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Introduction: Pediatric Crohn’s disease (CD) is the fastest growing age group and is characterized by frequent  disease 
complications. We sought to analyze both ileal and colonic gene expression in a cohort of pediatric CD patients and 
apply machine learning-based models to predict risk of developing future complications. Methods: RNA-seq was 
generated from matched ileal and colonic biopsies from formalin-fixed, paraffin-embedded (FFPE) tissue obtained from 
patients with non-stricturing/non-penetrating, treatment-naïve CD and from controls. Clinical outcomes including 
development of strictures or fistulas, progression to surgery, and remission were analyzed first using differential 
expression. Machine learning models were then developed for each outcome, combining gene expression and clinical 
factors. Models were assessed using area under the receiver operating characteristic curve (AUROC). Results: 56 
patients with CD and 46 controls were included. Differential expression analysis revealed a distinct colonic 
transcriptome for patients who developed strictures, with downregulation of pathways related to inflammation and extra-
cellular matrix production. In contrast, there were few differentially expressed genes for other outcomes and for ileal 
tissue. Despite this, machine learning-based models were able to incorporate colonic gene expression and clinical 
characteristics to predict outcomes with high accuracy. Models showed an AUROC of 0.84 for strictures, 0.83 for 
remission, and 0.75 for surgery. Certain genes with potential prognostic importance for strictures (REG1A, MMP3, and 
DUOX2) were not identified in single gene differential analysis but were found to have strong contributions to predictive 
models. Conclusions: Our findings in FFPE tissue support the importance of colonic gene expression and the potential 
for machine learning-based models in predicting outcomes for pediatric CD.

Introduction 
 Pediatric Crohn’s disease (CD) is the fastest growing inci-
dent age group for the disease with about 80,000 children 
in the US affected.1–3 CD is characterized by a relapsing, re-
mitting disease course with complications, such as stric-
tures or perforation, affecting around 50% of patients 
within 5 years of diagnosis.4,5 Pediatric CD follows a more 
severe disease course, more often involving strictures and 
fistulas.6–8 These complications drive further morbidity and 
healthcare utilization associated with CD including growth 
failure, delayed puberty, hospitalizations, and surgery.4,8 
 
Analysis of gene expression and identification of biological 
pathways which drive development of CD and CD complica-
tions may give insight into more precise treatment decision-
making to prevent a complicated CD course. Genes associ-
ated with immune and cytokine pathways have been asso-
ciated with CD development.9–11 Further, specific genes in-
cluding oncostatin M, IL1B, S100A8, and CXCL1 have been 
associated with response to anti-tumor necrosis factor ther-
apy.12,13 Genes controlling extracellular matrix production 
and inflammatory processes have been associated with 
strictures.14–16 Decision-support tools which incorporate 

this genetic information to prognosticate disease course 
could assist with clinical decision-making. 
Multiple previous studies have sought to predict outcomes 
for CD based on gene expression, most notably using the 
RISK cohort.14 However, these studies relied on logistic re-
gression models, which may fail to capture the multi-facto-
rial, non-linear interactions between genes and clinical 
characteristics that connote increased risk for complica-
tions. Machine learning techniques, which have the capacity 
to capture these complex patterns, have been successfully 
applied to inflammatory bowel disease (IBD)-related topics 
including identification of risk genes, prediction of out-
comes from serum proteins, and prediction of response to 
medication from multi-omic data.17–19 However, they have 
not yet been applied specifically to prediction of complica-
tions for pediatric CD from gene expression. 
The goals of our study are twofold: to identify genes which 
are differentially expressed in CD and complicated CD and 
to apply machine learning techniques that use those genes 
to predict risk of complications. We hypothesize that ma-
chine learning techniques can incorporate the gene expres-
sion profiles of patients with complicated disease to outper-
form previous predictors. 
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Methods 
Study design and outcomes 
This study included patient data that was collected at the 
University of North Carolina at Chapel Hill.20 This included 
patients younger than 18 with suspected IBD, who under-
went endoscopy between 2008 and 2012. Patients who 
were found to have no gut inflammation were used as non-
IBD controls. At the time of diagnosis, patients were se-
lected based on non-penetrating, non-stricturing disease 
phenotype. Parents or guardians of all patients provided 
written consent and patients provided assent when appro-
priate. This study was approved by the University of North 
Carolina Institutional Review Board (Study ID#: 15-0024, 
11-0359, 17-0236). 
Disease behavior was defined according to the Montreal 
classification system. Disease complications included stric-
tures (B2), fistulas (B3), progression to surgery, and expe-
riencing remission. B2 and B3 disease were defined using 
endoscopy and/or imaging (fluoroscopy, CT, or MRI) and 
correlation with patient symptoms in contrast to the non-
stricturing, non-fistulizing phenotype (B1).21,22 Progression 
to surgery was defined as requiring an abdominal surgical 
procedure for resection of bowel. Remission was defined as 
experiencing a steroid-free interval of at least 6 months.9 
Outcomes were recorded with a mean follow-up period of 6 
years. 
Specimen, mRNA, and data processing 
Macroscopically uninflamed mucosal samples from the as-
cending colon and terminal ileum were obtained at the time 
of initial diagnosis, before therapy was started. These sam-
ples were preserved as fresh frozen paraffin-embedded 
(FFPE) tissue. 
RNA was isolated from FFPE tissue using the Quick-RNA 
FFPE MiniPrep (Zymo Research, Irvine, CA). This kit pre-
serves mRNA content while using column-based DNase to 
eliminate DNA contamination. Total RNA was then purified 
using the MagMAX kit in the KingFisher system (Ther-
moFisher, Carlsbad, CA). RNA-seq libraries were prepared 
using TruSeq Stranded Total RNA with Ribo-Zero (Illumina, 
San Diego, CA). Paired-end (50bp) sequencing was pro-
cessed on the NovaSeq 6000 platform using default param-
eters (Illumina, San Diego, CA). Transcript expression was 
then quantified using Salmon with default parameters.23 
Purity and integrity of the samples was assessed using a va-
riety of quality control metrics. We first identified samples 
with a low number of transcripts counted (<25,000). Fur-
ther investigation of these samples confirmed low tran-
script integrity number (TIN),24 percentage of sequences 
aligned, and high duplication percentage. These samples (n 
= 2) were then discarded. Further, we used PCA (principal 
component analysis) plots to identify samples which did not 
cluster with their respective tissue (ileal or colonic) and dis-
carded these samples as well (n = 5). 
Statistical analysis 
PCA showed that batch, sex, and TIN drove the greatest var-
iation between samples that was unrelated to disease phe-
notype, so these variables were explicitly included as co-
variates. Additional factors of unwanted variation were 
identified using RUVSeq.25 Control genes were selected by 
identifying the top 1000 genes with the lowest variance out 
of the top 5000 genes with the highest expression. Based on 

