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Abstract 11 

 12 

In sexual populations, closely-situated genes have linked evolutionary fates, while genes 13 

spaced far in genome are commonly thought to evolve independently due to 14 

recombination. In the case where evolution depends essentially on supply of new 15 

mutations, this assumption has been confirmed by mathematical modeling. Here I 16 

examine it in the case of pre-existing genetic variation, where mutation is not important. 17 

A haploid population with 𝑁 genomes, 𝐿 loci, a fixed selection coefficient, and a small 18 

initial frequency of beneficial alleles 𝑓0 is simulated by a Monte-Carlo algorithm. The 19 

results demonstrate the existence of extremely strong linkage effects, including clonal 20 

interference and genetic background effects, that depend neither on the distance 21 

between loci nor on the average number of recombination crossovers. When the number 22 

of loci, L, is larger than 4log2(𝑁𝑓0), beneficial alleles become extinct at most loci. The 23 

substitution rate varies broadly between loci, with the fastest rate exceeding the one-24 

locus model prediction. All observables and the transition to the independent-locus limit 25 

are controlled by single composite parameter log2(𝑁𝑓0)/𝐿. The potential link between 26 

these findings and the emergence of new Variants of Concern of SARS CoV-2 is discussed. 27 

 28 

Introduction  29 

 30 

A typical species is heterozygous at millions of genomic sites, loci. The average difference 31 

between an individual's genome and the consensus genome is estimated at 20 million 32 

base pairs, or 0.6% of the total of 3.2 billion base pairs (1). The invention of the new 33 
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methods of full-genome DNA sequencing caused the emergence of the field of genomics 34 

and proteomics dedicated to the quantitative aspects of genetic diversity and gene 35 

expression at a large number of loci (2-7). To describe and visualize the genetic 36 

complexity, various computational methods have been developed including 37 

phylogenetics, the principle-components analysis, the cluster analysis. Among them, 38 

mathematical modeling of evolution stands out as a tool of a high predictive power. 39 

Modeling allows to connect, in the most direct and reproducible fashion, the assumptions 40 

about the dominant factors of evolution to the predictions for the observable parameters 41 

of genetic diversity and evolutionary dynamics.  42 

 The assumptions and simplifications of models vary broadly depending on the 43 

systems studied and the questions asked.  Two distinct groups of models and methods 44 

have been applied to animal populations and microbial populations. The classical one-45 

locus and two-locus models that neglect interaction with the other loci in genome (8-10)  46 

dominate the way in which many evolutionary biologists think about the evolution of 47 

higher organisms. In contrast, monocellular eukaryotes, viruses, and bacteria that are   48 

characterized by an extremely high genetic diversity and ultrarapid evolution, are often 49 

described by asexual or partly sexual population models that include explicitly large 50 

numbers of interacting loci.  Analysis of the evolutionary dynamics of multi-locus models 51 

is more complex than one-locus and two-locus models and relies either on Monte-Carlo 52 

simulation (11-17) or the advanced mathematical methods of statistical physics (11, 18-53 

39).  The heavy mathematical artillery is required, because the evolution of many 54 

different loci is inter-dependent (40).   There are two kinds of interference effects. One 55 

kind, not considered in this article, is epistasis arising from biological interaction of 56 

different loci, including protein-protein interactions or interactions gene regulation 57 

network (29, 31-33, 41-52). The second type, which is the focus of the present article, is 58 

the effects originating from the common ancestry of different loci, including Hill–59 

Robertson effect, clonal interference, background selection and hitchhiking (8, 25, 53-60 

55). Linkage effects also slow down adaptation (11, 21, 23, 26), increase accumulation of 61 

deleterious alleles (11, 21), and change the statistical shape of genealogical tree (24, 27, 62 

