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ABSTRACT 

Quantitative models that explicitly capture single-cell resolution cell-cell interaction features to predict patient survival 

at population scale are currently missing. Here, we describe the first quantitative model that extracted hundreds of 

features describing single-cell based cell-cell interactions and cellular phenotypes from a large, published cohort of cyto-

images of breast cancer patients. We applied these features to a neural-network based Cox-nnet survival model and 

obtained high accuracy in predicting patient survival in test data (Concordance Index > 0.8).  We identified seven 

survival subtypes using the top survival features, which present distinct profiles of epithelial, immune, fibroblast cells, 

and their interactions. We identified atypical subpopulations of TNBC patients with moderate prognosis (GATA3 over-

expression) and Liminal A patients with poor prognosis (KRT6 and ACTA2 over-expression and CDH1 under-

expression). These atypical subpopulations are validated in TCGA-BRCA and METABRIC datasets. This work outlines 

the roadmap to integrate single-cell data for survival prediction at population scale. 

  

 

INTRODUCTION 

Breast cancer became the most commonly diagnosed cancer in 2020, with an estimated 2.3 million new cases globally 

(Sung et al., 2021). Predicting survival in breast cancer can aid clinicians in making prompt prognostic decisions and 

deciding the direction of treatment. The relevance of prognosis in oncology is projected to grow in the future as new 

prognostic indicators allow for more precise treatment therapies (Mackillop, 2003). However, insufficient knowledge 

about the intercellular interaction among the tumor and tumor microenvironment is a significant roadblock in applying 

personalized therapies. The breast cancer tumor ecosystems in breast cancer consist of neoplastic epithelial cells forming 

the tumor core,  as the 'tumor microenvironment' composed of several types of immune cells, fibroblasts, adipocytes, 

and mesenchymal cells (McAllister & Weinberg, 2010; Turashvili & Brogi, 2017). These diverse cell types alter 

molecular and cellular programs and present dynamic spatial heterogeneity as the disease progresses. Such temporal 

and spatial changes are responsible for differential responses to anti-cancer therapies and subsequent clinical outcomes. 

Hence, it is essential to develop comprehensive understanding of breast cancer heterogeneity by elucidating the 
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contribution of tumor, tumor microenvironment, and their intricate interactions (Dagogo-Jack & Shaw, 2018; Lüönd, 

Tiede, & Christofori, 2021). 

Investigations at single-cell resolution (Casasent et al., 2018; Yan et al., 2021) have enabled detailed elucidation of 

tumor-microenvironment interactions lately. Various components of tumor-immune-stromal relationships have been 

identified, and tumor heterogeneity was also analyzed to distinguish breast cancer subtypes based on epithelial and  

immune cell populations (Azizi et al., 2018; Chung et al., 2017;  Karaayvaz et al., 2018). Potential biomarkers have also 

been discovered for personalized cancer immunotherapy through Single-cell RNA sequencing (scRNA-seq) (Ding, 

Chen, & Shen, 2020). However, one major limitation of scRNA-seq is the loss of spatial information crucial in 

understanding tumor heterogeneity in situ (Saviano, Henderson, & Baumert, 2020). To address these issues, spatially 

resolved assays, such as single-cell transcriptomic and proteomic techniques have been developed to study the 

distribution of cells in cancers (Baharlou, Canete, Cunningham, Harman, & Patrick, 2019). Recently, Imaging Mass 

Cytometry (IMC) based approaches have recently quantified tumor heterogeneity with spatial context and identified 

novel breast cancer molecular subtypes in large population cohorts (Ali et al., 2020; Jackson et al., 2020).  However, 

most of these studies that detect molecular subtypes are unsupervised, without explicitly fitting phenotypes such as 

survival in the learning process. Rather, survival is used as a post hoc metric to evaluate the subtypes (Poirion, Jing, 

Chaudhary, Huang, & Garmire, 2021). Moreover, these unsupervised approaches can not be directly used to predict new 

patients, significantly limiting the practical utility of the subtype findings. 

In this study, we asked whether quantifying single-cell level cell-cell interactions could provide meaningful insights for 

prognosis prediction for breast cancer patients. We computed single cell level imaging features that capture cell-cell 

interactions in breast cancer tissues from a previous single-cell imaging mass cytometry study on 259 breast cancer 

patients with survival data (Jackson et al., 2020). We applied a neural network-based method Cox-nnet previously 

developed in our group (Ching, Zhu, & Garmire, 2018) on these features to predict explicitly the patient survival 

outcome. Using the top survival features, we uncovered seven new single-cell interaction-based patient subtypes which 

show significantly better associations with survival compared to the current mainstream molecular subtypes in breast 

cancer. We characterized these survival subtypes with distinct profiles on cellular phenotypes as well as cell-cell 

interactions. Using the new survival subtyping classification, we identified two atypical patient subpopulations: a 

subgroup of triple negative breast cancer patients with moderate prognosis and a subgroup of Luminal A patients with 
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poor prognosis. We further utilized transfer learning approach and validated the presence of such unconventional 

subgroups and their biomarkers in the TCGA and METABRIC breast cancer datasets  

 

RESULTS 

Feature engineering from the breast cancer single-cell images 

The breast cancer cohort contains 259 patients with survival data, as reported earlier (Jackson et al., 2020). The summary 

of the cohort's patients, including clinical variables such as tumor grades, clinical features (ER, PR, HER2), and 

clinicopathological classes, are shown in Table S1. We first extracted 27 pre-defined cellular-phenotype (CP) features 

based on image mass cytometry data  (Fig. 1A, Table S2). These features describe epithelial, immune, and stromal cell 

phenotypes at the single-cell resolution in the original study (Methods).  We next used graphs ("network of cells'') to 

represent the cells and cellular communities with the spatial arrangement as shown in the imaging data.  We then 

calculated phenograph neighborhood information based on the cellular phenotypes in the tissue (Methods). This process 

results in additional 378 cell-cell interaction features that can be broadly divided into two subsets. The first subset 

contains 273 features related to the tumor microenvironment interaction (TMI) features (Fig. 1A).  The TMI features 

are computed from pairwise interactions among the three types of cells: immune, stromal, and epithelial cells. 