variation seen in relative log expression plots across sam-
ples, correlation between factors of unwanted variation and 
the outcome, and the number of differentially expressed 
genes identified by DESeq2, we used one factor of unwanted 
variation for final analyses. 
Final PCA plots were generated using the plotPCA function 
from DESeq2, based on the top 500 most variable genes, af-
ter applying the variance stabilizing transform (VST) and 
the removeBatchEffect function from limma.26,27 The fil-
terbyExpression function from EdgeR was used to select 
genes with at least 10 read counts in 70% of samples.28 Dif-
ferential expression analysis was then performed using 
DESeq2 with false discovery rate (FDR) adjusted P-value (p-
adj) of <0.05 considered significant. Pathway analysis was 
performed using the Molecular Signatures Database hall-
mark gene set collection and fgsea.29,30 Volcano plots were 
generated using EnhancedVolcano.31 RNA-seq analysis was 
performed in R (v4.2).32 
Modeling 
Predictive models were developed for the collected out-
comes, including development of B2 phenotype, progres-
sion to surgery, and remission. Consecutive models were 
built including clinical variables alone (Table 1) and clinical 
variables with gene expression in order to evaluate the con-
tribution of gene expression to overall predictions. Separate 
models were also built with and without rectosigmoid in-
volvement, a clinical feature not previously reported in 
other predictive models for pediatric CD.20,33 Based on the 
results of the differential expression analysis, colonic gene 
expression data was used. Models were trained based on 
normalized gene counts, processed as described above in-
cluding filtering genes by expression, controlling for batch, 
sex, TIN, and 1 factor of variation, and normalizing using the 
variance stabilizing transform.25,26,28 Given the small sample 
size, leave-one-count cross-validation was used. With this 
approach, a unique model is trained for each sample in the 
dataset, that sample is excluded from training and used for 
evaluation, and model performance is represented as an av-
erage across all samples. Genes were selected for inclusion 
within models using the least absolute shrinkage and selec-
tion operator (LASSO), a regularized linear model that in-
creases a penalty for each non-zero coefficient.34 Care was 
taken to apply gene selection within folds, with LASSO ap-
plied to only the training data for each fold. 
Multiple machine learning models were developed and 
compared, including LASSO, random forest (RF), gradient 
boosting (XGB), deep neural networks (NN).35 Each model 
was assessed using area under the receiver operating char-
acteristic curve (AUROC) and area under the precision-re-
call curve (AUPRC). Feature importance was determined for 
the LASSO model using its coefficients. Coefficients were 
summarized across cross-validation folds by summing the 
absolute value for each fold. PCA plots were then generated 
using the genes with the highest coefficient values across all 
folds. Model training, evaluation, and interpretation was 
performed in Python (v3.8) using the Scikit-Learn and Ten-
sorflow libraries.35–37 

Results 
Study population characteristics 
After applying quality control, 56 CD patients with colon 
samples and 56 CD patients with ileum samples were 
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included in the study cohort, while 46 non-IBD patients 
with colon samples and 46 non-IBD patients with ileum 
samples were used as controls. For CD patients with colon 
samples, 33.9% of patients were female, the average age of 
diagnosis was 11.7, and 69.6% of patients had ileocolonic 
disease. 
19.6% of patients developed B2 complications, 10.7% de-
veloped B3 complications, 32.1% required surgery, and 
76.8% experienced a period of remission (Table 1). Of note, 
all 12 patients who developed B2 complications required 
surgery and 12 of 19 (63.1%) of patients who required sur-
gery had B2 complications.  
 
Table 1. Clinical and Demographic Characteristics of the 
Crohn’s Disease Study Cohort 
   

Colon Ileum 

n   56 56 

Sex, n (%) F 19 (33.9) 18 (32.1) 

M 37 (66.1) 38 (67.9) 

Diagnosis 
Age, mean 

(SD) 

  11.7 (3.2) 11.6 (3.4) 

Disease loca-
tion, n (%) 

L1 4 (7.1) 9 (16.1) 

L2 9 (16.1) 7 (12.5) 

L3 39 (69.6) 36 (64.3) 

L3L4 3 (5.4) 3 (5.4) 

L4 1 (1.8) 1 (1.8) 

Family his-
tory of IBD, n 

(%) 

  21 (37.5) 24 (42.9) 

Perianal dis-
ease, n (%) 

  21 (37.5) 18 (32.1) 

Rectosig-
moid involve-
ment, n (%) 

  31 (55.4) 29 (51.8) 

B2, n (%)   11 (19.6) 10 (17.9) 

B3, n (%)   6 (10.7) 7 (12.5) 

Progression 
to surgery, n 

(%) 

  18 (32.1) 17 (30.4) 

Remission, n 
(%) 

  43 (76.8) 43 (76.8) 