56). 63 

 In sexually reproducing organisms and organisms with frequent recombination 64 

such as some viruses, linkage effects are partly compensated by recombination between 65 

parental genomes. A fundamental fact of genetics discovered by Morgan is that frequent 66 
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recombination destroys allelic associations, so that alleles at far-spaced loci segregate 67 

independently. Conventional wisdom tells us that all the other linkage effects between 68 

far-situated loci must vanish as well. A model of long-term sexual evolution limited by 69 

rare mutation seemed to confirm this expectation (57). Assuming that genome consists 70 

from independently-evolving blocks and applying the phylogenetic theory of asexual 71 

evolution to each block, the authors constructed a scaling argument expressing the length 72 

of each block, the lead of the traveling wave, and the average coalescent time in terms of 73 

the average adaptation rate. The analytic predictions have been confirmed numerically 74 

for two particular models of 75 

population in the presence of 76 

natural selection and 77 

mutation. 78 

 In the present work, I 79 

investigate linkage effects in 80 

a different biological 81 

scenario,  when natural 82 

selection and recombination 83 

act on pre-existing beneficial 84 

alleles, and new mutations 85 

can be neglected. This model 86 

is appropriate in the case 87 

when selection pressure 88 

changes its sign at a large 89 

number of loci.  For example, 90 

a population migrates to a 91 

new environment, or a virus 92 

is subjected to the immune 93 

response or a replication inhibitor treatment. In this case, weakly deleterious alleles pre-94 

existing in the mutation-selection balance can become beneficial.  95 

 96 

Results  97 

Model. Consider a sexually reproducing population comprised of 𝑁 individual genomes 98 

(or 𝑁/2 diploid genomes without allelic dominance), where each genome has 𝐿 loci. In 99 

 
Fig. 1. Dynamics of observables in the model with standing 

variation and the absence of mutation. 

Beneficial alleles become extinct at most loci. X-axis: Time in 

generations, 𝑡. Y-axis: Observable parameters calculated during 

simulation. The average frequency of beneficial alleles per locus 

per individual, 𝑓, the same value averaged over polymorphous 

loci only, 𝑓𝑝𝑜𝑙 , the prediction for 𝑓 of the deterministic one-locus 

model, 𝑓1𝑙𝑜𝑐 , half-heterozygocity 𝑤2 = 〈𝑓(1 − 𝑓)〉, the fraction of 

homologous pairs of loci with a common initial ancestor, 𝐶, the 

same value for polymorphous loci, 𝐶𝑝𝑜𝑙 , the fraction of 

polymorphous loci, 1 − 𝐶𝑙𝑜𝑠𝑠 , and the largest of allelic frequencies 

among loci, max(𝑓𝑙𝑜𝑐). Parameter values are shown on the top. 

Parameters are defined in Methods and values are shown.  
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the beginning, each locus is assumed to have a fraction 𝑓0 of beneficial alleles, with fitness 100 

benefit 𝑠.  The value of 𝑓0 is assumed to be in interval 
1

𝑁𝑠
≪ 𝑓0 ≪ 1.  Next, I assume that a 101 

genome undergoes an average number 𝑀 of random crossovers with another, randomly 102 

chosen genome, and one of the two parents is replaced with the recombinant. The 103 

evolution is simulated using a Wright-Fisher process, in which the progeny genomes 104 

replace the parental genome, and the average progeny number is proportional to the  105 

genome fitness. The evolutionary factors included in the model are directional natural 106 

selection, random genetic drift, linkage, and recombination. New mutation and epistasis 107 

are absent. The details of simulation are described in the Methods section. 108 

Extinction of beneficial alleles depends on a single composite parameter. If the 109 

number of loci𝐿is sufficiently large, beneficial alleles at most loci become extinct. The 110 

fraction of remaining polymorphous loci, denoted 1 − 𝐶𝑙𝑜𝑠𝑠(𝑡), decreases in time from 1 111 

 

 

Fig. 2. The observables depend mostly on a single composite parameter.  