Specifically, they represent immune-immune (21 features), immune-stromal (42 features), immune-epithelial (84 

features), stromal-stromal (28 features), and stromal-epithelial (98 features) interactions. The second subset contains 

105 tumor core interaction (TCI) features, which are exclusively epithelial-epithelial interactions (Fig. 1A). The 

distributions of these 378 features in patients together with clinically defined breast cancer subtypes are illustrated in 

Fig. 1B. Anchoring on the TCI features, hierarchical clustering demonstrates broad but distinct cellular heterogeneity 

among patients, far more complex than that defined by the clinical subtypes. Compared to TCI features, TMI features 

describing immune-epithelial and stromal-epithelial interactions have similar but less distinct heterogeneity. On the 

other hand, all CP features show far less global correlations with those TCI patterns presented in epithelial-epithelial 

interactions.  

 

Survival prediction using single-cell phenotype features 
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A major goal of our study is to identify single-cell level features associated with patient survival and further evaluate 

the relative contributions of these features towards patient survival. To this end, we used the recently developed Cox-

nnet neural-network-based survival prediction models from our group (Ching, Zhu, & Garmire, 2018), which had shown 

advantages in single or multiple data modalities (Zhan et al., 2021) (Wang, Jing, He, & Garmire, 2021), compared to 

the conventional Cox-PH method (Cox, 1972). Here as a comparison to Cox-nnet models, we built a Cox-PH model 

using the clinical information including ER status, PR status, HER2 status, and tumor grade (Set I), as the baseline 

model. We constructed a series of Cox-nnet (version 2) models, including one-stage Cox-nnet models (Fig. 2A)  on the 

CP features (Set II), TMI features (Set III), TCI features (Set IV), and their combinations (Sets V, VI, VII, and VIII). 

We also constructed two-stage Cox-nnet models (Fig. 2B) on the feature combinations (Set IX, X, XI, and XII). Two-

stage Cox-nnet models are complex models that use simpler Cox-nnet models as individual building blocks (Zhan et al., 

2021). In the first-stage of training, each Cox-nnet model is built to fit a specific set of data (CP, TMI or TCI features) 

to predict survival. The hidden nodes in the first-stage Cox-nnet model are then combined as the input features to train 

a second stage Cox-nnet model. For each Cox-nnet model, we used L2 regularization to reduce overfitting.  

To rank the relative contributions of different features, we estimated the relative importance of the features in each of 

the CP, TMI, and TCI feature sets (Table S3-5). Among CP features, immune cells including type 2 macrophages 

(CD68+/vimentin low) and T & B immune cell clusters have the highest relative importance scores (1.000 and 0.692 

respectively) compared to those (0.507-0.631) of different subtypes of epithelial cells (Table S3), highlighting their 

significance in patient prognosis. In TMI features, two types of immune-epithelial interactions (T and B cells - 

CKlowHRlow  epithelial cells, Macrophage1 - CK low HRhi p53 +) and a type of fibroblast - epithelial interaction (small 

elongated fibroblast - CK7+CK + epithelial cells) and are top 3 dominant features (Table S4). Among the TCI features, 

the interactions among most proliferative epithelial cells are the strongest, as expected (Table S5). 

Identifying survival subtypes among breast cancer patients 

Our next goal was to identify patient subpopulations associated with survival, using the top survival features selected 

by importance scores from the best model using Set XII (the combination of CP, TMI, and TCI features). We performed 

Non-negative Matrix Factorization (NMF) based consensus clustering on the top fifty features according to the 

importance scores (Methods). As a result, we identified seven optimal patient subpopulation clusters, indexed by 1-7 

from the best to the worst survival risks (Fig. 3A).  We confirmed that seven clusters are the optimum value, based on 
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Cophenetic score and Silhouette coefficient, two metrics of clustering accuracy (Fig. 3B). The Kaplan-Meier plot for 

the overall survival of the seven survival subtypes yields a much higher C-index of 0.80 and a more significant log-rank 

p-value 𝑝 =  8.6𝑒−0.6(Fig. 3C), compared to the C-index of 0.63 and the log-rank p-value of 0.001 from the 

stratification of the four molecular subtypes (Fig. 3D). These results demonstrate that the single-cell level CP, TMI, and 

TCI features yield more informative subtypes that better reveal the heterogeneity in survivorship among patients.  

We further describe the survival subtypes based on their top features as well as their relationships with other clinical 

information (Fig. 3E, Table S6). As expected, the better survival subtypes tend to have more ER+ and PR+ cases, and 

the worst survival subtypes tend to have higher tumor grade (Grade III) and HER2- cases. Some emerging patterns on 

the molecular features are clearly present in the survival subtypes, supported by the single cell IMC images 

(Supplementary Fig. 1). The best survival subtype 1 is enriched with a subtype of epithelial cells with high levels of 

cytokeratin (CK) 7 and 19 but low hormone receptors  (CK7, CK19, low HR). It also has high levels of interaction 

scores between this epithelial cell subtype and several subtypes of fibroblast cells, highlighting the importance of the 

interaction between these two cell types for patient outcome. The next best subtype 2 also has enriched scores on a 

subtype of epithelial cells that express pan-cytokeratins and hormone receptors (pan-CK, HR), as well as their 

interactions with certain fibroblast cells. On the other hand, the subtype 7 with the worst survival is characterized by 

high degrees of interactions among proliferative epithelial cells, as well as interactions between macrophages/T-cells 

expressinging high vimentin and the proliferative epithelial cells. The second worst survival subtype 6 has a high level 

of epithelial cells lacking CK and HR expression, as well as strong interactions between fibroblast/B-cells and these 

epithelial cells. In summary, the survival subtypes show distinct profiles of epithelial cell subtypes and interactions 

between the epithelial cells and adjacent immune and fibroblast cell subtypes.  

