panel of noncancer drugs with potential anticancer efficacy. 

  

Results:  

We showed that the gene essentiality signature can predict drug targets and their 

downstream signaling pathways. Both supervised and unsupervised prediction accuracies 

were higher than those using chemical fingerprints and gene expression signatures. 

Pathway analyses of these gene essentiality signatures confirmed key mechanisms 

previously reported, including the EGFR signaling network for lapatinib, and DNA mismatch 

repair drugs. Finally, we showed that the gene essentiality signature of noncancer drugs can 

discover novel targets. 

 

Conclusions:  

Integrating drug sensitivity data and loss-of-function genetic data enables the construction of 

gene essentiality signatures that help discover drug targets and their downstream signaling 

pathways. We found novel targets for noncancer drugs that explain their anticancer efficacy, 

paving the way for the rational design of drug repurposing. 
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Introduction 

 

Drugs affect cancer cells by binding to their target proteins, which trigger a cascade of 

downstream molecular modulations, leading to phenotypic changes such as viability. 

Although many candidate drugs are tested in oncological clinical trials, the full knowledge of 

their mechanisms of action is often lacking. For example, a recent study has shown that 

multiple drugs kill cancer cells even when their putative targets are depleted, suggesting the 

limitations of existing drug target information1. The incomplete drug target information also 

prevents successful biomarker identification and, in the end, leads to treatment failure2. 

 

Drug discovery process mainly falls into two categories, target-based or phenotype-based3. 

The target-based drug discovery starts with a target gene or a disease pathway, followed by 

the identification of proper chemical hits, with a minimal capacity to interrogate 

polypharmacological effects beyond the initially proposed targets4,5. In comparison, 

phenotype-based drug discovery is initialized with phenotypic screening to select candidate 

compounds, which are then forwarded for target deconvolution analysis6. Direct target 

deconvolution approaches, i.e., cell-free affinity experiments, are typically conducted in a 

hypothesis-driven manner with purified candidate proteins3. Recent advances such as 

CESTA7 and PISA8 allow interrogating proteome-wide drug-target interactions using cell 

lysate or intact cells. However, these cell-based target deconvolutional techniques, often 

time- and effort-consuming, have been conducted only for a few compounds that are biased 

towards certain cell lines. To our knowledge, an unbiased proteome-wide drug target 

deconvolution on a large panel of cell lines is currently unfeasible, even for individual drugs9. 

For example, a recent large-scale phenotype-based drug screening study showed that many 

approved noncancer drugs can efficiently kill cancer cells10. Despite the initial evidence, why 

and how these drugs affected cancer cells remains poorly understood due to insufficient 

mechanistic studies, partly due to the limited capacity of experimental approaches that are 

unlikely to meet the accumulating high demands of target identification. Therefore, the need 

to develop computational system medicine models to understand the mechanisms of actions 

is strong, especially for repurposing of noncancer drugs. 

 

One of the common strategies to study the mechanisms of action of drugs is gene 

expression signature analysis.  For example,  the L1000 assay11 or the PLATE-Seq assay12 

allows measuring drug-induced transcriptomics changes simultaneously for hundreds of 

genes or even the whole transcriptome. The gene expression signatures greatly enhanced 

the identification of drug targets and their downstream effectors, providing critical information 

to understand drug mechanisms at the pathway level13-16. Despite the success of many 

machine learning models in exploiting the gene expression signatures, it should be noted 

that the gene expression signature data has limited coverage. For example, the commonly 

used LINCS-L1000 dataset includes only 978 consensus genes for dozens of cell lines. 

PANACEA is a more recent study expected to increase the coverage of gene expressions, 

albeit still derived from a limited tumor context consisting of 25 cell lines14.  

 

On the other hand, loss-of-function genetic screens have recently been applied to study 

genetic dependencies in cancer, termed gene essentiality profiles17. In contrast to the drug-

induced gene expression assays, the gene essentiality screening allows rapid genetic 

perturbations for a large number of genes and cell lines, thanks to the pooled CRISPR and 

RNAi techniques18-21. For example, the dependency mapping (DepMap) study has profiled 
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the gene essentiality profiles of more than 17k genes for a panel of 1070 cancer cell lines 

with CRISPR loss-of-function screening. Meanwhile, the same panel of cell lines has been 

tested with drug sensitivity screening in the major pharmacogenomics studies (i.e., CTRP 

and GDSC), which motivated several machine learning models to predict drug sensitivities 

with gene essentiality profiles10,22. Furthermore, the gene essentiality scores were also 

leveraged for drug target prediction. For example, Gonçalves et. al. tested the associations 

between gene essentiality with drug sensitivity and reported interesting overlaps between 

drug-associated genes and their putative targets23. Despite the initial evidence of using gene 

essentiality for drug-target prediction, several questions remain unanswered. First, the gene 

essentiality data was derived solely using CRISPR-based perturbations, while the RNAi-

based genetic screening data was not evaluated. Second, the potential of multivariate 

machine learning method remains unexplored in essentiality-based drug target study. Thirdly, 

there is a lack of systematic comparison of the gene essentiality-based features against 

conventional drug features, such as gene expression signatures, or chemical fingerprints.  

Furthermore, it was unclear whether the essentiality-based drug target prediction 

approaches are valid for noncancer drugs.  

 

 
Figure 1. Schematic of the study design. 

A. Gene essentiality and drug sensitivity are determined by cell growth inhibition after 

perturbations, which enables the establishment of gene essentiality features to predict drug 

sensitivity. sgRNA: single guide RNA; shRNA: short hairpin RNA. 