A-C. The locus fraction where beneficial alleles have survived and completed adaptation, 1 − 𝐶𝑙𝑜𝑠𝑠(∞), 

is linearly proportional to the natural logarithm of the population size, log 𝑁, the inverse square root of 

the locus number, 1/√𝐿,and a composite parameter, log(𝑁𝑓0) /√𝐿. Colored symbols o, +, and x 

correspond to the variation of model parameters 𝐿, 𝑁, and𝑓0, respectively, where 𝑓0> 1/ 𝑁𝑠. The green 

horizontal line shows the prediction of the one-locus model, 𝐶𝑙𝑜𝑠𝑠 ≈ 0. D. The time, 𝑡, when the survived-

loci fraction, 1 − 𝐶𝑙𝑜𝑠𝑠(𝑡), equals the average identity by descent, 𝐶(𝑡), [intersection of red and pink 

curves in Fig. 2] scales linearly with log(𝑁𝑓0) /√𝐿as well. E. The time when the allelic frequency at the 

fastest locus reaches 50%, scales as a power ¾ of a similar parameter, log(𝑁𝑠) /√𝐿. The symbol triplets 

show the mean and the 95% confidence interval. Colored symbols o, +, and * show different values of 

𝑁.The sensitivity to the variation of selection coefficient 𝑠,crossover number 𝑀, and initial allele 

frequency 𝑓0 is shown in S1 Fig and S2 Fig. The default parameter values are 𝑁 = 1000, 𝐿 = 200, 𝑓0 =

0.02 unless shown otherwise. The other parameters are as in Fig. 2. 
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to at a low plateau (Fig. 1A, red line). This result differs from the prediction of the single-112 

locus model, in which multiple lineages per site are expected to reach fixation at 𝑁𝑓0𝑠 ≫113 

1. In that case, the fixation probability of an allele is 𝑠, and the extinction probability is 114 

 1 − 𝑠(40). The probability of the extinction of all 𝑁𝑓0 beneficial lineages is given by 115 

𝐶𝑙𝑜𝑠𝑠(∞) = (1 − 𝑠)𝑁𝑓0 ≈  𝑒−𝑁𝑓0𝑠, which is exponentially small.  116 

Varying model parameters in simulation, we found out empirically out that the 117 

fraction of loci with non-extinct alleles, 1 − 𝐶𝑙𝑜𝑠𝑠(∞), depends mostly on a single 118 

composite parameter (Fig. 2A-C)  119 

1 − 𝐶𝑙𝑜𝑠𝑠 = [
2.0

log(𝑁𝑓0)

√𝐿



1 ≪ log(𝑁𝑓0) < 0.5√𝐿

1 log(𝑁𝑓0) > 0.5√𝐿

(1) 120 

 

Fig. 3. Traveling fitness wave and nonuniform dynamics of separate loci. A. Distribution density 

of genomes in fitness at different time points shown in (B-G). B-G. First column: Histograms of the 

family size defined as the number of sequences with the same initial ancestor at a locus. Second column: 

Only the largest family per locus is taken into account. H. The average allelic frequency for each 

separate locus, 𝑓𝑙𝑜𝑐 ,as a function of time. I-N. Histograms of 𝑓𝑙𝑜𝑐 across loci at different time points 

(shown). Parameters are as in Fig. 2. 
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Note the critical point,  log(𝑁𝑓0) = 0.5√𝐿. If the population size is too large or the 121 

number of loci is too small, no significant loss of polymorphism is predicted. 122 

 The fastest adaptation rate among loci is much faster than in a single-locus 123 

model. Because most loci fail to complete adaptation, the average frequency of beneficial 124 

alleles per locus, 𝑓𝑎𝑣(𝑡), saturates far below 1 (Fig. 1A, blue line). The dependence of 125 

average heterozygocity on time, 2𝑤2(𝑡), is decreased accordingly (Fig. 1A, green). The 126 

allele frequency averaged over remaining polymorphic sites, 𝑓𝑝𝑜𝑙(𝑡),increases in the 127 

same general time range as the one-locus prediction. The time of half-fixation of 128 

polymorphous sites, 𝑡50, is very close to the deterministic one-locus prediction, 𝑡50 ≈ 𝑡1𝑙𝑜𝑐  129 

(Fig. 1B)  130 

𝑡1𝑙𝑜𝑐 =
1

𝑠
log

1

𝑓0
(2) 131 

In the range of parameters 𝑠 = 0.025 − 0.2,𝐿 = 200 − 2000,𝑁 = 1000 − 10,000, the 132 

relative difference between 𝑡50and𝑡1𝑙𝑜𝑐  is between -0.11 and 0.14. Compared to the 1-133 

locus model prediction (blue dashed line in Fig. 1), the dependence 𝑓(𝑡) experiences a 134 

delay in the late phases of adaptation and has a noticeable random oscillation component 135 