 
Differential expression analysis 
We first identified differentially expressed genes (DEG’s) 
between patients with CD compared with non-IBD controls, 
in both colonic and ileal tissue. In total, 10,973 DEG’s were 
identified for colonic tissue and 8,799 for ileal tissue (p-adj 
< 0.05) (Figure 1C/D). Genes related to inflammatory re-
sponse (CXCL8, AQP9, INHBA, IL1B, CXCL6, and IL6) were 
upregulated in CD compared with non-IBD, while genes re-
lated to DNA repair (MPC2, VPS28, EDF1, ALYREF, and 
PCNA) and oxidative phosphorylation (IDH3B, ATP5MC1, 
ATP5ME, MRPL11, COX7C, and PHB2) were downregulated. 
A complete list of all differential expression results is avail-
able in Supplementary Table 1 (colon) and 2 (ileum). 
We then analyzed DEG’s between patients experiencing 
specific outcomes (B2 – stricturing, B3 – fistulizing, pro-
gression to surgery, and remission) and those who did not. 
Of the four outcomes, B2 showed the clearest difference in 
gene expression. For colonic tissue, genes related to extra-
cellular matrix (ECM) production (MMP3, MMP1, CHI3L1), 
as well as inflammatory processes (CXCL5, CXCL8, AQP9, 
INHBA) were downregulated in patients who experienced 
B2 complications. The Hallmark pathways interferon-
gamma response, inflammatory response, and epithelial 
mesenchymal transition were notably downregulated. A full 
list of differential expression results for B2 in colonic tissue 
is available in Supplementary Table 3. For B2 in ileal tissue, 
no significantly DEG’s were identified. Analysis of DEG’s for 
B3 showed 2 for colon and 1 for ileum, although these 
showed no specific pattern. For progression to surgery, 4 
DEG’s were identified for colon and 1 for ileum. This in-
cluded upregulation of mitochondrial genes (MTCO1P12 

Figure 1. Differential gene expression analysis for pediatric patients with CD versus patients without IBD. A, PCA plot based on colonic gene 
expression. B, PCA plot based on ileal gene expression. C, Volcano plot showing differentially expressed genes with p < 0.05 and log2 fold change 
> 1.5 based on colonic gene expression. D, Volcano plot based on ileal gene expression (same criteria). E, Gene set enrichment analysis based on 
Hallmark pathways for colonic gene expression. F, Gene set enrichment analysis based on Hallmark pathways for ileal gene expression. 
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and MTND1P23) and downregulation of UCN2 and CXCL5 
in colonic tissue.  For ileal tissue, MTCO1P12 was upregu-
lated. Finally, analysis of remission showed no DEG’s. 
Predictive modeling 
We first developed models for each of the recorded out-
comes based on clinical variables alone (sex, diagnosis age, 
disease location, perianal disease, and family history of 
IBD).  Overall, these showed poor accuracy with AUROC of 
<0.6 for all models for all outcomes. Adding gene expression 
resulted in a significant improvement in predictive ability 
(Figure 3). For B2, neural networks (NN) showed the 

highest performance, with an AUROC of 0.806 (95% CI 
0.753 - 0.859) compared with 0.583 (95% CI 0.518 - 0.649) 
for clinical variables alone. For remission and surgery, NN 
was the highest performing model, obtaining an AUROC of 
0.834 (95% CI 0.784 - 0.883) and 0.732 (95% CI 0.673 - 
0.792) for each outcome respectively. AUROC and AUPRC 
results for all models are available in Supplementary Table 
4. 
Addition of rectosigmoid involvement to the clinical model 
also resulted in significant improvements for all outcomes 
compared the original clinical variables with AUROC 0.7-

0.8. Finally, combining all variable 
types (clinical variables, rectosigmoid 
involvement, and gene expression) re-
sulted in the highest accuracy for B2, 
with NN showing an AUROC of 0.836, 
and remission, with XGB showing an 
AUROC of 0.834 (Figure 4). In contrast, 
for surgery, clinical variables with gene 
expression and clinical variables with 
rectosigmoid involvement showed the 
best performance, with an AUROC for 
gradient boosting (XGB) of 0.751. AU-
ROC and AUPRC results for these mod-
els are available in Supplementary Ta-
ble 4. 
Analysis of the LASSO prediction model 
for B2 to determine which genes 
showed the strongest contributions to 
model predictions revealed differences 
compared with differential expression 
analysis. Of the 131 genes used across 
all folds, 33 were found to be signifi-
cantly differentially expressed. Genes 
related to inflammatory/immune pro-
cesses were highly important, 

Figure 2. Differential gene expression analysis for pediatric CD patients experiencing stricturing complications versus those who did not 
based on colonic tissue A, PCA plot. B, Volcano plot showing differentially expressed genes with p < 0.05 and log2 fold change > 1.5. C, Gene set 
enrichment analysis based on Hallmark pathways. D, Boxplots for selected genes 

Figure 3. Receiver operating characteristic curves for all models predicting pediatric CD 
complications based on clinical variables and gene expression, RF – random forest, XGB –
gradient boosting, NN – neural network, AUROC - area under the receiver operating characteristic 
curve, CI – confidence interval 
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including CXCL9, DUOX2, and FOXP3. ECM-related genes 
were also important, including MMP3, MMP1, and CHI3L1. 
Genes with the largest cumulative absolute values for coef-
ficients are listed in Figure 5A. Pathway enrichment analy-
sis showed that the Hallmark pathways interferon-gamma 
response and IL-6/JAK/STAT signaling showed the strong-
est enrichment (Figure 5B). PCA plots based only on the top 
20 genes identified by the LASSO models showed strong 
clustering of the B2 samples (Figure 5C). Interestingly, of 
the 5 genes used in >50% of folds (REG1A, FGL2, DMBT1, 
MMP3, and DUOX2), only 1 (DMBT1) was found to be sig-
nificantly differentially expressed. Two of these, FGL2 and 
DUOX2 trended towards significance, with adjusted p-val-
ues of 0.17 and 0.07 respectively. Analysis of expression of 

these specific genes showed clear dif-
ferences between the two groups, but 
significant heterogeneity. 