B. The gene essentiality signatures are compared with chemical fingerprints and gene 

expression signatures in terms of their accuracy in supervised drug target prediction. 

MACCS: Molecular ACCess Systems keys fingerprint; ECFP:  Extended Connectivity 

Fingerprint. 
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C. The gene essentiality signatures can also be used for de novo exploration of mechanisms 

of action, including unsupervised target prediction, target network analysis, and drug 

pathway association analysis.  

D. Application of the gene essentiality signatures to study drug mechanism and rationalize 

noncancer drug repurposing.  

 

In this study, we aimed to solve abovementioned limitations by deriving a novel gene 

essentiality signature for a drug. Our study was motivated by the complementarity of drug 

sensitivity and gene essentiality screens. Despite targeting molecules at different levels, both 

screens are designed to quantify the growth inhibition effects of perturbations (Figure 1A). 

We first developed a machine learning model to deconvolute drug sensitivity into its gene-

level effects by leveraging CRISPR- and RNAi-based genetic perturbation data. The 

optimized model coefficients were derived as the gene essentiality signatures of the drugs. 

We evaluated the gene essentiality signatures as compared to gene expression signatures 

and chemical fingerprints, in both supervised drug target prediction and de novo 

mechanisms of action prediction (Figure 1B-C).  Finally, we applied the gene essentiality 

signatures for noncancer drugs and determined their potential targets that may explain their 

anti-cancer efficacies (Figure 1D). 

 

Results 

Establishing the gene essentiality signatures for drugs  

For each drug, we established the link between drug sensitivity and gene essentiality of the 

cell lines, based on the rationale that drug or genetic perturbations that affect the same 

cancer signaling pathways lead to similar growth inhibition effects (Figure 2A). To minimize 

the model complexity due to data noise, we employed an L1 penalized ridge regression to 

optimize the coefficients for all the gene essentiality features. We first evaluated whether the 

drug sensitivity regression models built on the gene essentiality features were generally 

predictive. We considered three variants of the gene essentiality features, namely CERES, 

DEMETER2, and CES (Methods section). 

 

As shown in Figure 2B and Supplementary Figure 1, all three types of gene essentiality 

features yield comparable model fitness performance, to the same level of using the gene 

expression feature, which is known to be informative for drug sensitivity prediction24,25. The 

RMSE did not show significant differences among the three gene essentiality feature types 

(one-way ANOVA test P-value = 0.12 for CTRP and GDSC). For the CERES signature, we 

observed a decrease in AUROC compared to the gene expression feature (𝛥𝐴𝑈𝑅𝑂𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   = -

0.046, Tukey’s test P-value = 6.8×10-11 for CTRP, and 𝛥𝐴𝑈𝑅𝑂𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   = -0.079, Tukey’s test P-

value < 2×10-16 for GDSC), while the CES and DEMETER2 gene essentiality features were 

equally predictable (all the Tukey’s test P-values > 0.05, Supplementary Table 1). 

Furthermore, CERES and CES showed no difference when predicting 91.6% of the CTRP 

drugs and 91.4% of the GDSC drugs, while CERES and DEMETER2 showed no difference 

when predicting 95.4% of the CTRP and 95.5% of the GDSC drugs (Figure 2C and 

Supplementary Tables 2-3). Therefore, we considered that all three types of gene 

essentiality features have similar performance and took the average of their gene 

essentiality coefficients to derive a consensus gene essentiality signature for each drug, 

consisting of 10624 genes.  

Furthermore, we found that the drugs with smaller sample sizes (i.e., number of cell lines) 

tend to yield a larger variance of RMSE in the cross-validation (Figure 2D), especially if 
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sample size is less than 100 (all Dunnett test P-value < 0.001, Supplementary Table 4). To 

ensure the robustness of the gene essentiality signatures, we considered only the drugs with 

more than 100 cell lines for the subsequent analyses.  

A

 

B                                                                C 

            

D 

 

 
Figure 2. Establishing gene essentiality signatures of drugs. 
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A. Rationale for modeling of drug sensitivity with gene essentiality profiles. In drug sensitivity 

screening, a drug's effect on cell growth starts from its target binding, which triggers a 

cascade of downstream signaling alterations. In gene essentiality screening, genetic 

perturbations are made by either shRNA-mediated knocking down or sgRNA-mediated 

knocking out, after which the cell growth inhibition is measured. For each drug, a drug 

sensitivity prediction model across multiple cell lines can be built by considering their gene 

essentiality profiles as features. 

B. Model fitness of gene essentiality feature types, including CERES, CES, DEMETER2, as 

compared to that of gene expression features (EXP). 

C. Differences in AUROC when comparing CERES, CES, and DEMETER2. Each vertical 

line represents the 95% confidence interval of the difference for a drug. 

D.  Variance of RMSE for each feature type grouped by drugs with different sample sizes. 

****: p < 0.0001 by Dunnett’s test using maximum sample size = 100 as the reference. 

 

 

The gene essentiality signatures predict targets of cancer drugs 

We explored how the gene essentiality signatures can predict drug targets in a supervised 

setting (Figure 1B). We employed a similarity-based method that showed superior 

performance in a recent DREAM Challenge competition for drug target predictions (Methods 

section)14. The performance of the gene essentiality signature was compared with that of 

the gene expression signatures, which are the transcriptomics changes after drug treatment. 