(Fig. 1, blue +).  136 

The speed of adaptation is extremely broadly distributed among loci with non-extinct 137 

alleles (Fig. 3H). At some loci, alleles accumulate much faster than predicted by the one-138 

locus model (Fig 1, black line). The half-time of adaptation of the fastest locus, max(𝑡𝑙𝑜𝑐), 139 

is much shorter than 𝑡1𝑙𝑜𝑐 and increases as power ¾ of composite parameter 
log(𝑁𝑠)

√𝐿
(Fig. 140 

2E) (compare with Eq. 1). The broad variation between loci is created by random 141 

recombination events, which bring together different numbers of favorable alleles, and 142 

natural selection, which favors the best. As a result, the distribution of genomes in fitness 143 

forms a traveling wave well-known for both asexual and sexual populations (40) (Fig. 144 

3A).  145 

The fitness classes of the traveling wave have a complex lineage structure that 146 

varies between loci. For a given locus, a lineage is determined as the set of individuals 147 

that have the same initial ancestor. The lineages all initially consists from a single 148 

individual (Fig. 3B), but their sizes grow in time, at different rates for different loci, and 149 

become distributed in a very broad range (Fig. 3C-G). The size distribution shifts in time 150 

towards larger lineages eventually occupying almost the entire population. If we take into 151 

account only the largest lineage for each locus, their size distribution looks similar but 152 
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has a low cutoff increasing in time (Fig. 3B-G, column 2). The largest lineages grow to a 153 

half of the population at a much earlier time than 𝑡1𝑙𝑜𝑐 in Eq. 2. 154 

Phylogenetic time scale depends only on the same composite parameter. 155 

Another quantity affected by linkage effects is the identity by descent, 𝐶, defined as the 156 

probability of a homologous locus pair to have the same initial ancestor. The average 157 

identity by descent averaged over all loci and over only polymorphous loci is almost the 158 

same (magenta line and magenta +, Fig. 1A). This result differs from the single-locus 159 

model, where common ancestry is rare, 𝐶(𝑡) < 𝑓𝑝𝑜𝑙
2 (𝑡), because each of the pair of loci 160 

must fall into the same growing lineage to have the same ancestor, and the size of each 161 

lineage relative to the population size is smaller than 𝑓𝑝𝑜𝑙(𝑡). In contrast, in our case, 𝐶 is 162 

larger than 𝑓𝑝𝑜𝑙(𝑡), which is larger than 𝑓𝑝𝑜𝑙
2 (𝑡). At the time point 𝑇2 where 𝐶 = 1 − 𝐶𝑙𝑜𝑠𝑠 , 163 

both values are both close to a half in a broad parameter range, 𝐶(𝑇2) ≈ 𝐶𝑙𝑜𝑠𝑠(𝑇2) ≈ 0.5. 164 

The dependence of 𝑇2 on model parameters can be fit by the formula 165 

𝑇2 ≈ 𝑡1𝑙𝑜𝑐
5.0log(𝑁𝑓0)

√𝐿
(3) 166 

In other words, 𝑇2 is proportional to the same composite parameter that controls the 167 

fraction of fixed loci, 1 − 𝐶𝑙𝑜𝑠𝑠 , Eq. 1 (Fig. 3D).  Time 𝑇2 defined by Eq.  3 represents a 168 

proxy time scale of the phylogenetic tree. Although, at this time point, a population does 169 

not have a single ancestor for an average locus as yet,  𝑇2 approximates the time to the  170 

most recent common ancestor by an order of magnitude. 171 

Weak dependence of all observables on the average number of recombination 172 

crossovers. The above results in Figs 1 to 3 are weakly sensitive to the average crossover 173 

number, 𝑀. In its entire range of between1and𝐿, the fraction of loci that do not lose 174 

alleles, 1 − 𝐶𝑙𝑜𝑠𝑠(∞),varies only by the factor of ~2 (Fig. 4).  175 

 
 