Discussion 
Patients with pediatric CD who 
experienced stricturing complications 
showed a distinct colonic 
transcriptome at time of diagnosis 
compared with those who did not, with 
downregulation of inflammatory and 
extracellular matrix (ECM) production 
pathways. Patients who required 
surgery also showed downregulation 
of the ECM-related pathways. In 
contrast, there was no clear difference 
in the pattern of gene expression 
between patients who experienced 
fistulizing complications or those who 
experienced remission based on 
differential expression analysis. 
Machine learning-based models were 
able to incorporate information from 
gene expression to improve upon 
predictions based on clinical variables 

alone and predict with high accuracy which patients would 
develop stricturing complications, experience remission, or 
require surgery. Despite limited changes in individual genes 
for the remission and surgery outcomes, the models were 
able to achieve good accuracy, suggesting improved 
predictions based on combinations of genes. 
Multiple previous studies have established a link between 
gene expression, particularly in the ECM and inflammatory 
pathways, and pediatric CD outcomes.38 Haberman et al. 
identified increased DUOX2, MMP3, AQP9, and IL8 as highly 
upregulated and APOA1, NAT8, and AGXT2 as highly 
downregulated in ileal tissue for pediatric CD. These gene 
signatures were then used to predict steroid-free remission 

Figure 4. Receiver operating characteristic curves for all models predicting pediatric CD 
complications based on clinical variables, rectosigmoid involvement, and gene expression, 
RF – random forest, XGB – gradient boosting, NN – neural network, AUROC - area under the 
receiver operating characteristic curve, CI – confidence interval 

Figure 5. Analysis of model predicting stricturing (B2) complications for pediatric CD. A, Top genes based on LASSO coefficients across all 
cross-validation folds. B, Pathway analysis based on top genes. C, PCA plot based on top genes. D, Boxplots of expression by B2 status for genes 
used in >50% of folds, but not found to be differentially expressed 
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with an AUROC of 0.721.9 Kugathasan et al. identified 
upregulation of several ECM-related gene ontology 
pathways in the ileum of pediatric CD patients experiencing 
B2 complications and used an ECM gene signature to 
predict development of B2 complications with an AUROC of 
0.72.14 Ta et al. also identified inflammatory and ECM gene 
signatures as associated with transmural healing for 
pediatric CD patients with inflammatory small bowel 
disease.39 
The results of our study broadly agree with previous work 
and confirm the importance of ECM and inflammatory 
pathways for pediatric CD outcomes. However, they also 
differ from previous work in pediatric CD in that our 
analysis focuses on colonic rather than ileal tissue and 
shows downregulation of the inflammatory response and 
epithelial mesenchymal transition pathways in this tissue 
type. The current results agree with previous studies 
suggesting prognostic significance of colonic gene 
expression for predicting mainly ileal complications, as the 
ileal transcriptome may be completely dominated by 
current, active disease.21,40 Of note, these results relied on 
FFPE tissue, which allowed assembly of a broader cohort at 
lower cost, but showed broad agreement with results based 
on fresh tissue, especially in CD vs non-IBD comparisons. In 
addition, despite using a smaller training set and rigorous 
cross-validation, our models show higher predictive 
accuracy (AUROC >0.8) compared with previous studies, 
demonstrating the potential for more complex, machine 
learning-based models to outperform traditional logistic 
regression.  
Analysis of the contributions of individual genes to our 
models reveals associations between genes and outcomes 
that may be overlooked by single gene differential 
expression techniques. Due to heterogeneity in gene 
expression, these associations may not appear when groups 
are considered in aggregate. In particular, the genes REG1A, 
MMP3, and DUOX2 strongly influenced model predictions 
and have been found to be associated with IBD and disease 
severity in multiple previous studies, but were not 
identified as significantly differentially expressed.9,41,42 
Another interesting finding from our study was the strong 
inverse relationship between rectosigmoid involvement 
and development of stricturing disease. Previous studies 
have identified young age, ileocolonic involvement, perianal 
involvement, and early response to initial therapy as 
predictive of CD complications.5,33,43 However, few studies 
have specifically examined rectosigmoid disease.43 This 
finding merits further study in other populations. 
Our results join a growing body of research highlighting the 
potential for machine learning to predict outcomes related 
to IBD and support clinicians in providing therapies tailored 
to those predictions. Machine learning has been used to 
predict hospitalization and outpatient steroid use,44 
response to biologic therapy,45 post-operative CD 
recurrence,46 and identify novel serum markers.47 Machine 
learning can identify relationships within multi-omic, high 
dimensional data and is particularly well-suited to assist the 
transition from a “trial and error” approach to precision 
medicine in IBD.48 
Our study has important limitations. First, it is based on a 
relatively small, single-institution dataset. While the exact 

models generated using this dataset may not be 
generalizable, the described methods for selecting and 
modeling on gene expression should be broadly applicable. 
Second, similar to previous studies, we were not able to 
consistently model B3 complications, likely due to the 
heterogeneity of the subtype.14 Third, analyzing paired 
affected and unaffected regions for each patient may have 
captured the impact of inflammation on molecular 
phenotypes. Fourth, treatment in this study was left to the 
discretion of the primary pediatric gastroenterologist and 
differences in treatment selection had an unadjusted effect 
on outcomes. Finally, our analysis does not include other 
data types, such as small RNA, chromatin biology, serum 
markers, or microbial composition. Prediction of IBD 
outcomes applying machine learning to these multi-omic 
data sources represents an exciting direction for future 
research.19,49 