Characterization of the new survival subtypes 

We next directly compared the enrichment of different types of immune, fibroblast and epithelial cells, as well as their 

interaction scores in the seven survival subtypes (Fig 4). Subtypes 5, 6, and 7 show quite distinct patterns from subtype 

1-4. In particular, subtype 5 has a high level of hypoxic epithelial cells (Fig 4E), as well as high levels of interactions 

between these hypoxic epithelial cells and macrophage2, T/B cells and vimentin expressing fibroblasts (Fig. 4I, 4K and 

4O). Subtype 6 has the second highest level of proliferative epithelial cells (Fig. 4F) but the lowest levels of vimentin 

expression fibroblast cells (Fig. 4C), and accordingly the second highest scores in interactions between T/B cell and 
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proliferative epithelial cells (Fig. 4L). Subtype 7 stands out with the highest level of proliferative epithelial cells (Fig. 

4F)  and second highest level of hypoxic epithelial cells (Fig. 4E). As a result, subtype 7 has the highest scores in the 

most number of TMI-tumor interaction categories (Fig. 4J-L, 4P-R). In summary, the subtypes 5-7 with some of the 

worst survival outcomes are highly enriched with hypoxic (subtype 5) or proliferative epithelial cells (subtype 6 and 7), 

as well as the corresponding interactions between immune cells and these epithelial cells; however, they have much 

lower interactions between fibroblast and immune cells in the tumor microenvironment (Fig. 4G-H, 4M-N). 

Next, we investigated the higher order of correlation relationship among the cell-cell interactions for each survival 

subtype. We calculated the correlations among all the CP, TMI and TCI features and studie the pairs of cell-cell 

interaction with correlations greater than 0.5 (Fig. 4S). For subtype 1, a high correlation exists between epithelial cell-

small, elongated fibroblast interaction and epithelial cell-small circular fibroblast interaction, indicating that they share 

similar modes of interactions. Similarly, subtype 3 shows a high correlation between macrophage-small elongated 

fibroblast interaction and macrophage-small circular fibroblast interaction. In subtype 7, proliferative epithelial- 

macrophage/T-Cell (vimentin-expressing) interaction is highly correlated with interactions between vimentin-

expressing macrophage and endothelial cells, further confirming the detrimental and synergistic effect of certain 

immune cells on proliferative tumor.  

Discovery of subpopulations of TNBC and luminal A subtypes with atypical survival outcome 

To uncover the novel insights of the new survival subtyping, we compared the classification results using molecular 

subtyping vs. the new survival subtyping approach (Fig 5A). Each molecular subtype is split into multiple survival 

subtypes, demonstrating the wide-spread heterogeneity in terms of survival. Two atypical subpopulations within liminal 

A and TNBC molecular subtypes are well noticed. Unlike the conventional concept that liminal A molecular subtype 

has good prognosis, a significant proportion (50%) of luminal A breast cancers have poor survival, distributing in 

subtypes 4-7 where subtype 4 is the predominant cluster (78%). On the other hand, TNBC the molecular subtype 

regarded as having the worst prognosis, has a large proportion (55%) of atypical subgroups with moderate survival in 

clusters 1-3, where cluster 3 is the major cluster (75%). We investigated the signatures of these atypical subpopulations 

by differential expression analysis. The atypical “good survival” subpopulation in TNBC has over-expression of 

GATA3 (Fig. 5B).  On the other hand, the atypical “poor survival” subpopulation in the luminal A subtype has over-

expression of KRT7 and ACTA2, and under-expression of CDH1 (Fig. 5E). 
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We next tested if such atypical subpopulations can be validated in general. We used the UNION-COM (Cao, Bai, Hong, 

& Wan, 2020) method to perform label-transfer learning based on the pseudo-bulk protein expression in this single cell 

dataset, and applied the model to the transcripts of the same genes in TCGA-BRCA and METABRIC data. The results 

show that TCGA-BRCA and METABRIC datasets indeed have such “good survival” subpopulations in TNBC (Fig. 

5C-D) and “poor survival” subpopulations in luminal A patients (Fig. 5F-G). The atypical subpopulations in both 

validation cohorts have significantly different survival curves (log-rank p-value < 0.05) compared to their counterparts. 

Moreover, GATA3 is also consistently overexpressed in the atypical “good survival” subpopulations in both the TCGA-

BRCA and METABRIC datasets (Fig. 5C-D). Similarly, the matching “poor survival” liminal A subpopulations in 

TCGA-BRCA and METABRIC datasets show the same patterns of over-expression of KRT7 and ACTA2 and under-

expression of CDH1 (Fig. 5F-G).  

 

 

DISCUSSION 

Breast cancer is a highly heterogeneous disease and molecular subtypes based on ER, PR and HER2 statuses are 

currently the mainstream classification system. In this study, we leverage the strengths of detailed single-cell pathology 

images and neural-network based prognosis modeling and define a new class of survival related subtypes for breast 

cancer. We argue that cellular phenotypes and their interactions provide additional valuable information to predict 

survival, leading to higher clinical impacts.  

The uniqueness of this study lies in several aspects. From the analytical aspect, we explicitly computed hundreds of 

features describing cell-cell interactions (TMI and TCI) on single-cell imaging data. We used these features as inputs 

for a novel neural-network based survival prediction method called 2-stage Cox-nnet, which highly accurately fits 

patient survival and is much better than clinical data based Cox-PH regression. From the biomedical aspect, we have 

defined seven new survival subtypes with distinct profiles of epithelial, immune, and fibroblast cells as well as their 

interaction patterns. These new survival subtypes re-classify the molecular subtypes, each of which is highly 

heterogeneous in terms of patients prognosis. Using multiple population cohorts, we verified that there exist “good 

survival” subpopulations within TNBC patients and “poor survival” subpopulations in luminal A patients, and that the 

molecular signatures of these atypical subpopulations are robustly consistent.  
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These survival subpopulations are well characterized by protein markers and cellular phenotypes. The relatively good 

survival subtypes 1-4 are enriched with CK or HR expression epithelial cells as well as interactions between fibroblasts 

and other immune cell types, which are lacking in the poorer survival subtypes 5-7. The best survival subtype 1 has a 

high expression level of luminal CK.  Corresponding to this observation, CKs were reported to be associated with better 

overall survival in breast cancer before (Lu, Yakirevich, Wang, Resnick, & Wang, 2019). Subtype 2, which also has 

good survival, has high levels of CK8/18 and HR, which was also reported to be associated with good overall survival 