 Fig. 4. Weak sensitivity of the fraction of loci that complete adaptation to the selection 
coefficient and the average crossover number. The default parameter values are shown on the top. 
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The absence of long-range linkage disequilibrium. No linkage disequilibrium is 176 

predicted in the long range. Pearson’s correlator between allelic frequencies at two loci 177 

defined as 178 

𝑟2(𝑙12) =
〈(𝑓1 − 〈𝑓〉)(𝑓2 − 〈𝑓〉)〉

〈(𝑓1 − 〈𝑓〉)2〉
 179 

decreases rapidly with the distance between loci, 𝑙12, and the characteristic distance of 180 

the decrease shrinks with time (Fig S1). In other words, alleles at far loci segregate 181 

independently, as they should in the presence of recombination.   182 

Far blocks of genome do not evolve independently. The above results for the 183 

phylogeny time scale differ from that of scaling theory (57). In my notation, their general 184 

result for the average time to the most recent common ancestor has the form [(57), Eq. 185 

5] 186 

𝑇𝑀𝑅𝐶𝐴 ≈ 𝑐𝑜𝑛𝑠𝑡
𝑀

𝑣
log (

𝑁𝑣

𝑀
)(4) 187 

where 𝑣is the average rate of long-term adaptation, defined as the fitness gain per unit 188 

time, const is a number on the order of 1, and the logarithm is supposed to be much larger 189 

than 1.  In my case, the proxy of 𝑇𝑀𝑅𝐶𝐴  by the order of magnitude is𝑇2 in Eq. 3, and the 190 

adaptation rate is (see Fig. 1A)  191 

𝑣 ≈ 𝑐𝑜𝑛𝑠𝑡
𝑠𝐿(1 − 𝐶𝑙𝑜𝑠𝑠)

𝑡50
(5) 192 

As already mentioned, the average time to a half-fixation for the loci that do not lose 193 

alleles, 𝑡50,is always close to one-locus limit𝑡1𝑙𝑜𝑐. Substituting Eq. 3 and Eq. 5 into Eq. 4, 194 

we get 195 

𝑀log(𝑁𝑣/𝑀)

𝑠log2(𝑁𝑓0)
= 𝑐𝑜𝑛𝑠𝑡 196 

which is clearly false, because 𝑀,𝑁, and 𝑠 are independent parameters.  Hence, Eq. 4 does 197 

not work in the case with pre-existing variation.  198 
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 Note that the analytic argument in (57) was developed and tested for a different 199 

scenario, when the sexual evolution is limited by new mutation events. It was based on 200 

two statements: the assumption that a genome evolves as quasi-independent asexual 201 

blocks, and an expression for the time to the most recent common ancestor in terms of 202 

the average adaptation rate. The expression was based on the basic concept that the time 203 

to most recent common ancestor is the lead of the wave divided by the adaptation rate 204 

and was confirmed for various multi-locus models, both sexual and asexual.  Therefore, 205 

it is likely that the quasi-206 

independence assumption is 207 

the cause of the discrepancy. In 208 

other words, in the case of pre-209 

existing variation, the genome 210 

does not evolve as a set of 211 

quasi-independent segments.  212 

That conclusion is indirectly 213 

confirmed by the results in Fig. 214 

3 showing that beneficial 215 

alleles can form highly-fit 216 

genomes whose rapid growth 217 

outruns mixing of genomes due 218 

to recombination (Fig. 3). A 219 

recombinant that decreases 220 

fitness is not relevant for 221 

future generations. 222 

Furthermore, within one realization (Monte Carlo run), the fitness variance of a genomic 223 

segment normalized to the genome fitness is not linearly proportional to its length, but 224 

shows a complex step-like dependence (Fig. 5). 225 

Alleles are fixed inter-dependently. The fixation probability of an allele can be 226 

calculated as 227 

𝑃𝑓𝑖𝑥 =
1 − 𝐶𝑙𝑜𝑠𝑠(∞)

𝑁𝑓0
(6) 228 

In the parameter interval of interest, this value falls far below the 1-locus prediction, 229 

𝑃𝑓𝑖𝑥
1𝑙𝑜𝑐 = 𝑠 (Fig S2). Probability 𝑃𝑓𝑖𝑥 plateaus on the value of 𝑠 in the dilute limit of 230 

 

 
 