Conclusions 
Pediatric CD patients who experience complications show a 
distinct colonic transcriptome at the time of diagnosis. 
Machine learning can use this information to predict future 
outcomes, including strictures, remission, or progression to 
surgery. Applied to larger, multi-institutional datasets, this 
approach can develop prognostic models to support 
clinicians in identifying which patients are at highest risk of 
CD-specific complications and tailor therapies to improve 
outcomes. 
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Supplementary Content 
Supplementary Table 1 
ensembl gene baseMean log2Fold-

Change 
pvalue padj biotype 

ENSG00000103569 AQP9 212.3146 6.479299 2.10E-28 6.57E-24  protein_coding 

ENSG00000163735 CXCL5 602.2539 5.797342 5.55E-28 8.67E-24  protein_coding 

ENSG00000169429 CXCL8 352.5058 4.940754 1.06E-26 1.10E-22  protein_coding 

ENSG00000163220 S100A9 124.6617 4.867321 1.16E-23 9.04E-20  protein_coding 

ENSG00000143546 S100A8 105.7021 5.831763 3.96E-23 2.48E-19  protein_coding 

ENSG00000133048 CHI3L1 835.5755 3.855663 5.29E-23 2.50E-19  protein_coding 

ENSG00000099985 OSM 97.61954 4.307992 5.60E-23 2.50E-19  protein_coding 

ENSG00000172023 REG1B 268.6374 6.102726 9.55E-23 3.73E-19  protein_coding 

ENSG00000140279 DUOX2 6412.8 4.180778 1.29E-21 4.05E-18  protein_coding 

ENSG00000198019 FCGR1B 179.971 3.137374 1.21E-21 4.05E-18  protein_coding 

ENSG00000125538 IL1B 771.6228 3.868796 1.57E-21 4.47E-18  protein_coding 

ENSG00000124731 TREM1 153.0155 4.429532 1.23E-20 3.21E-17  protein_coding 

ENSG00000145040 UCN2 91.62877 5.092998 3.88E-20 9.33E-17  protein_coding 

ENSG00000182782 HCAR2 169.8925 4.776189 4.84E-20 1.08E-16  protein_coding 

ENSG00000163739 CXCL1 482.1647 2.585821 1.46E-19 3.04E-16  protein_coding 

ENSG00000124788 ATXN1 4441.133 0.495897 1.75E-19 3.22E-16  protein_coding 

ENSG00000164938 TP53INP1 3404.961 0.947784 1.75E-19 3.22E-16  protein_coding 

ENSG00000286318 ENSG00000286318 311.9418 2.561845 1.87E-19 3.24E-16  lncRNA 

ENSG00000140274 DUOXA2 281.8285 4.568564 4.63E-19 7.63E-16  protein_coding 

ENSG00000122641 INHBA 626.8933 3.583748 6.65E-19 1.04E-15  protein_coding 

ENSG00000057657 PRDM1 2311.652 1.229644 7.10E-19 1.06E-15  protein_coding 

ENSG00000150337 FCGR1A 95.87634 2.897471 1.02E-18 1.44E-15  protein_coding 

ENSG00000164062 APEH 887.5975 -0.6737 3.61E-18 4.91E-15  protein_coding 

ENSG00000279882 ENSG00000279882 228.4436 0.704885 4.32E-18 5.63E-15  TEC 

ENSG00000203747 FCGR3A 390.8108 2.445528 7.08E-18 8.85E-15  protein_coding 

ENSG00000132463 GRSF1 2417.012 -0.42095 8.67E-18 1.04E-14  protein_coding 

ENSG00000104415 CCN4 459.14 2.611052 2.26E-17 2.61E-14  protein_coding 

ENSG00000139083 ETV6 3091.616 0.433217 2.43E-17 2.71E-14  protein_coding 

ENSG00000124875 CXCL6 93.72116 3.832095 2.58E-17 2.75E-14  protein_coding 

ENSG00000103495 MAZ 1794.613 -0.53245 2.64E-17 2.75E-14  protein_coding 

ENSG00000249138 SLED1 64.6498 2.709448 3.98E-17 4.01E-14  tran-
scribed_pro-
cessed_pseudo-
gene 

ENSG00000173432 SAA1 39.85757 3.980185 4.87E-17 4.76E-14  protein_coding 

ENSG00000289013 ENSG00000289013 331.2351 1.188265 6.05E-17 5.73E-14  lncRNA 

ENSG00000117228 GBP1 2137.331 1.920685 8.44E-17 7.77E-14  protein_coding 

ENSG00000007171 NOS2 1866.585 2.76503 1.04E-16 9.29E-14  protein_coding 

ENSG00000163734 CXCL3 367.1203 2.09073 1.36E-16 1.18E-13  protein_coding 

ENSG00000285744 ENSG00000285744 1050.349 0.719255 1.46E-16 1.23E-13  lncRNA 

ENSG00000081041 CXCL2 155.5218 2.085072 1.74E-16 1.40E-13  protein_coding 

ENSG00000229023 RAB1AP1 259.6699 1.740719 1.74E-16 1.40E-13  pro-
cessed_pseudo-
gene 

ENSG00000287100 ENSG00000287100 205.7053 0.779586 2.50E-16 1.96E-13  lncRNA 

ENSG00000169245 CXCL10 205.2695 3.038737 2.82E-16 2.10E-13  protein_coding 

ENSG00000288932 ENSG00000288932 35.5304 3.143926 2.78E-16 2.10E-13  lncRNA 

ENSG00000279384 ENSG00000279384 201.116 0.96634 3.08E-16 2.24E-13  TEC 
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ENSG00000222041 CYTOR 1848.989 1.391568 3.34E-16 2.38E-13  lncRNA 