We also evaluated the MACCS and ECFP fingerprints generated using the chemical 

structures of the drugs.  

 

We observed that the gene essentiality signature achieved top performance across CTRP 

and GDSC datasets (Figure 3A and Supplementary Table 5). For example, for the GDSC 

dataset, when considering the primary targets of drugs as the ground truth, the gene 

essentiality signature achieved an average AUC of 0.61, as compared to 0.55, 0.47 and 0.43 

for the gene expression signature, ECFP and MACCS fingerprints, respectively (Figure 3A, 

upper panel). In addition, we also examined the performance in predicting a broader 

spectrum of secondary targets. We considered the kinome-wide binding affinity scores from 

the DTC database as the ground truth and examined the prediction performance by 

binarizing the binding affinity scores with a threshold of 0.4. We observed a similar result for 

both the CTRP and GDSC datasets, where the gene essentiality signatures generally 

outperformed the other types of drug signatures (Figure 3A, lower panel).  

 

We are also interested in whether the gene essentiality signatures can prioritize drug pairs 

with shared drug targets and sensitivity profiles. We reasoned that such drug pairs are 

potential candidates for drug repurposing, as their drug sensitivity similarities are well 

supported by the shared mechanisms of action. We determined such drug pairs as the 

ground truth, and then examined whether they can be prioritized by the gene essentiality 

signatures. As shown in Supplementary Figure 2 and Supplementary Table 6, we found 

that the gene essentiality signatures successfully prioritized the ground truth drug pairs in 

both CTRP (median percentile = 93.4% for n = 150 drug pairs when considering the primary 

targets and median percentile = 97.6% for n = 70 drug pairs when considering the kinome-

wide targets), and GDSC datasets (median percentile = 90.8% for n = 29 dug pairs when 

considering the primary targets and median similarity percentile = 95.4% for n = 23 drug 

pairs when considering kinome-wide targets).  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 8, 2022. ; https://doi.org/10.1101/2022.11.07.514541doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.07.514541
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

The prioritization of the top 16 ground truth drug pairs by their predicted targets using 

different drug signatures is shown in Figure 3B. The gene essentiality signature was able to 

predict many of the top ground truth drug pairs, which the other signature features failed to 

predict, indicating that the gene essentiality signature could be an informative new feature to 

improve drug target prediction. For example, the gene essentiality feature was able to 

prioritize (similarity percentiles ≥ 97.5%) all the mTOR inhibitor (AZD8055, KU-0063794, and 

sirolimus) drug pairs, while the chemical fingerprints were able to predict only the AZD8055-

KU-0063794 pair, that share the same chemical pyridopyrimidine structure26, which is absent 

in sirolimus. In contrast, the gene expression signature prioritized the sirolimus-AZD8055 

pair (similarity percentile 93.5%) but not sirolimus-KU-0063794 or AZD8055-KU-0063794 

pairs (similarity percentiles 74% and 84%, respectively). 

A 

 

B 

 

 

Figure 3. Gene essentiality signatures improve drug target prediction. 

A. Accuracy of supervised drug target prediction.  

ns: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 by Dunnett’s test 

with the gene essentiality signature as the reference. Ess-sig: gene essentiality signature, 

Exp-sig: gene expression signature. 

B. Rank of similarity for the top repurposable drug pairs.  

 

 

Gene essentiality signature facilitates de novo exploration of mechanisms of action 

After confirming the improved performance of gene essentiality signatures in the supervised 

target prediction, we explored if the signatures could predict drug targets de novo without 

training data, even though the gene essentiality signatures were determined without 

leveraging drug target information.  
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Note that the gene essentiality signature is a vector of genes with feature importance values, 

so we asked whether the targets of drugs can be identified as top genes in the signature. As 

shown in Figure 4A, many drugs had their primary targets enriched in their top essentiality 

signatures genes (Fisher’s test P = 1.2×10-7). For example, the primary targets for 30.4% of 

CTRP drugs and 57.1% of GDSC drugs were found within the top 50 genes in the gene 

essentiality signatures. The primary targets showed no enrichment in the bottom genes 

(Fisher's test P > 0.05) of the gene essentiality signatures. This suggests that most drugs 

induced inhibitory effects on their targets, consistent with the inhibition effects induced by the 

gene essentiality screens. In contrast, drug targets were much less identified by the top or 

the bottom genes of the gene expression signatures (Fisher test P-value < 2.2×10-16). For 

example, only 3.7% and 3.1% of the CTRP drugs had their primary targets identified in the 

top 50 and bottom 50 genes, respectively. Likewise, the gene essentiality signature also 

showed higher accuracy when predicting drug targets, with an average AUC of 0.66 (CTRP) 

and 0.78 (GDSC), compared to an AUC of 0.47 (CTRP) and 0.53 (GDSC) for gene 

expression signatures (t-test P-value = 6.0×10-5 and 9.0×10-4 for CTRP and GDSC, 

respectively, Figure 4B-4C and Supplementary Figure 4). 

  

We next checked whether the gene essentiality signatures can shed more light on the 

downstream pathways affected by drugs. The top and the bottom genes (n = 50) recapture 

not only primary targets but also their neighboring genes in the PPI network (Supplementary 

Figure 4). For example, the top 50 and bottom 50 genes together identify the first-degree 

neighbors of targets for 33.5% of CTRP drugs (18.6% and 14.9% in the top and the bottom 

50 genes, respectively). Take an EGFR inhibitor lapatinib for example, the top 10 genes 

from the gene essentiality signature not only identified the primary targets, namely 

ERBB1(EGFR) and ERBB2 (HER2), but also revealed several important downstream genes 

in the EGFR signaling pathway, including ERBB327, GAB128,29, and SOS129 (Figure 4D). 