Fig. 5. Non-linear dependence of genome segment variance 
on segment length. X-axis: the length of a genome segment 
starting from locus 1.  Y-axis: Fitness variation between 
homologous genomic segments divided by the genome fitness 
variation at the same moment of time. A single run is shown. 
Parameters are, as in Fig. 1. 
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sufficiently small 𝑓0, which agrees with a previous finding in the case of rare mutations, 231 

see the limit 𝑟 ≫ 𝑠in (30). Based on simulation, the transition point to the dilute limit 232 

𝑓0
𝑑𝑖𝑙𝑢𝑡𝑒 decreases with 𝑁and 𝐿. One can determine the transition point from condition 233 

𝑃𝑓𝑖𝑥(𝑓0
𝑑𝑖𝑙𝑢𝑡𝑒) = 𝑠and Eqs. 1 and 6. Replacing log(𝑁𝑓0)with1if it smaller than 1, we 234 

obtain 235 

𝑓0
𝑑𝑖𝑙𝑢𝑡𝑒 ≈

2

𝑁𝑠√𝐿
,𝑠√𝐿 ≥ 1(3) 237 

This estimate agrees with the simulation results in Fig S2.  236 

Phylogenetic tree and allele surfing. In addition to calculating the phylogeny time 238 

scale (Fig. 2D), we constructed the ancestral trajectory of a locus between individuals in 239 

real-time by memorizing the parentage of each individual locus and then tracing its 240 

ancestry back in time. Lineage of each locus jumps among individuals randomly due to 241 

recombination (Fig. 6A). If we straighten these trajectories and keep only the topology of 242 

coalescence and the coalescent times, we arrive at phylogenetic trees for different loci 243 

(Fig. 6B-D). As expected, the tree varies strongly across loci, and the early branches are 244 

relatively shorter than in the neutral Kingman’s coalescent. The average density of 245 

coalescent events averaged over 10 runs and normalized to the prediction of the 246 

selectively-neutral model (Methods) decreases exponentially with time (Fig. 6E, F), as it 247 

would also in the one-locus limit. This is because coalescent density is proportional to the 248 

inverse effective population size (58), which is the size of the growing variant 249 

subpopulation. However, the coalescent density is also much larger than in the one-locus 250 

limit and increases with number of loci 𝐿. Thus, in agreement with the previous studies 251 

for various models, uncompensated linkage in the presence of selection makes 252 

phylogenetic trees denser and changes their shape by making early branches shorter  (24, 253 

27, 56, 59) (Fig. 6E, F). 254 

In addition to the trajectory of a locus over specific ancestors (Fig 6A), we can also 255 

construct its fitness trajectory, by memorizing the fitness values of its ancestors (Fig 6G). 256 

The fitness trajectory comprises alternating straight horizontal segments due to the 257 

clonal expansion connected to jumps caused by recombination. The jumps occur in both 258 

directions, but more often towards a genetic background with a higher fitness (Fig. 6G). 259 
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This “allelic surfing” behavior with vertical and horizontal segments was predicted 260 

analytically for sexual populations with a small outcrossing rate (30, 60).  261 

 262 

Discussion 263 

 264 

I modeled numerically stochastic sexual evolution of a multi-locus system due to 265 

natural selection and pre-existing variation in the form of small numbers of beneficial 266 

alleles. Despite of the lack of observable LD for far-situated loci, simulation predicts the 267 

existence of string long-range linkage effects encompassing the entire genome. The 268 

effects include the extinction of beneficial alleles at most loci due to clonal interference, 269 

weak sensitivity of most observables to the average number of crossovers, and a very fast 270 

evolution at a fraction of loci. These results are in striking contrast to the previous 271 

findings for the long-term evolution driven by mutation, selection, and recombination, 272 

where genome was demonstrated to consist from quasi-independent blocks (57). The 273 

linkage effects are predicted only for sufficiently long genomes.   274 

 

Fig. 6. Phylogenetic tree and ancestral history of separate loci.  