(Menz et al., 2021). Subtype 5 has a dominant hypoxia phenotype, demonstrated by the high presence of hypoxia 

epithelial cells. Hypoxia is associated with resistance against therapies and poor outcomes (Jögi, Ehinger, Hartman, & 

Alkner, 2019; Mimeault & Batra, 2013). Despite most of the patients in subtype 6 are luminal A subtype, patients in 

this subgroup show the lowest level of Vimentinhi Fibroblasts cells (high vimentin expression, low smooth muscle actin 

(SMA) expression, and low fibronectin expression). It also has the 2nd highest level of proliferative epithelial cells, both 

of which may contribute to poor survival(Pellegrino et al. 2021). Subtype 7 has the highest level of proliferative 

epithelial cells marked by KI-67 expression, associated with poor survival (Kanyılmaz et al., 2019; Yerushalmi, Woods, 

Ravdin, Hayes, & Gelmon, 2010). It also has some of the strongest interactions with cells in EMT, suggesting the highest 

degree of tumor infiltration by immune cells (Liu, Li, Jiang, & Wang, 2018).  

The highly active TMI observed in hypoxic subtype 5 and proliferative subtype 7 are quite interesting. Subtype 5 has 

significantly lower proportions of immune cells (eg. macrophages) but the strongest interactions between macrophages 

and the hypoxic epithelial cells, the signature epithelial cells of this subtype. It also has the highest interaction between 

Vimentinhi fibroblasts and hypoxic epithelial cells. The apparent paradox between low macrophage concentration vs 

high interaction with epithelial cells may be explained by the inflammatory cytokines produced by macrophages at the 

hypoxic site, which decreases tumoricidal activity (Saccani et al., 2006). Subtype 7 has the highest proportion of 

proliferative epithelial cells and 75% of the patients are TNBC. This subtype has the strongest interactions between 

various cells in tumor microenvironment (vimentin expression T/B cells, fibroblasts, and macrophages2) and 

proliferative epithelial cells, as well interactions between vimentin-expressing macrophages and hypoxic cells. A high 

degree of immune infiltration was reported in TNBC patients with exhausted T Cell populations (H. Zhang, Qin, Yu, 

Han, & Zhu, 2021), consistent with our results. This subtype also shows the highest interaction between hypoxic 

epithelial cells and proliferative epithelial cells. The hypoxic condition may be a result of the increased aggressiveness 
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of proliferating epithelial cells(Keith and Celeste Simon 2007), consistent with prior observation of a close relationship 

between proliferation-hypoxia in other solid cancers such as squamous cell carcinoma (Kennedy et al. 1997). 

Contrary to the general perception that liminal A cancers have good prognosis and TNBC cancers have poor prognosis, 

the new subtyping system enabled the discovery of atypical survival subpopulations. A “good survival” subpopulation 

among TNBC patients (mostly from survival subtype 3) are identified with over-expression of GATA3;  and a “poor 

survival” subtype among luminal A patients are found, with over expression of KRT7 and ACTA2 but under expression 

of CDH1. These results are robustly verified in TCGA-BRCA and METABRIC datasets.  GATA3 is a zinc finger 

transcription factor involved in cell type differentiation and proliferation. Corresponding to our observation, higher 

levels of GATA3 were also shown to be correlated with better survival in breast cancer patients (Yoon et al. 2010; 

Mehra et al. 2005). KRT7 encodes cytokeratin-7 and ACTA2 encodes smooth muscle alpha-2 actin, both are 

cytoskeleton components. KRT7 plays a role in cell migration and EMT pathways and is associated with poor survival 

subpopulations for ovarian cancer (An et al., 2021; Communal et al., 2021). Similarly, ACTA2 was reported to be a 

marker for poor prognosis in lung cancer (Lee et al. 2013). CDH1 is a transmembrane glycoprotein that is primarily 

responsible for cell adhesion, and its downregulation in tumors led to increased invasiveness in breast cancer and lung 

cancer (Oka et al., 1993).  The work here paved the foundation for improving subtyping of TNBC and luminal A cancers 

using above mentioned biomarkers. Moreover, therapeutics targeting these molecules may be effective at improving 

TNBC and luminal A cancer patients’ survival.  

In summary, the imaging cytometry data at the single cell resolution has enabled an unprecedented opportunity to 

explicitly study cells in the tumor and tumor microenvironment, as well as their interactions. By taking the advantages 

of CP, TMI and TCI features, novel survival subtypes are identified in breast cancers, each with distinct profiles and 

more molecular and survival homogeneity. Moreover, this new subtyping system allows to identify good survival 

subpopulations in TNBC and bad survival subpopulations in luminal A cancers, with robust biomarkers in multiple 

population cohorts. The work lays down the foundation to integrate single-cell resolution information for survival 

prediction at large population scale. It has far-reaching impacts to transform breast cancer prognosis prediction and also 

likely treatment options in the future. 

 

METHODS 
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Dataset and extracted features 

The dataset analyzed in the study is obtained from a previously published study containing 259 patients (Jackson et al., 

2020). The dataset contains the image mass cytometry (IMC) data, phenograph neighborhood information, clinical 

features (Tumor Grade, ER Status, PR Status and HER2 Status), and patient prognosis outcome (overall survival time, 

disease-free survival time, and alive/dead status). The previous work defined 27 cellular phenotypes that described the 

histopathological landscape of breast cancer. In this study, we used the clinical features, cellular phenotype density 

(count of cells of each phenotype per unit area), and cellular neighborhood information for analysis, as detailed below: 

Clinical Features: The clinical features set comprises the Tumor Grade, ER Status, PR Status, and HER2 Status for 

each patient. Tumors in which cells appear highly dissimilar to normal cells tend to proliferate, and the tumor grade is 

assigned based on the extent of proliferation. In the traditional clinicopathological classification of breast cancer, 

patients are classified into Luminal A, Luminal B, Triple Negative, and HE2-Enriched classes. This classification is 

based on patients' clinical features such as ER (positive/negative), PR (positive/negative), and HER2 (positive/negative) 

status (Perou et al., 2000; Sørlie et al., 2001).  