This showed the gene essentiality signature’s ability to reveal both binding targets and 

downstream changes upon initial target gene inhibition. In comparison, the top and bottom 

genes in the gene expression signatures identify mostly the 1st-degree neighbors (52.6%) 

instead of the direct targets (6.7%) of the drugs, suggesting that drugs often do not affect the 

expression of their target gene but only the downstream factors. 

 

To further map the gene essentiality signatures to biological processes, we implemented a 

gene set enrichment analysis using the gene essentiality signatures as input. For each drug, 

we determined the pathways that are enriched in the gene essentiality signature, with 

absolute normalized enrichment score (NES) > 1.5 and Padj < 0.05 (Supplementary Tables 

7 - 8). Here we highlighted the drugs for which the DNA mismatch repair pathways were 

enriched (Table 1), as the pathway may regulate tumor mutation burden and immune cell 

infiltration30,31. Interestingly, many drugs in Table 1 are known to impact cell cycle and 

genome integrity. In particular, we found that all three approved drugs in Table 1 (talazoparib, 

cytarabine, and irinotecan) are under investigation in combination with immunotherapy in 

recent clinical trials (Supplementary Table 9). For example, the PARP inhibitor talazoparib 

is combined with immune checkpoint inhibitors in multiple cancers, including urothelial 

carcinoma (NCT04678362), lung cancer (NCT04173507), as well as breast and ovarian 

cancer (NCT03330405). The other compounds enriched in the DNA mismatch repair 

pathway may also be worthy of further exploration as sensitizers for immune checkpoint 

inhibitors.  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 8, 2022. ; https://doi.org/10.1101/2022.11.07.514541doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.07.514541
http://creativecommons.org/licenses/by-nc-nd/4.0/


A 

 

B 

 

C 

 

D

 

 

Figure 4. De novo target prediction and pathway analysis using the gene essentiality 

signature. 

A. Percentage of drugs with putative targets recovered by the top and bottom genes in their 

gene signatures. 

B-C. ROC curves of de novo prediction of primary targets for CTRP and GDSC, respectively. 
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D. Top genes in the gene essentiality signature of lapatinib are highlighted in the EGFR 

pathway.   

 
Table 1 List of drugs for which the DNA mismatch repair pathway was enriched in their gene 

essentiality signatures. 

DRUG NAME Padj ES NES REPORTED MECHANISM DRUG TYPE 

AZD7762 6.11×10-5 0.75 2.40 Cell cycle Targeted 

MK-8776 4.95×10-4 0.71 2.21 Cell cycle Targeted 

Wee1 Inhibitor 1.24×10-3 0.71 2.26 Cell cycle Targeted 

MK-1775 2.97×10-3 0.67 2.07 Cell cycle Targeted 

Talazoparib 3.40×10-3 0.70 2.17 Genome integrity Targeted 

AZD6738 8.53×10-3 0.64 2.05 Genome integrity Targeted 

VE-822 8.54×10-3 0.66 2.04 Genome integrity Targeted 

Cytarabine 3.51×10-2 0.61 1.96 Other Chemotherapeutic 

Irinotecan 4.18×10-2 0.62 1.95 DNA replication Chemotherapeutic 

 

 

Gene essentiality signatures help target prediction for the PRISM drugs  

Profiling Relative Inhibition Simultaneously in Mixture (PRISM) is a recent technology that 

increases the throughput of drug sensitivity screening to thousands of drugs across 

hundreds of cell lines32. With this technology researchers have discovered multiple drugs 

with efficacy in killing cancer cells in addition to their initial disease indications10. Over half 

(53.4%) of the 1448 compounds probed in their multi-dose secondary screen are developed 

for indications other than cancer, mostly already approved10 (n = 406). However, these 

noncancer drugs, such as antibiotics and anti-parasite drugs, often lack relevant cancer 

target information (Figure 5A and Supplementary Table 9). Therefore, we tested whether 

the gene essentiality signature can be applied to the PRISM data to elucidate the 

mechanisms of action of these promising drugs for cancer treatment. 

 

We first evaluated whether a reliable gene essentiality signature could be determined from 

the PRISM drug sensitivity profiles. Comparing the CTRP and GDSC datasets, we observed, 

on average lower model fitness in the PRISM dataset (Dunnett's test, all P-values < 0.001, 

Supplementary Table 10). The decreased model fitness may be partly due to the inclusion 

of noncancer drugs in the screening library. As shown in Figure 5B, noncancer drugs were 

more likely to have lower drug sensitivities (median AUC of 1.1 compared to 0.71 and 0.90 

for chemotherapeutic and targeted drugs, Dunnett's test P-value = 1.6×10-15 and 8.9×10-16), 

which was associated with lower model fitness (Spearman correlation = -0.46, P-value < 

2.2×10-16). In addition, compared to CTRP and GDSC, we observed that the model fitness 

decreased, even for the same set of cancer drugs (n = 44, Supplementary Table 11). 