A. A reverse-time trajectory of the middle locus (𝑖 = 𝐿/2) in 10 individuals numbered 1, 101, 201, ... 901 
at time 𝑡 = 300obtained by tracing ancestral history. B-D. Phylogenetic trees for three loci (first, 
middle, and last). E-F. The time density of coalescent events averaged over 10 simulation runs and 
normalized to their values predicted by the selectively neutral model (Methods). Linear (E) and 
logarithmic (F) scales are used for Y–axis. G. Fitness trajectories for the middle locus in (A, C). Insert: a 
small segment is shown by the orange square. Parameters are on (A) unless shown otherwise. 
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If the locus number is decreased, or if the population size is increased, a transition to 275 

the independent-locus limit is predicted. The predicted dependence of all linkage effects 276 

on the population size is logarithmic (Fig. 2). For a genome of 200 loci and 𝑓0 = 0.02, 𝑠 =277 

0.1, the transition to the independent-locus regime can be observed already for 100,000 278 

individuals. For a longer genome of 1000loci, however, loci evolve independently only 279 

for populations of 1012 individuals or larger, which is unrealistic for most species. A 280 

human or an animal population has millions of variable loci, of which a sizeable portion 281 

is under selection, so that independent-locus models, probably, never work in most 282 

animals, except for rare mutations that are under very strong selection pressure.   283 

We have investigated the case of a constant selection coefficient, but the results are 284 

expected to apply also for a sufficiently fast decaying distribution of selection coefficients, 285 

such as a Gaussian distribution.  Distributions with long tails may have different 286 

properties, where the traveling wave is replaced by pairwise clonal interference (26). The 287 

case of an exponential distribution can have a mixed behavior, depending on parameter 288 

values (26). The exponential distribution is often observed in experiments on pathogens 289 

which fact has been explained in a recent work (34).  290 

The results obtained are directly relevant for the viruses that have frequent 291 

recombination, such as HIV, polio, or SARS CoV-2. Similar to seasonal human 292 

coronaviruses or influenza virus, SARS-CoV-2 is constantly acquiring new mutations in 293 

its genome. Evolution is especially fast in receptor Spike protein (61-64). Two major 294 

reasons account for the high speed of evolution, as follows. Firstly, Spike has receptor-295 

binding motives that affect transmission, and their evolution leads to the emergence of 296 

VOCs with enhanced transmissibility. Secondly, Spike contains epitopes, regions that are 297 

very important for the immune response because of their involvement in binding of 298 

antibodies that can neutralize virus. Mutations in epitopes are a major factor that limits 299 

the virus recognition by the immune system and, hence, the durability of protection (65, 300 

66). 301 

An important puzzle important for devising future vaccination strategies is the origin 302 

of the VOCs produced by large groups of new mutations that emerge all together at once 303 

(67, 68). Alternative theories of the emergence of VOCs (69) include reverse zoonosis, the 304 

evolution within immunocompromised patients (70-72), and the evolution in population 305 

pockets not covered by the genetic surveillance. Still another possibility is the fitness 306 
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valley effect, a cascade emergence of compensating mutations following a primary 307 

mutation inferred for HIV and influenza (33, 73).  308 

 Based on the present study, we may add yet another possible explanation. While 309 

in another respiratory virus, influenza, we observe only rare reassortment of its eight 310 

chromosomes, SARS CoV-2, with its single-chromosome genome, has observable 311 

crossover recombination (74-78). Hence, the large packages of mutations may emerge 312 

due to the combined effects of recombination and natural selection and represent the 313 

sequences formed by the fastest loci (Fig. 3). To understand the importance of 314 

recombination for SARS CoV-2, we need to know the frequency of co-infected individuals 315 

among all the infected, which determines outcrossing probability 𝑟, an important input 316 

parameter entering the models of sexual populations (13, 19, 30, 57, 60, 79). For fully 317 

sexual reproduction considered in the present work, by the definition, 𝑟 = 1. The 318 

outcrossing number for SARS-CoV-2 is presently unknown. It could be quite large due to 319 

the possibility of a co-infection during superspreading events (80-83). Methods 320 

developed previously to quantify recombination from RNA sequence data for HIV could 321 

be re-applied to SARS-CoV-2 (13). 322 

Conclusion. In sexual populations with pre-existing beneficial alleles, in an 323 

exponentially broad range of population size, recombination cannot suppress long-range 324 

linkage effects, such as the excessive loss of beneficial alleles at most loci, the lack of 325 

dependence on the crossover number, and superfast evolution at some loci. These 326 

findings may be relevant for interpreting the emergence of new strains of SARS CoV-2. 327 