Cellular phenotypic features:  For each patient, the cell phenotype density is quantified as the counts of each cellular 

phenotype per unit area in the IMC image of the tumor tissue. Out of the original 27 cellular phenotypes, there are six 

immune, seven stromal, and fourteen epithelial cellular phenotypes. The six immune phenotypes are B Cell, T and B 

Cell, T-Cell1, Macrophage1, T-Cell2, Macrophage2. The seven stroma phenotypes are Endothelial, Vimentinhi 

Fibroblasts, Small circular Fibroblasts, Small elongated Fibroblasts, Fibronectinhi Fibroblasts, Large Elongated 

Fibroblasts, SMAhi-Vimentinhi Fibroblasts. The fourteen epithelial cellular phenotypes are Hypoxic Epithelial Cells, 

Apoptotic Epithelial Cells, Proliferative Epithelial Cells, p53+ EGFR+ Epithelial Cells, Basal CK Epithelial Cells, 

CK7+CKhiCadherinhi Epithelial Cells, CK7+CK+ Epithelial Cells, Epitheliallow Epithelial Cells, CKlowHRlow Epithelial 

Cells, CK+HRhi Epithelial Cells, CK+HR+ Epithelial Cells, CK+HRlow Epithelial Cells, CKlowHRhip53+ Epithelial Cells, 

Myoepithelial Cells. The annotations are shown in Table S2. 

Cell-Cell Interaction Features: The phenotypic features in the original report are limited, as they do not assess the 

interactions between cellular phenotypes and between tumor-tumor microenvironment, which are  important parts of 

the tissue heterogeneity. We utilized the available phenograph (Levine et al., 2015) neighborhood-information data from 

each patient and quantified the binary interactions between cellular phenotypes. The phenograph neighborhood of the 
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IMC image is described as a numerous cellular network spread out in the mass cytometry image, where individual cells 

are represented as nodes of the cellular network. Starting with 27 cellular phenotypes, we calculated 378 pair-wise 

phenotype-phenotype features.   

We iterate through each cell of a cellular community in the image, enumerate the binary interactions the cell makes with 

its neighbors, and multiply the sum by the clustering coefficient 𝐶 of the cellular community. Then, we repeat this 

process for all the cellular communities across the mass cytometry image, sum the 378 interactions, and divide them by 

the area occupied by all the cells.  

We define the result of this procedure as the 'Cell-Cell Interaction Score' (CCIS). 

𝐶𝐶𝐼𝑆∀ 𝑃𝑎𝑖𝑟(𝑥,𝑦),𝑥∈𝑃,𝑦∈𝑃  =  
∑∀ 𝑁 (𝐶∗𝐵𝑥𝑦)

𝐴
  (Eq.1) 

where 𝐶 is the clustering coefficient for each cluster, 𝐵𝑥𝑦 is the binary interaction counts between a particular pair of 

phenotypes 𝑥 and 𝑦, 𝐴 is the total area occupied by all the cells in a mass cytometry image, 𝑃 is the set of all 

phenotypes and 𝑁 is the number of cellular communities in an image.  

At more detailed level, these 378 can be further categorized by immune/stromal/epithelial cell types in the interacting 

pairs and classified as immune-immune (21 features), immune-stromal (42 feature), immune-epithelial (84 features), 

stromal-stromal (28 features), stromal-epithelial (98 features), epithelial-epithelial (105 features) interactions. We plot 

the feature heatmaps using the heatmap package in R. 

Survival modeling 

We use a variety of neural-network based Cox-nnet models as the one-stage Cox-nnet-v2 models for the phenotypic 

feature set, tumor-microenvironment feature set, tumor-core feature set, and pairwise combinations. Further, we develop 

a two-stage Cox-nnet model by combining the hidden layer output of previously trained one-stage models. For each 

one-stage Cox-nnet-v2 model, the hidden layer nodes are equal to the square root (rounded up) of input nodes. The 

Cellular Phenotypic, TMI, and TCI feature-based models have 27, 268, and 105 input features, respectively, and hence 

we obtain 6, 17, and 11 nodes in the respective hidden layer. The two-stage Cox-nnet model combines the hidden layer 

output features. As a result 34 input features are used in the second stage. For comparison, we use the Cox-PH model 

on clinical features as the baseline model.  
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Survival feature ranking  

We calculate the feature importance of the 34 input features using the 'Variable Importance' function of the Cox-nnet-

v2 model. Out of the 34 input features in the two-stage Cox-nnet model, we calculate the importance scores, separate 

them into the original three sets of 6, 17, and 11 features respectively, and associate them with the one-stage Cox-nnet-

v2 models. For each model, we took a dot product of the hidden layer feature-importance vector with the model weights 

to get the importance scores vector of the original features.  

�̂� = 𝑊𝑇 . �̂� (Eq. 2), 

where �̂� is the importance vector of the original features (shape 1). 

𝑊 is the model weight matrix (shape ℎ 𝑥 𝑝). 

𝐻 is the importance vector for hidden layer (shape ℎ 𝑥 1). 

Unsupervised analysis for patient subtype detection 

We normalize the feature importance values between 0 and 1 and select the top features from each of the three feature 

sets. For the phenotypic set, we set the threshold as 0.5 and selected all the features with a higher importance score. For 

the tumor-microenvironment and tumor-core feature sets, we select features with an importance score greater than 0.75. 

In total, out of the 400 features we choose 50 features and perform NMF based consensus clustering using the NMF R 

package v0.23.0. This technique has been used in molecular subtype detection in cancer (Frigyesi & Höglund, 2008; 

Ma et al., 2019). We carry out a hyperparameter search for the NMF rank and varied it from 3 to 15, finding that the 

maximum values of 'cophenetic scores' and 'silhouette coefficients' are reached at an NMF rank of seven, and hence we 

choose optimum NMF rank as seven for subsequent analysis. 

Feature correlation analysis and comparison between NMF-defined and clinically defined subtypes  

We calculate the correlations between the features associated with each NMF-defined subtype using Spearman’s 

Correlation Coefficient in R and plot the Circos plot of the correlation using the circlize package in R (Gu, Gu, Eils, 

Schlesner, & Brors, 2014). How the NMF-defined classes intersect with the clinicopathological classification is 

determined by a Sankey Plot. We plot the Sankey plot using the plotly package in Python. 