Moreover, the gene essentiality signatures derived from PRISM were less consistent with 

those derived from CTRP and GDSC (COR̅̅ ̅̅ ̅̅ (𝐶𝑇𝑅𝑃, 𝑃𝑅𝐼𝑆𝑀) = 0.17, COR̅̅ ̅̅ ̅̅ (𝐺𝐷𝑆𝐶, 𝑃𝑅𝐼𝑆𝑀) =

0.13, COR̅̅ ̅̅ ̅̅ (𝐶𝑇𝑅𝑃, 𝐺𝐷𝑆𝐶) = 0.33, Dunnett’s test P-value = 9.4×10-8 and 1.6×10-9 for CTRP-

PRISM and GDSC-PRISM, respectively).  

 

We next evaluated the target prediction accuracy of the gene essentiality signatures, using 

the existing target annotation of the PRISM drugs as the ground truth (Figure 5 and 

Supplementary Table 12). We observed similar performance of the different signatures in 
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predicting the targets, with median AUC of 0.72, 0.72, 0.71, and 0.69 for gene essentiality 

signatures, gene expression signatures, ECFP and MACCS fingerprints, respectively 

(Figure 5C, left panel, n = 805). The lack of difference between gene essentiality signatures 

and ECFP fingerprints may be partly due to the drugs for which the model fitness is poor 

(Figure 5C, right panel, n = 200). Indeed, when we evaluated only the top 200 drugs with 

higher model fitness, we observed more significant differences between the gene 

essentiality signatures and the chemical fingerprints (Figure 5C, middle panel, n = 200.  

 

Likewise, the quality of the gene essentiality signature also had an impact on the de novo 

target predictions. As shown in Figure 5D, we observed that the gene essentiality signature 

outperformed the gene expression signatures only in drugs with better model fitness (median 

AUC of 0.72 versus 0.61, t-test P-value = 1.7×10-3). For the drugs with poor model fitness, 

the de novo target prediction accuracy dropped to random, similar to the gene expression 

signature (median AUC 0.50). Together our results support the validity of gene essentiality 

signatures for PRISM drugs with top model fitness. 

 

A 

 

B 

 

C                                                                                              D   

        

Figure 5. Application of gene essentiality signatures to predict targets of PRISM drugs 

A. Numbers of drugs with missing target information in different categories 
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B.  Model fitness (spearman correlation of the drug sensitivity prediction versus actual values) 

is negatively associated with the average drug sensitivity (AUC). Noncancer drugs tend to 

have lower model fitness and higher AUC (lower drug sensitivity). 

C-D. Supervised (C) and Unsupervised (D) prediction accuracy of different representations 

of PRISM drugs in predicting DRH annotated drug target. 

 

 

Gene essentiality signatures help mechanism exploration for noncancer drugs 

To minimize false predictions for the PRISM drugs, we considered the 312 drugs with top 

model fitness with a Spearman COR > 0.20 (Supplementary Figure 6). Furthermore, only 

the drugs with target information were retained, resulting in 222 cancer and 46 noncancer 

drugs. We found that the supervised target prediction accuracy is much higher for cancer 

drugs than noncancer drugs (median AUC 0.97 and 0.26, t-test P-value = 3.8×10-7, Figure 

6A). Likewise, the gene essentiality signatures of cancer drugs performed better in the de 

novo target prediction (median AUC 0.73 vs 0.64, two-sided t-test P-value = 0.04). We also 

observed that a noncancer drug's putative targets were less likely to be shared with other 

drugs. (Figure 6B). As shown in Figure 6C, supervised target prediction was significantly 

improved for drugs having a target(s) shared by drugs in the training set (Dunnett test, all P-

values < 0.001). There might be two explanations for such results. First, given that the 

putative targets of noncancer drugs indeed account for the drug’s killing effect, the low 

frequencies of the target genes in the training set prevented efficient model training. In this 

case, the de novo target prediction, which does not rely on putative target information of the 

training drugs, could be adopted. For example, the known target for a noncancer drug 

digoxin is ATP1A1, which is not targeted by any other drug in the training set and hence was 

not well predicted. In comparison, ATP1A1 was accurately predicted in the de novo target 

prediction as the top1 essentiality gene. Secondly, using putative targets as the ground truth 

may lead to an underestimation of the prediction accuracy, especially for noncancer drugs 

as cancer is not the targeted disease in the original development of noncancer drugs. The 

putative targets alone, therefore, are insufficient in explaining the growth inhibition effect of 

noncancer drugs.  

 

Given that the putative targets for noncancer drugs often cannot explain the mechanisms of 

action in cancer treatment, we further explored the similarity of gene essentiality signatures 

between cancer and noncancer drugs. We projected the gene essentiality signatures using 

the Uniform Manifold Approximation and Projection (UMAP). As shown in Figure 6D, cancer 

drugs with common mechanisms mostly clustered together, consistent with the clustering 

results determined by their drug sensitivity profiles10. Moreover, the gene essentiality 

signatures recovered putative mechanisms for multiple noncancer drugs. For example, 

sirolimus, an mTOR inhibitor initially approved for preventing renal translation rejection, 

clusters well with other cancer drugs inhibiting mTOR. Likewise, three anti-parasite drugs 

known to inhibit tubulin polymerization are also clustered into cancer drugs classified as 

tubulin polymerization inhibitors (parbendazole, albendazole, and podophyllotoxin). 

Detecting these clusters of well-studied cancer and noncancer drugs supports the validity of 

using gene essentiality signatures to recover putative mechanisms for non-cancer drugs in 

the treatment of cancer. 