ENSG00000272941 ENSG00000272941 117.0442 1.174626 3.48E-16 2.42E-13  lncRNA 

ENSG00000120875 DUSP4 291.3301 1.627276 4.13E-16 2.81E-13  protein_coding 

ENSG00000101365 IDH3B 624.1663 -0.60318 5.20E-16 3.46E-13  protein_coding 

ENSG00000142871 CCN1 536.5416 2.458004 6.21E-16 4.05E-13  protein_coding 

ENSG00000166527 CLEC4D 32.22037 3.859848 7.76E-16 4.95E-13  protein_coding 

 
 
Supplementary Table 2 
 
ensembl gene baseMean log2FoldChange pvalue padj biotype 

ENSG00000255398 HCAR3 340.536587 6.085196123 1.93E-37 6.09E-33  protein_coding 

ENSG00000103569 AQP9 272.7622177 6.091091743 9.19E-33 1.45E-28  protein_coding 

ENSG00000169429 CXCL8 326.3289607 4.998462581 2.87E-32 2.48E-28  protein_coding 

ENSG00000185499 MUC1 740.333249 2.762534894 3.14E-32 2.48E-28  protein_coding 

ENSG00000149968 MMP3 600.968378 6.54462876 3.43E-31 2.16E-27  protein_coding 

ENSG00000162747 FCGR3B 213.4524126 4.777364134 1.49E-30 7.82E-27  protein_coding 

ENSG00000198019 FCGR1B 219.3067735 3.625016313 3.66E-29 1.65E-25  protein_coding 

ENSG00000145040 UCN2 87.7211525 5.58819203 7.56E-29 2.98E-25  protein_coding 

ENSG00000203747 FCGR3A 391.7727648 3.383717226 2.31E-28 7.40E-25  protein_coding 

ENSG00000125538 IL1B 849.9423355 4.506426341 2.35E-28 7.40E-25  protein_coding 

ENSG00000286318 ENSG00000286318 235.9857729 3.24585781 4.28E-28 1.12E-24  lncRNA 

ENSG00000182782 HCAR2 214.1297557 4.48433258 3.95E-28 1.12E-24  protein_coding 

ENSG00000163735 CXCL5 644.4911304 4.968794424 7.49E-28 1.82E-24  protein_coding 

ENSG00000225840 ENSG00000225840 201648.1459 2.48284829 2.60E-25 5.86E-22  processed_pseudo-
gene 

ENSG00000124731 TREM1 181.7859991 4.246371093 2.97E-25 6.25E-22  protein_coding 

ENSG00000280800 ENSG00000280800 279421.8851 2.943847265 3.49E-25 6.86E-22  lncRNA 

ENSG00000286076 ENSG00000286076 45.39615807 6.002564262 8.81E-25 1.63E-21  lncRNA 

ENSG00000150337 FCGR1A 121.5791026 3.491097525 3.46E-24 6.05E-21  protein_coding 

ENSG00000259379 MTND5P32 60.59462349 5.311702073 4.27E-24 7.07E-21  processed_pseudo-
gene 

ENSG00000143546 S100A8 113.1880812 5.20785725 1.97E-23 3.03E-20  protein_coding 

ENSG00000123610 TNFAIP6 39.95911926 4.422471243 2.02E-23 3.03E-20  protein_coding 

ENSG00000114270 COL7A1 2908.196547 3.14301838 3.14E-23 4.50E-20  protein_coding 

ENSG00000133048 CHI3L1 768.5399657 3.610401406 4.42E-23 6.05E-20  protein_coding 

ENSG00000136689 IL1RN 359.535315 3.629130306 2.14E-22 2.81E-19  protein_coding 

ENSG00000163220 S100A9 132.8323707 4.420346637 2.99E-22 3.77E-19  protein_coding 

ENSG00000122641 INHBA 584.462016 3.097245555 6.73E-22 8.16E-19  protein_coding 

ENSG00000114251 WNT5A 1106.403855 1.789701901 1.02E-21 1.19E-18  protein_coding 

ENSG00000140279 DUOX2 4873.272118 3.8284566 2.03E-21 2.29E-18  protein_coding 

ENSG00000087510 TFAP2C 33.06438308 4.021197757 7.53E-21 8.18E-18  protein_coding 

ENSG00000123700 KCNJ2 438.9937745 1.588926439 2.84E-20 2.99E-17  protein_coding 

ENSG00000140274 DUOXA2 173.4220799 4.414599847 4.39E-20 4.46E-17  protein_coding 

ENSG00000151948 GLT1D1 54.76370272 3.305805468 5.28E-20 5.20E-17  protein_coding 

ENSG00000115008 IL1A 60.58406616 4.094031407 2.96E-19 2.82E-16  protein_coding 

ENSG00000238133 MAP3K20-AS1 74.00620886 2.735850699 4.20E-19 3.89E-16  lncRNA 

ENSG00000163739 CXCL1 411.0147743 2.102947634 4.38E-19 3.94E-16  protein_coding 

ENSG00000259600 ENSG00000259600 35.51638494 4.402617834 5.01E-19 4.38E-16  processed_pseudo-
gene 

ENSG00000102359 SRPX2 517.3388375 1.673861496 5.54E-19 4.72E-16  protein_coding 
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ENSG00000119535 CSF3R 1497.416905 1.990146236 6.15E-19 5.10E-16  protein_coding 

ENSG00000188582 PAQR9 327.8062799 2.237570809 2.94E-18 2.37E-15  protein_coding 

ENSG00000154451 GBP5 3569.736066 2.275453818 4.20E-18 3.31E-15  protein_coding 

ENSG00000203804 ADAMTSL4-AS1 453.9456019 1.114692439 5.26E-18 4.04E-15  lncRNA 

ENSG00000203396 ENSG00000203396 4124.92842 2.773177868 6.18E-18 4.64E-15  processed_pseudo-
gene 

ENSG00000225492 GBP1P1 160.9458899 1.87094544 8.21E-18 6.02E-15  transcribed_unpro-
cessed_pseudogene 