 328 

Materials and methods  329 

 330 

Consider a fully sexual population with 𝐿 loci comprised of 𝑁individual genomes. Each 331 

locus has initially 𝑁𝑓0 alleles, 1/𝑁𝑠 ≪ 𝑓0 ≪ 1, with fitness benefit 𝑠 ≪ 1. In each 332 

generation step, each genome undergoes random crossovers with another, randomly 333 

chosen genome, with average crossover number 𝑀 producing a recombinant genome.  334 

One of the two parents is replaced with the recombinant. Genome number 𝑗with 335 

𝑘𝑗favorablealleles is replaced with a random number of its copies distributed according 336 

to the polynomial distribution implemented by “broken stick” method, as follows. 𝑁 337 

random points are generated uniformly within the interval [0,𝑁] broken into 𝑁 338 
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segments. The length of segment 𝑗 is proportional to the fitness of the corresponding 339 

genome 𝑤𝑗    340 

𝑤𝑗 =
exp(−𝑠𝑘𝑗)

∑ exp(−𝑠𝑘𝑗)
𝑁
𝑗=1

(3) 341 

The number of random values that fall into segment 𝑗 are taken to be the number of his 342 

progeny in the next generation. Thus, the total number of genomes stays constant. New 343 

mutations are neglected, which is shown to be correct in the short-term in the presence 344 

of pre-existing genetic variation, both in simulation and experimentally (84). Epistasis is 345 

absent. For the modeling studies of epistatic effect, the reader is referred to (31-33, 47-346 

51).  347 

Input model parameters are the selection coefficient across loci, 𝑠 = 𝑠0, population 348 

size 𝑁, outcrossing rate 𝑟 = 1, number of loci 𝐿, initial beneficial allele frequency 𝑓0, total 349 

simulation time 𝑡, average number of recombination crossovers 𝑀, and the seed number 350 

of the generator of pseudorandom numbers.  351 

Parameter ranges studied are 𝑠 = [0.025, 0.4], 𝐿 = [10, 4000], 𝑁 = [102, 105],𝑀 =352 

[1, 300], 𝑓0 = [0.0001, 0.02]. The main focus is on the interval of 𝑓0 such that 
1

𝑁𝑠
≪ 𝑓0 ≪353 

1.The transition to dilute limit 𝑁𝑓0𝑠 ≪ 1 when alleles are fixed independently is shown 354 

in Fig. S2. 355 
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Supporting Information 572 

 573 

 574 

S1 Fig. Linkage disequilibrium as a function of distance between loci in the genome. Pearson’s 575 
measure 𝑟2 is averaged over pairs of sufficiently heterozygous loci, 2𝑓𝑙𝑜𝑐(1 − 𝑓𝑙𝑜𝑐) > 0.1. The time points 576 
and parameters (shown) are the same as in Fig. 3. At 𝑡 = 0, linkage disequilibrium is identically zero due 577 
to the initial random distribution of alleles. 578 
 579 

 580 

S2 Fig. Fixation probability per beneficial allele as a function of the initial allelic frequency exhibits 581 
transition to the dilute limit of independent alleles with fixation probability s. Y-axis: The average 582 
fraction of surviving polymorphic loci, 1 − 𝐶𝑙𝑜𝑠𝑠(∞) , divided by 𝑓0𝑁𝑠, which is the product of the average 583 
number of beneficial alleles per locus, 𝑓0𝑁, and the allelic fixation probability in the 1-locus model, 𝑠. X-axis: 584 
The initial frequency of beneficial alleles, 𝑓0. The dependence is shown at three combinations of values of 585 
𝑁and 𝐿. Three lines of each color shxow the mean and the mean plus minus the standard deviation between 586 
three simulation runs, i.e., the 67% confidence interval. The independent-locus limit of fixation probability 587 
shown by the dashed horizontal line is reached at small 𝑓0. Fixed parameters are 𝑀 = 3 and 𝑠 = 0.1. 588 
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