 

Furthermore, we observed that noncancer drugs tended to distribute diversely into clusters 

of different cancer drug categories. For example, a FAAH inhibitor LY2183240 fell into the 
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tubulin polymerization inhibitor cluster and adrenergic receptor antagonists (CGS-15943 and 

MRS-1220) are close to the cluster of EGFR inhibitors. Interestingly, dopamine receptor 

antagonists were more diverse, with domperidone clustering with mTOR inhibitors whereas 

pardoprunox clusters with tubulin polymerization inhibitors. While the majority of noncancer 

drugs do not cluster clearly into specific cancer drug categories, four HMGCR inhibitors 

(pitavastation, atorvastatin, mevastatin and fluvastatin) formed an isolated cluster that is 

clearly separable from the other drugs, suggesting their unique mode-of-action in killing 

cancer cells. Together these results showed the capability of gene essentiality signatures to 

explore the mechanisms of noncancer drugs to rationalize drug repurposing.  

 

A 

 

B                                        C 

 

 

 

D 

 

 

Figure 6. Target identification for noncancer drugs. 

A. Supervised and de novo target prediction accuracy on the putative targets of the PRISM 

drugs. 

B. Kernel density estimation of drugs having shared targets with other drugs  

C. Supervised target prediction accuracy for drugs with different numbers of shared targets. 

D. UMAP projection of PRISM drugs by their gene essentiality signatures. 
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Discussion 

Characterizing the full spectrum of drug targets is fundamental for  drug development33. In 

this study, we developed a gene essentiality signaturing method to characterize drug targets. 

Using the GDSC and CTRP data sets, we showed that our gene essentiality signatures 

outperformed gene expression signatures and conventional chemical fingerprints, in both 

supervised and de novo drug mechanism discovery. The gene essentiality signature enables 

drug-specific pathway analysis, helping uncover the mechanisms of action beyond drug 

target binding. We further determined the gene essentiality signatures for drugs that were 

tested in a drug sensitivity screening10 based on the PRISM technology32. We showed the 

feasibility of our method to predict the drug targets. More importantly, we predicted the 

cancer targets and their mechanisms of action for noncancer drugs.  

 

Meanwhile, through our analysis of gene essentiality signatures of CTRP and GDSC drugs, 

we identified drugs that block DNA repair, which may help improve the efficacy of immune 

checkpoint inhibitors31. Immune checkpoint inhibitors have become standard-of-care in the 

first-line treatment of multiple cancers34,35. Despite their popularity, the responsiveness to 

immune checkpoint inhibitors varies greatly across individuals36. For example, we and others 

have identified that higher tumor mutation burden (TMB) serves as an important prognosis 

biomarker for immune checkpoint inhibitor treatment37 

(https://www.synapse.org/#!Synapse:syn24241625/wiki/608681). Using the gene essentiality 

signatures, we identified multiple compounds that may inhibit the DNA mismatch repair 

process of tumor cells (Table 1). Indeed, we have successfully predicted all the approved 

drugs that are under phase 2 clinical trials in combination with immune checkpoint inhibitors. 

Therefore, our gene essentiality signatures may support drug combination discovery to 

circumvent the limitation of immunotherapy.  

 

We used both supervised and de novo drug target prediction to evaluate the performance of 

gene essentiality signatures. When predicting the primary targets for cancer drugs, the 

supervised prediction performs better than the de novo prediction (Figure 6A). The 

performance difference, however, should be marginal when predicting new targets, as 

supervised prediction methods rely heavily on the coverage of training data. Recent 

advances in machine learning using prior information such as protein similarity to improve 

the prediction accuracy on the less studied target space38. Applying such a method with our 

gene essentiality signatures may improve the drug target prediction accuracy. In addition, we 

leveraged existing knowledge about the drug targets as the ground truth. However, such 

information is likely to be incomplete, especially when evaluating noncancer drugs, as the 

primary targets previously identified for noncancer drugs may be irrelevant to their cancer-

killing efficacy. Indeed, for noncancer drugs, we observed lower concordance between 

predicted and putative labels. It should be noted that for cancer drugs, focusing on primary 

targets still induce a risk of missing additional targets that account for the treatment 

effecacy1,39. In the future, we expect that the proteome-wide drug target binding experiments 

could generate more unbiased data to improve computational prediction methods for drug 

target prediction8,40.  

 

Our method may be extended to study the mechanisms of action of drug combinations, as a 

large amount of drug combination screening data is also available for the modelling41-43. 

Secondly, we assumed that a drug inhibits its targets. However, drug target binding may not 

always lead to an inhibition but rather a stabilizing or activating effect44. Such an assumption 
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may contribute to false negative drug target predictions. In addition, we relied on the drug 

sensitivity data and gene essentiality data on cancer cell lines, which may not capture the 

mechanisms of action of drugs in the tumor microenvironment. Drug screening based on 

emerging in-vitro models, such as organoids and 3D cell culture45,46, may further rationalize 

drug discovery and drug repositioning47,48. 

 

Methods 

Gene essentiality data 

We used the DepMap data portal49 to collect the gene essentiality profiles. Specifically, we 

collected the CERES gene essentiality scores derived from CRISPR screens19 and the 

DEMETER2 gene essentiality scores derived from shRNA screens18. Furthermore, we 

determined Combined Essentiality Score (CES50) by integrating CERES and DEMETER2 

with the molecular profiles of the cell lines, including the TPM gene expression values 

derived from RNA-seq, the gene expression values from the microarray screens, the gene-

level copy numbers, and the somatic mutations. We considered the three variants of gene 

essentiality features (CERES, DEMETER2, and CES) in the subsequent analyses. Genes 

with a missing rate of more than 20% were removed, after which the R MissForest package 

was used to impute the rest of the genes with the default parameters. 