Class label transfer and comparison with TCGA-BRCA and METABRIC datasets 
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We verify our results for ‘TNBC - Good Survival’ and ‘Luminal A - Poor Survival’ patient subpopulation in two external 

datasets TCGA-BRCA and METABRIC (Cancer Genome Atlas, 2012; Curtis et al., 2012). Here, we utilize the mass 

cytometry counts for 30 protein-based biomarkers and calculate the average expression of each biomarker over all the 

cells present in the IMC image. We treat it as pseudo-bulk protein expression and a proxy for bulk mRNA expression 

to facilitate the comparison with bulk mRNA expression-based external datasets. Then, we repurpose the UNION-COM 

algorithm (Cao et al., 2020) to perform patient matching between our dataset, the TCGA-BRCA dataset, and the 

METABRIC dataset. The UNION-COM method was originally developed to perform topological alignment and label 

transfer on single-cell multi-omics datasets. It takes two expression matrices as input, calculates the joint embedding 

between the two datasets, and maps samples from one dataset to another. In the TCGA-BRCA dataset, we find 28 genes 

corresponding to 28 protein-based biomarkers out of 30 (except TWIST and mTOR). In the METABRIC dataset, we 

find all 30 genes corresponding to the 30 protein-based biomarkers. For each TNBC and Luminal A subpopulations, the 

pseudo bulk protein expression matrix from the single cell dataset is used as input, and the mRNA expression matrix is 

applied as the external dataset in the UNION-COM method. We run the UNION-COM method using default parameters, 

and it returns the pairwise distance between patients between our dataset and the external dataset. We set a 99% 

similarity cutoff and select patients matching our ‘TNBC - Good Survival’ and ‘Luminal A - Poor Survival’ patient 

subpopulations, respectively. Survival plots are made by the lifelines Python package, and differential gene 

expressions are done using the limma package in R (Ritchie et al., 2015). 

CODE AVAILABILITY: The source code to generate the figures and feature datasets for this work are available at 

https://github.com/lanagarmire/BC_imaging 
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FIGURE LEGENDS 

Figure 1: Overview of different feature sets in the data:  

(a) Methodology for extracting the cell-cell interaction features. We utilize the cellular neighborhood information 

obtained from Phenograph. The Phenograph result contains different locally connected cellular communities. For each 

cellular community (the neighborhood graph), we iterate through each cell(node) and count the number of interactions 

between the particular cell and its neighbors. We repeat this process for all the different cellular communities to assess 

the 378 different pairwise cell-cell interactions.  

(b) Heatmaps illustrate the different feature types for all the patients. The patients are arranged in the order defined by 

the hierarchical clustering based on the epithelial-epithelial interactions.  

Figure 2: Two-stage Cox-nnet model comparison with baseline and Cox-nnet-v2. (a) Model architecture of the 

Cox-nnet-v2 model for survival prediction based on a single data type. (b) Model architecture for the two-stage Cox-

nnet model. Three individual Cox-nnet models were built for each data type. The hidden nodes from the first stage Cox-

nnet models were combined to form the input to construct a new Cox-nnet model in the second stage. (c) Comparison 

of Concordance-index across different Feature Set-Model pairs. 

Figure 3: NMF based subpopulation detection associated with survival  

(a) NMF heatmap for 259 patients in our cohort illustrating the seven subpopulations arranged in order of decreasing 

survival. (b) Cophenetic Score and Silhouette Coefficient versus the NMF Rank.  (c) Kaplan-Meier plots illustrate the 

Overall Survival for patients in the seven NMF-derived subpopulations clusters. (d) Kaplan-Meier plots illustrate the 

Overall Survival for patients based on clinicopathological classification. (e) Heatmap of top-ranked features from best 

performing two-stage Cox-nnet model, in associations with tumor grade, clinical features and molecular subtypes. 

Figure 4. Characterization of the new single image based survival subtypes. 
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(A-R) Scoring and profiling for the seven survival subtypes based on various cellular phenotype and cell-cell interaction 

features. Cell counts and interactions were normalized between 0-1 to make comparison possible on the same scale. (a) 

Macrophage2 Cells (b) T and B Cells (c) Vimentinhi Fibroblasts (d) Small Circular Fibroblasts  

(e) Hypoxic Epithelial Cells (f) Proliferative Epithelial Cells (g) Macrophage2  - Vimentinhi  Fibroblasts  (h) T and B 

Cells - Vimentinhi Fibroblasts (i) Macrophage2  - Hypoxic Epithelial Cells (j) Macrophage2  - Proliferative Epithelial 

Cells (k) T and B Cells - Hypoxic Epithelial Cells  (l) T and B Cells - Proliferative Epithelial Cells (m) Macrophage2 - 

Small Circular Fibroblasts (n) Vimentinhi Fibroblasts - Small Circular Fibroblasts (o) Vimentinhi Fibroblasts - Hypoxic 

Epithelial Cells  (p) Vimentinhi Fibroblasts - Proliferative Epithelial Cells (q) Hypoxic Epithelial Cells - Proliferative 

Epithelial Cells (r) Proliferative Epithelial Cells - Proliferative Epithelial Cells.  Statistical testing was done using Mann-

Whitney U Test with  Benjamini-Hochberg based FDR adjustment. The significant pairs are marked as follows:  *: p-

value < 0.01. **: 0.01 < p-values < 0.05. (S) Circos plots demonstrate the correlation between feature pairs associated 

with each subpopulation.  