ENSG00000249138 SLED1 69.0855785 2.598431868 8.60E-18 6.16E-15  transcribed_pro-
cessed_pseudogene 

ENSG00000257354 MIRLET7IHG 928.5150947 0.746561114 1.29E-17 9.05E-15  lncRNA 

ENSG00000260212 ENSG00000260212 48.18033674 1.564594936 1.40E-17 9.61E-15  unprocessed_pseudo-
gene 

ENSG00000115590 IL1R2 142.3494351 2.191807253 1.46E-17 9.79E-15  protein_coding 

ENSG00000223611 SUPT20HL2 1621.103965 1.591581552 5.62E-17 3.69E-14  protein_coding 

ENSG00000130032 PRRG3 5907.248958 1.928834041 7.02E-17 4.51E-14  protein_coding 

 

 
Supplementary Table 3 
ensembl gene baseMean log2FoldChange pvalue padj biotype 

ENSG00000196611 MMP1 1477.890134 -5.193844501 1.55E-09 2.14E-05  protein_coding 

ENSG00000145040 UCN2 141.6037762 -5.231934345 1.23E-09 2.14E-05  protein_coding 

ENSG00000163735 CXCL5 940.569293 -4.602175297 1.52E-08 0.000139508  protein_coding 

ENSG00000189164 ZNF527 889.8035685 0.349681526 5.74E-08 0.00039462  protein_coding 

ENSG00000169429 CXCL8 545.5148526 -3.518534495 2.47E-07 0.001361043  protein_coding 

ENSG00000133048 CHI3L1 1260.52265 -3.058736338 4.29E-07 0.001493453  protein_coding 

ENSG00000166527 CLEC4D 48.6821585 -3.118176291 3.98E-07 0.001493453  protein_coding 

ENSG00000174514 MFSD4A 425.1745508 0.964643189 4.34E-07 0.001493453  protein_coding 

ENSG00000103888 CEMIP 971.8043487 -2.704766843 6.76E-07 0.001858757  protein_coding 

ENSG00000049768 FOXP3 80.70534695 -1.383983775 6.40E-07 0.001858757  protein_coding 

ENSG00000163220 S100A9 190.5846833 -3.552617871 9.22E-07 0.002306071  protein_coding 

ENSG00000103569 AQP9 332.6059138 -3.534953571 1.34E-06 0.003068947  protein_coding 

ENSG00000255398 HCAR3 356.0569413 -3.734489557 1.63E-06 0.003193964  protein_coding 

ENSG00000143546 S100A8 164.5596076 -3.848715158 1.54E-06 0.003193964  protein_coding 

ENSG00000286076 ENSG00000286076 61.68472563 -4.113604163 1.95E-06 0.003569313  lncRNA 

ENSG00000124875 CXCL6 140.342158 -3.309664587 2.14E-06 0.003673288  protein_coding 

ENSG00000257612 MIR4307HG 137.0799624 0.689389961 2.64E-06 0.004227671  lncRNA 

ENSG00000122861 PLAU 780.7818386 -2.048404948 2.77E-06 0.004227671  protein_coding 

ENSG00000204397 CARD16 295.717903 -0.878356891 3.11E-06 0.004355691  protein_coding 

ENSG00000182782 HCAR2 263.0825932 -3.357943523 3.50E-06 0.004355691  protein_coding 

ENSG00000240065 PSMB9 1084.326517 -0.666792246 3.22E-06 0.004355691  protein_coding 

ENSG00000163393 SLC22A15 255.6353953 -1.002461864 3.64E-06 0.004355691  protein_coding 

ENSG00000114251 WNT5A 1229.648383 -1.597073336 3.39E-06 0.004355691  protein_coding 

ENSG00000162645 GBP2 2203.676366 -1.003392207 4.29E-06 0.004920336  protein_coding 

ENSG00000122641 INHBA 943.9139296 -2.99692976 4.63E-06 0.005089956  protein_coding 

ENSG00000148175 STOM 2449.032613 -0.968120063 4.91E-06 0.005197558  protein_coding 

ENSG00000216490 IFI30 1012.542277 -1.139124098 5.23E-06 0.005334029  protein_coding 

ENSG00000103257 SLC7A5 488.3092434 -1.130040314 5.51E-06 0.005409609  protein_coding 

ENSG00000162551 ALPL 182.8712685 -2.228221432 6.26E-06 0.005941301  protein_coding 

ENSG00000125538 IL1B 1161.730388 -2.844245592 6.54E-06 0.005995695  protein_coding 

ENSG00000117360 PRPF3 1942.882145 0.196787498 6.85E-06 0.0060797  protein_coding 

ENSG00000129048 ACKR4 45.17204838 -1.593520592 8.66E-06 0.007320072  protein_coding 
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ENSG00000102265 TIMP1 360.1654904 -1.862746091 8.78E-06 0.007320072  protein_coding 

ENSG00000203747 FCGR3A 535.2179964 -1.787886898 1.23E-05 0.009695488  protein_coding 

ENSG00000172965 MIR4435-2HG 4751.221541 -1.105956557 1.21E-05 0.009695488  lncRNA 

ENSG00000259651 MTCO3P23 25.64282451 -3.316443722 1.31E-05 0.010008076  pro-
cessed_pseudogene 

ENSG00000138755 CXCL9 1222.244715 -2.408423826 1.44E-05 0.010739141  protein_coding 

ENSG00000104951 IL4I1 180.4504491 -1.203678333 1.56E-05 0.011293608  protein_coding 

ENSG00000289470 ENSG00000289470 331.6653106 -0.785181162 1.69E-05 0.011906578  lncRNA 

ENSG00000234518 PTGES3P1 82.74426772 -1.075772673 1.80E-05 0.01235523  pro-
cessed_pseudogene 

ENSG00000128335 APOL2 1955.484706 -0.762885406 1.96E-05 0.012566114  protein_coding 