 

Drug sensitivity data 

We retrieved the CTRPv2 dataset from the NCI’s CTD-squared data portal, containing 545 

small molecules and 907 cancer cell lines51. Cell viability percentages were determined at 

multiple doses of the drugs, after which a logistic curve was fitted. The area under the curve 

(AUC) was considered the drug sensitivity score, where an AUC of 0 represents complete 

cell growth inhibition, and an AUC of 15 represents no effect. 

We also extracted the GDSCv2 data consisting of 198 small molecules across a panel of 

809 cancer cell lines52. Furthermore, we obtained the PRISM data containing the drug 

sensitivity scores for 1,448 compounds against 499 cell lines10. In GDSC and PRISM, the 

AUC was calculated from the fitted dose viability curve and normalized further to the [0, 1] 

interval.  

 

Chemical fingerprints and gene expression signatures 

The Python RDkit was used to generate Extended Connectivity FingerPrint (ECFP, 1024 

features) and Molecular ACCess System fingerprints (MACCS, 256 features) for each 

compound based on its SMILES. In addition, we retrieved the LINCS L1000 Connectivity 

Map data to get the gene expression signatures11. The consensus drug signatures with 978 

features were used following the procedures described in the previous work53. 

 

Drug target ground truth data 

Binary drug targets were extracted from the corresponding drug screening studies, where 

either original drug library annotation or Drug Repurposing Hub54 (DRH) was used as the 

source. Furthermore, DrugTargetProfiler55 was employed to extract and integrate 

quantitative drug target data from DrugTargetCommons56, where measurements across 

multiple binding affinity assays were harmonized into a consensus score between 0 (non-

binding) and 1 (strong binding). 

 

Determination of gene essentiality signatures. 
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We built a drug sensitivity prediction model using three variants of gene essentiality 

signatures (CES, CERES, and DEMETER2). For each 𝑑𝑟𝑢𝑔𝑖we fit an L1-penalized 

multivariate linear regression model 𝑀𝑖 by regressing its drug sensitivity AUC against 

genome-wide gene essentiality for multiple cell lines: 

 𝑀𝑖: 𝑎𝑢𝑐𝑖~ 𝛽𝑖𝐸𝑆𝑆        (1) 
  

Where 𝑎𝑢𝑐𝑖 is a 1 × 𝑛 vector, and ESS is an 𝑚 × 𝑛 matrix representing the essentiality 

profiles of m genes for the n matching cells. The  1 × 𝑚 coefficient vector 𝛽𝑖 is then extracted 

to represent the gene essentiality signature of the drug. 

 

Nested cross-validation (CV) was used for evaluating the model fitness, where the 

hyperparameters were tuned with a ten-bootstrap inner layer and the prediction accuracy 

was evaluated on the outer layer of five folds with three replicates. Model fitness was 

estimated using the holdout sets from the CV, including accuracy metric, i.e., coefficient of 

determination (R2), Spearman correlation coefficient (Spearman COR), area under the 

precision-recall curve (PRAUC), area under the receiver-operator curve (AUROC), as well 

as error metrics, i.e., mean absolute error (MAE) and root-mean-square error (RMSE). 

Regression metrics were calculated using the original numeric drug sensitivity scores and 

classification metrics were calculated by binarizing using the 90% percentile as the drug 

sensitivity threshold. 

The overall difference among the three variants of gene essentiality signatures was 

evaluated by ANOVA test, and if significant, followed by post hoc Tukey’s test or Dunnett’s 

test. For each drug, the performance of the three variants of gene essentiality signatures 

was compared using paired t-test with Bonferroni correction. 

 

Evaluation of gene essentiality signatures 

We evaluated which drug features (i.e., gene essentiality signatures, gene expression 

signatures, and chemical fingerprints) predicts drug targets. We considered a drug-target 

prediction method that was developed in recent competitions, significantly outperforming the 

other methods in an independent experimental validation14. This method is conceptually 

similar to the k nearest neighbors learning, where the targets of a queried drug are predicted 

by their neighbors. For a queried 𝑑𝑟𝑢𝑔𝑖, we determined its correlations with the training 

drugs in the feature space as shown below: 

 𝑟𝑖  =  𝑐𝑜𝑟(𝑥𝑖  , 𝑋) (2) 

where 𝑥𝑖 represents the feature vector for the queried drug, 𝑋 is a  𝑚 × 𝑛 feature matrix for 

the n training drugs. The drug targets for drug i were then predicted as an average of the 

drug target score of the training drugs, weighted by the correlation coefficients transformed 

by rectified linear activation function (ReLU): 

 𝑦𝑖  = 𝑅𝑒𝐿𝑈(𝑟𝑖) ×  𝑌 (3) 

Where the 𝑝 ×  𝑛 matrix, 𝑌 represents the target profiles for all the n training drugs in p 

genes, 𝑅𝑒𝐿𝑈(𝑟𝑖) is the transformed coefficient vector and 𝑦𝑖 is the predicted target profiles 

for 𝑑𝑟𝑢𝑔𝑖. Cross validation with five folds and three replicates was employed to estimate the 

AUROC against the ground truth. 