Figure 5: Discovery and validation of atypical subpopulations in TNBC and luminal A patients 

(a) Sankey plot showing the distribution of patients in the seven subpopulations vs. clinical subtypes.  (b) KM survival 

plot for the two TNBC subpopulations in the single cell dataset and the differentially expressed protein biomarkers for 

the two subpopulations. (c) Validation of the two TNBC subpopulations in TCGA breast cancer data corresponding to 

those in (B), by KM plot and differentially expressed genes.  (d) Validation of the two TNBC subpopulations in 

METABRIC breast cancer data corresponding to those in (B), by KM plot and differentially expressed genes.  (e) KM 

survival plot for the two luminal A subpopulations in the single cell dataset and the differentially expressed protein 

biomarkers for the two subpopulations. (f) Validation of the two luminal A subpopulations in TCGA breast cancer data 

corresponding to those in (E), by KM plot and differentially expressed genes.  (g) Validation of the two luminal A 

subpopulations in METABRIC breast cancer data corresponding to those in (E), by KM plot and differentially expressed 

genes. (For each subplot, the blue curve represents the subpopulation in context) 

 

Supplementary Figure 1: Single Cell IMC images based on biomarkers 
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Single Cell IMC images; illustrating differences between patients based on specific biomarkers. Representative images 

for each subpopulation highlight the corresponding biomarker for each cell phenotype. E.g., Carbonic Anhydrase IX for 

hypoxia and KI67 for proliferation
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 5 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Fig. 1 
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Supplementary Tables 

Table S1: Distribution of our cohort's 259 patients corresponding to Clinical Features and clinicopathological subtypes 

 

Clinical Features Subtypes 

 Tumor Grade ER Status PR Status HER2 Status Luminal A Luminal B TNBC HER2 Enriched 

Total I II III + - + - + -     

259 34 109 116 191 68 143 116 49 210 166 26 44 23 
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Table S2: Annotations of the 27 Cell Phenotypes defined by (Jackson et al., 2020). 

#  Cell Phenotype  Description  

1  B Cell  Immune cells showing expression of CD20 (B-Cell biomarker), CD45 (pan-immune 

biomarker), and Vimentin Expression.  

2  T and B Cell  Immune cell cluster (T Cells appearing together with B cells). Hierarchical Clustering 

is not able to unmix these cells based on the biomarkers. These cells express CD3 (T-

Cell biomarker), CD45 (pan-immune biomarker), and CD20 (B-Cell biomarker). This 

cluster has a low Vimentin expression.  

3  T Cell1  Immune cells showing expression of CD3(T Cell Biomarker) and CD45 (pan-

immune biomarker). This cluster has a low Vimentin expression.  

4  Macrophage1  Immune cells expressing CD68 (macrophage biomarker). This cluster has a high level 

of Vimentin expression.  

5  T Cell2  Immune cells showing expression of CD3(T Cell Biomarker) and CD45 (pan-

immune biomarker). These T Cells have high levels of vimentin expression as 

compared to the T Cells in Cluster 3.  

6  Macrophage2  Immune cells expressing CD68 (macrophage biomarker). These macrophages have 

low levels of vimentin expression compared to Macrophage1 

7  Endothelial cell These cells form the barrier between blood vessels and tissues. Expressing vWF(von 

Willebrand factor - endothelial marker), CD31 (endothelial marker). These cells also 

show high Vimentin Expression.  

8  Vimentin hi Fibroblast Fibroblasts cells with high vimentin expression, low smooth muscle actin (SMA) 

expression, low fibronectin expression. These cells also express high cMYC (a proto-

oncogene).  

9  Small circular 

Fibroblast 

These fibroblasts cells are small and circular and show low expression of Vimentin, 

Fibronectin, and SMA.  

10  Small elongated  

Fibroblast 

These are fibroblasts cells small in size and elongated (high eccentricity) and show 

low expression of Vimentin, Fibronectin, and SMA.  

11  Fibronectin hi  

Fibroblast 

Fibroblasts cells with high fibronectin expression, low smooth muscle actin (SMA) 

expression, low vimentin expression.  

12  Large Elongated  

Fibroblast 

These fibroblasts cells are larger and elongated and show low Vimentin, Fibronectin, 

and SMA expression.  

13  SMA hi Vimentin hi  

Fibroblast 

Fibroblasts cells with high SMA expression, high vimentin expression, and low 

fibronectin expression. They also show an increased expression of CD68.  

14  Hypoxic epithelial  These epithelial cells have a high expression of CAIX (Carbonic Anhydrase), which 

is a hypoxia marker. Rest other epithelial markers such as cytokeratins, e-cadherins, 

ER, PR have a deficient expression.  
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15  Apoptotic epithelial  These epithelial cells have a high expression of PARP (Poly (ADP-ribose) 

polymerase) and Caspase 3, markers for apoptosis. These cells also show an increased 

expression of p53 and EGFR (epidermal growth factor receptor). Rest other epithelial 

markers such as cytokeratin, e-cadherins, ER, PR have a deficient expression.  

16  Proliferative  epithelial  These epithelial cells have high expressions of Ki67 (nuclear protein associated with 

cellular proliferation), pHH3 (Phosphorylated Histone H3), and Phospho-S6 

ribosomal protein. Rest other epithelial markers such as cytokeratins, e-cadherins, 

ER, PR have a deficient expression.  

17  p53 + EGFR +  

 epithelial 

These epithelial cells have high expressions of p53 and EGFR (epidermal growth 

factor receptor). Other significantly expressed biomarkers are CAIX (Carbonic 

Anhydrase), cMYC (a proto-oncogene). Rest other epithelial markers such as 

cytokeratins, e-cadherins, ER, PR have a deficient expression.  

18  Basal CK 

 epithelial  

These epithelial cells have high expressions of CK5 and CK14 (basal cytokeratin 

biomarkers). Rest other epithelial markers such as e-cadherins, ER, PR have an 

extremely low expression.  

19  CK7 + CK hi Cadherin hi  

 epithelial 

These epithelial cells have high expressions of CK7, other luminal cytokeratins 

(CK8/18, CK19 biomarkers), and E/P Cadherins. Other epithelial markers, ER, PR 

have an extremely low expression.  

20  CK7 +CK +  

 epithelial 

These epithelial cells have high expressions of CK19, other luminal cytokeratins 

(CK7 biomarkers). Rest other epithelial markers such as e-cadherins, ER, PR have an 

extremely low expression.  

21  Epithelial low  These epithelial cells have almost negligible expressions of any epithelial markers 

such as cytokeratins, e-cadherins, ER, PR. Also, they do not express other markers 

such as p53, EGFR, CAIX, Ki67, PHH3.  