ENSG00000166816 LDHD 211.5403583 1.347639718 1.91E-05 0.012566114  protein_coding 

ENSG00000007171 NOS2 2645.448179 -2.181775524 1.92E-05 0.012566114  protein_coding 

ENSG00000106415 GLCCI1 1460.565097 -0.619498469 2.01E-05 0.012575838  protein_coding 

ENSG00000270190 ENSG00000270190 49.17065424 -1.393641809 2.13E-05 0.0129925  lncRNA 

ENSG00000100342 APOL1 1610.999712 -0.957737151 2.41E-05 0.014436717  protein_coding 

ENSG00000258082 ENSG00000258082 22.44372873 -1.694387651 2.54E-05 0.014584735  lncRNA 

ENSG00000237973 MTCO1P12 1057.39443 2.929617156 2.53E-05 0.014584735  unpro-
cessed_pseudogene 

ENSG00000119535 CSF3R 1794.157586 -1.89910828 2.87E-05 0.014639512  protein_coding 

 
Supplementary Table 4 
 
Included variables Outcome Model AUROC AUROC 95% CI AUPRC AUPRC 95% CI 

Clinical variables B2 LASSO 
0.5 0.434 - 0.566 0.288 0.191 - 0.305 

No RSI 
 

RF 
0.482 0.416 - 0.549 0.37 0.292 - 0.418   

XGB 
0.507 0.441 - 0.574 0.33 0.228 - 0.348   

NN 
0.583 0.518 - 0.649 0.284 0.188 - 0.302  

Remis-
sion 

LASSO 
0.427 0.361 - 0.492 0.767 0.705 - 0.818   

RF 
0.531 0.465 - 0.598 0.811 0.754 - 0.859   

XGB 
0.561 0.495 - 0.627 0.84 0.786 - 0.884   

NN 
0.395 0.33 - 0.46 0.754 0.683 - 0.799  

Surgery LASSO 
0.519 0.453 - 0.586 0.342 0.26 - 0.383   

RF 
0.435 0.369 - 0.501 0.339 0.249 - 0.372   

XGB 
0.564 0.498 - 0.629 0.357 0.275 - 0.4   

NN 
0.573 0.508 - 0.639 0.409 0.313 - 0.442 

Clinical variables B2 LASSO 
0.78 0.725 - 0.835 0.468 0.364 - 0.495 

With RSI 
 

RF 
0.74 0.682 - 0.798 0.509 0.429 - 0.562   

XGB 
0.817 0.765 - 0.868 0.567 0.429 - 0.561   

NN 
0.754 0.697 - 0.811 0.447 0.337 - 0.467  

Remis-
sion 

LASSO 
0.703 0.642 - 0.763 0.889 0.844 - 0.928   

RF 
0.755 0.698 - 0.812 0.911 0.873 - 0.949   

XGB 
0.811 0.759 - 0.863 0.926 0.888 - 0.959   

NN 
0.673 0.611 - 0.735 0.847 0.785 - 0.884  

Surgery LASSO 
0.633 0.569 - 0.697 0.488 0.39 - 0.522   

RF 
0.602 0.538 - 0.667 0.51 0.427 - 0.56   

XGB 
0.751 0.693 - 0.808 0.635 0.556 - 0.684   

NN 
0.713 0.653 - 0.773 0.524 0.426 - 0.558 

Clinical and gene expression B2 LASSO 
0.79 0.735 - 0.844 0.468 0.354 - 0.486 

No RSI 
 

RF 
0.625 0.561 - 0.69 0.369 0.284 - 0.411 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2022. ; https://doi.org/10.1101/2022.11.07.515480doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.07.515480
http://creativecommons.org/licenses/by-nc-nd/4.0/


Linking Gene Expression to Clinical Outcomes in Pediatric Crohn’s Disease Using Machine Learning 

Chen et al. 2022 (preprint)   13

  
XGB 

0.659 0.595 - 0.722 0.373 0.286 - 0.414   
NN 

0.806 0.753 - 0.859 0.589 0.509 - 0.641  
Remis-
sion 

LASSO 
0.742 0.684 - 0.801 0.907 0.867 - 0.945   

RF 
0.716 0.656 - 0.777 0.902 0.862 - 0.941   

XGB 
0.68 0.617 - 0.742 0.867 0.817 - 0.909   

NN 
0.834 0.784 - 0.883 0.931 0.895 - 0.964  

Surgery LASSO 
0.523 0.457 - 0.59 0.363 0.274 - 0.401   

RF 
0.656 0.592 - 0.719 0.559 0.482 - 0.615   

XGB 
0.577 0.511 - 0.643 0.356 0.269 - 0.395   

NN 
0.732 0.673 - 0.792 0.654 0.58 - 0.708 

Clinical and gene expression B2 LASSO 
0.782 0.727 - 0.837 0.61 0.532 - 0.663 

With RSI 
 

RF 
0.647 0.584 - 0.711 0.329 0.222 - 0.342   

XGB 
0.814 0.762 - 0.866 0.517 0.424 - 0.558   

NN 
0.836 0.787 - 0.886 0.609 0.529 - 0.66  

Remis-
sion 

LASSO 
0.828 0.778 - 0.879 0.94 0.907 - 0.971   

RF 
0.766 0.709 - 0.822 0.916 0.878 - 0.952   

XGB 
0.834 0.784 - 0.883 0.945 0.913 - 0.975   

NN 
0.755 0.697 - 0.812 0.899 0.87 - 0.947  

Surgery LASSO 
0.599 0.534 - 0.665 0.517 0.437 - 0.57   

RF 
0.658 0.594 - 0.721 0.505 0.423 - 0.557   

XGB 
0.64 0.576 - 0.704 0.466 0.367 - 0.499   

NN 
0.731 0.672 - 0.79 0.603 0.525 - 0.657 

RSI – rectosigmoid involvement 
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