 

In addition, we evaluated the similarity of a drug pair based on multiple feature spaces. For 

each drug pair, we used Spearman correlation to determine the similarity in the drug 

sensitivity space, as well as in the predicted drug target space. We used the Tanimoto 

distance to determine the similarity in the ground truth target space, as well as in the 
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chemical fingerprint space. We considered pairs of drugs with similar drug sensitivity profiles 

and drug-target profiles to be mutually repurposable. For example, for drug pair A and B in 

the CTRP dataset, we considered them mutually repurposable if both their drug sensitivity 

and drug target similarity are higher than 95% of other drugs paired with drug A or drug B. 

The threshold was set to 90% in GDSC due to insufficient ground truth drug pairs. For each 

mutually repurposable drug pair, we checked whether their similarity in the predicted target 

space is also at the top. The performance of different drug signatures was compared using 

the paired Wilcox signed rank test with Holm’s correction for multiple testing. In addition, only 

the top mutually-repurposable drug pairs in the CTRP dataset (N = 16, with drug sensitivity 

similarity > 99%, target similarity 100%, and identical mechanisms of action) were shown.   

 

PPI network and pathway analysis 

To study the functional relevance of the gene essentiality signatures, we mapped the genes 

in the PPI network constructed in the recent publication23. Each signature gene was 

annotated as the drug target, first-degree, second-degree, or other neighbors, depending on 

the shortest path between the gene and the putative target of the given drug. GSEA57 (Gene 

Set Enrichment Analysis) was conducted for the gene essentiality signatures against the 

KEGG and GO pathway gene sets collected from the MSigDB database58.  

 

 

Supplementary Info 

Supplementary Figure 1 Model fitness of different gene features using cross-validation.  

Supplementary Figure 2 Rank of similarity for repurposable drug pairs. 

ns: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 by the paired 

Wilcox signed rank test with the gene essentiality signature as the reference. Ess-sig: gene 

essentiality signature, Exp-sig: gene expression signature. 

Supplementary Figure 3 Accuracy of unsupervised prediction of primary targets. 

Supplementary Figure 4 Percentage of drugs the target neighbors of which are prioritized 

by their top signature genes (top/bottom 50 genes). 

Supplementary Figure 5 Distribution of model fitness for PRISM drugs. 

 

Supplementary Table 1 Mean estimates of drug sensitivity model fitness. 

Supplementary Table 2 Comparison of drug sensitivity model fitness between CES and 

CERES. 

Supplementary Table 3 Comparison of drug sensitivity model fitness between DEMETER2 

and CERES. 

Supplementary Table 4 Comparing variance of RMSE for drug sensitivity model fitness. 

Supplementary Table 5 Statistical significance for comparing the accuracies in supervised 

target prediction. 

Supplementary Table 6 Statistical significance for comparing the similarity percentile of 

repurposable drug pairs. 

Supplementary Table 7 List of KEGG pathways associated with the drugs’ essentiality 

signatures.  

Supplementary Table 8 List of Gene Ontologies (GO) terms associated with the drugs’ 

essentiality signatures.  
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Supplementary Table 9. Immuno-oncology (IO) combination clinical trials involving drugs 

associated with DNA mismatch repair.  

Supplementary Table 10 PRISM drug target annotation. 

Supplementary Table 11 Gene essentiality model fitness for CTRP, GDSC, and PRISM 

drugs.  

Supplementary Table 12 Gene essentiality signatures for the drugs screened in all the 

three studies. 

Supplementary Table 13 Performance of supervised target prediction for drugs with varying 

gene essentiality model fitness. 

 

Data availability 

Supplementary tables are available online. The datasets are publicly available in the 

following repositories, CTRP [https://portals.broadinstitute.org/ctrp.v2.1/], GDSC 

[https://www.cancerrxgene.org/] and DepMap [https://depmap.org/portal/]. DTC 

[https://drugtargetcommons.fimm.fi ], Drug Repurposing Hub 

[https://clue.io/repurposing#download-data]. Specifically, DepMap 21Q1 release was 

employed to derive the input datasets including, CERES (Achilles_gene_effect.csv), TPM 

RNA-seq gene expression matrix (CCLE_expression.csv), the gene level CNV file 

(CCLE_gene_cn.csv), and the mutations (CCLE_mutations.csv). In addition, DEMETER2 

(D2_combined_gene_dep_scores.csv) was collected from DEMETER2 Data v6. The gene 

expression from the microarray (CCLE_Expression_Entrez_2012-09-29.gct) was collected 

from the CCLE release available in DepMap portal. For the CTRP dataset, the curve-fitting 

parameters from the post-quality control dataset (v20). For GDSC we employed the curve 

statistics (GDSC2_fitted_dose_response_25Feb20.xlsx) from its version2. PRISM data 

(secondary-screen-dose-response-curve-parameters.csv) was collected from its 19Q4 

release. 

  

Code availability. 

The GitHub repository is available upon request. 
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Supplementary Figure 1 

Model fitness of different gene features using cross-validation.  
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Supplementary Figure 2 Rank of similarity for repurposable drug pairs. 

ns: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 by the paired 

Wilcox signed rank test with the gene essentiality signature as the reference. Ess-sig: gene 

essentiality signature, Exp-sig: gene expression signature. 
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Supplementary Figure 3 Accuracy of unsupervised prediction of primary targets. 
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Supplementary Figure 4 Percentage of drugs the target neighbors of which are prioritized 

by their top signature genes (top/bottom 50 genes). 
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Supplementary Figure 5 Distribution of model fitness for PRISM drugs. 
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