22  CK low HR low  

 epithelial 

These epithelial cells have low expressions of epithelial markers such as cytokeratins, 

ER, PR. Also, they do not express other markers such as p53, EGFR, CAIX, Ki67, 

PHH3.  

23  CK+ HR hi  

 epithelial 

These epithelial cells have very high expressions of epithelial markers such as luminal 

cytokeratins (CK 8/18, CK 19), pan-cytokeratin, ER, PR. They also express high 

HER2. However, luminal CK 7 is absent in these cells.  

24  CK+HR+  

 epithelial 

These epithelial cells have very high expressions of epithelial markers such as luminal 

cytokeratins (CK 8/18, CK 19), pan-cytokeratin. They do not have an increased 

expression of ER, PR. They also express high HER2. However, luminal CK 7 is 

absent in these cells.  

25  CK+HR low  epithelial These epithelial cells have very high expressions of epithelial markers such as luminal 

cytokeratins (CK 8/18, CK 19), pan-cytokeratin. However, they have extremely low 

ER, PR, HER2 expressions. Luminal CK 7 is absent in these cells.  
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26  CK low HRhi p53+  

epithelial 

These epithelial cells have very low expressions of epithelial markers such as luminal 

cytokeratins (CK 8/18, CK 19), pan-cytokeratin. However, they have high ER, PR, 

HER2 expression. They also express a significant amount of p53, EGFR, PARP, and 

Caspase 3  

27  Myoepithelial These epithelial cells form semi-continuous protective sheets separating the human 

breast epithelium and the surrounding stroma and show higher expression of SMA, 

Luminal Cytokeratins, Basal Cytokeratins, pan Cytokeratins biomarkers.  

 

Table S3: Significant features of the Cellular Phenotypic (CP) feature set. 

Rank Cellular Phenotype  Importance Score Type  

1  Macrophage2  1.000 Immune  

2  T and B Cell  0.692 Immune  

3  CK+HR+  0.631 Epithelial  

4  CK7 +CK +  0.576 Epithelial  

5  Endothelial  0.546 Stromal  

6  Hypoxic  0.543 Epithelial  

7  CK +HRlow  0.508 Epithelial  

8  CK+ HR hi  0.507 Epithelial  

 

Table S4: Significant features of the Tumor Microenvironment Interaction (TMI) feature set. 

Rank Cell Phenotype 1  Cell Phenotype 2  Importance Score Interaction Type  

1  T and B Cell  CKlowHRlow  1.000 Immune-Epithelial  

2  Small Elongated Fibroblast CK7+CK +  0.966 Stromal-Epithelial  

3  Macrophage1  CK low HRhi p53 +  0.965 Immune-Epithelial  

4  Vimentin hi Fibroblast Small Circular Fibroblast 0.964 Stromal-Stromal  

5  Large Elongated Fibroblast Proliferative  0.922 Stromal-Epithelial  

6  SMA hi Vimentin hi Fibroblast CK7+CK +  0.892 Stromal-Epithelial  

7  B Cell  Epitheliallow  0.885 Immune-Epithelial  
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8  T and B Cell  Hypoxic  0.867 Immune-Epithelial  

9  Macrophage2  Small Circular Fibroblast 0.853 Immune-Stromal  

10  Macrophage2  Small Elongated 

Fibroblast 

0.848 Immune-Stromal  

11  SMA hi Vimentin hi Fibroblast CK low HRhi p53 +  0.846 Stromal-Epithelial  

12  Small Circular Fibroblast CK7+CK+  0.841 Stromal-Epithelial  

13  Vimentin hi Fibroblast CK low HR hi p53 +  0.823 Stromal-Epithelial  

14  T and B Cell  CK low HR hi p53 +  0.819 Immune-Epithelial  

15  Macrophage1  Endothelial  0.814 Immune-Stromal  

16  T and B Cell  Endothelial  0.809 Immune-Stromal  

17  Endothelial  CK low HR hi p53 +  0.808 Stromal-Epithelial  

18  SMA hi Vimentin hi  Epitheliallow  0.795 Stromal-Epithelial  

19  T Cell2  Proliferative  0.792 Immune-Epithelial  

20  Macrophage1  CK+ HR hi  0.783 Immune-Epithelial  

21  Small Circular Fibroblast CK+ HR hi  0.773 Stromal-Epithelial  

22  Small Elongated Fibroblast CK+ HR+  0.769 Stromal-Epithelial  

23  B Cell  Fibronectin hi Fibroblast 0.766 Immune-Stromal  

24  Vimentin hi Fibroblast CK+ HR+  0.765 Stromal-Epithelial  

25  SMA hi Vimentin hi  CKlow HRlow  0.765 Stromal-Epithelial  

26  SMA hi Vimentin hi  Apoptotic  0.764 Stromal-Epithelial  

27  Small Circular Fibroblast CK7 + CK hi cadherin hi  0.760 Stromal-Epithelial  

28  T Cell2  Apoptotic  0.760 Immune-Epithelial  

29  Large Elongated Fibroblast CK7+CK+  0.751 Immune-Stromal  

30  Macrophage2  Proliferative  0.751 Immune-Epithelial  
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Table S5: Significant features of the Tumor Core Interaction (TCI) feature set. 

Rank Cell Phenotype 1  Cell Phenotype 2  Importance Score Interaction Type  

1  Proliferative  Proliferative  1.000  

 

 

 

 

 

 

  

Epithelial-Epithelial  

  

2  Epitheliallow  CK low HR hi p53 +  0.870 

3  CK+ HR+  CK+ HRlow  0.811 

4  Hypoxic  CK+ HR+  0.806 

5  Basal CK  CK7 + CK hi cadherin hi  0.789 

6  CK low HR low  CK+ HR+  0.788 

7  Proliferative  Basal CK  0.783 

8  Hypoxic  Epitheliumlow  0.775 

9  Proliferative  CK+ HRlow  0.769 

10  Proliferative  Myoepithelial  0.766 

11  Epitheliallow  Epitheliallow  0.766 

12  CK+ HR+  Myoepithelial  0.763 
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Table S6: Description of patients in NMF-derived subpopulation clusters corresponding to clinical features and 

clinicopathological subtypes 
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