
1 
 

Normalized Semi-Covariance Co-Efficiency Analysis of Spike Proteins from SARS-1 

CoV-2 variant Omicron and Other Coronaviruses for their Infectivity and Virulence  2 
 3 

Tong Xua, Shanyue Zhoua,b, Jun Steed Huanga, c, Wandong Zhangd, e,   4 

 5 
a VisionX LLC, San Jose, USA 6 

b McGill University, Montreal, Canada 7 
c Carleton University, Ottawa, Canada. 8 

d Human Health Therapeutics, National Research Council of Canada, Ottawa, Canada 9 
e University of Ottawa, Ottawa, Canada 10 

Corresponding: Wandong.Zhang@nrc-cnrc.gc.ca 11 

JunHuang@Cunet.Carleton.Ca  12 

 13 

  14 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 11, 2022. ; https://doi.org/10.1101/2022.11.07.515557doi: bioRxiv preprint 

mailto:Wandong.Zhang@nrc-cnrc.gc.ca
mailto:JunHuang@Cunet.Carleton.Ca
https://doi.org/10.1101/2022.11.07.515557
http://creativecommons.org/licenses/by/4.0/


2 
 

Abstract 15 

 16 

Spectrum-based Mass-Charge modeling is increasingly used in 17 

biological analysis. To explain statistical phenomenon with positive and 18 

negative fluctuations of amino acid charges in spike protein sequences 19 

from Omicron and other coronaviruses, we propose calculation-based 20 

Mass-Charge modeling, a normalized derivation algorithm with exact 21 

Excel and MATLAB tool involving separate quadrant extension to 22 

normalized covariance, which is still compatible with Pearson covariance 23 

co-efficiency. The number of amino acids, molecular weight, isoelectric 24 

point, amino acid composition, charged residues, mass-charge ratio, 25 

hydropathicity of the proteins were taken into consideration in the 26 

analyses, and the relative peak and dip of the average with spike protein 27 

sequences based on hydrophobic mass to isoelectric charges of amino 28 

acids were also examined. The analyses with the algorithm provide more 29 

clear insights leading to revealing underline evolving trends of the viral 30 

proteins. Spike proteins from SARS-CoV-2 variants, seasonal and murine 31 

coronaviruses were taken as representative examples in this study. The 32 

analyses demonstrate that the Mass-Charge covariance co-efficiency can 33 

distinguish subtle differences between biological properties of spike 34 

proteins and correlate well with viral infectivity and virulence.   35 

 36 

Key words: Equivalent Mass-Charge moment, normalized semi-37 

covariance co-efficiency, coronaviruses, spike protein sequences, amino 38 

acid charge, amino acid hydrophobicity, isoelectric point, entropy. 39 

 40 

1. Introduction 41 

Spectrum-based Mass-Charge algorithms are used in analyzing real-world 42 

implementations. It comes as the trusted analytic solution but typically has a hardware 43 

implementation cost and time challenges, leading to a demand for more straightforward 44 

software calculation-based solutions using Mass-Charge theory.  Mass-Charge algorithms 45 

have received significant attention in recent years and are increasingly used to solve real-world 46 

problems. Among those is a combination of two or more algorithms involving numerical 47 
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algorithms, analytic calculation [1], and other computational techniques, such as artificial 48 

intelligence [2-4], gene analysis systems [5], and gene simulation [6].  49 

Kumar and colleagues found that SARS-CoV-2 Omicron and sub-variants had a higher 50 

positive electrostatic surface potential [7]. This could increase interactions between the 51 

receptor-binding domain (RBD) of Omicron spike protein and the electro-negatively charged 52 

human angiotensin-converting enzyme 2 (hACE2). We compared Omicron spike protein and 53 

its RBD with those of Wuhan-Hu-1 (Wild type) strain. Our previous study calculated the 54 

charges of the SARS-CoV-2 spike protein sequences using the algorithm for viral infectivity 55 

and virulence [8]. In this study, the number of amino acids, molecular weight, theoretical pI, 56 

amino acid composition, charged residues, mass-charge ratio, hydropathicity of the spike 57 

proteins were all analyzed by using the improved algorithm with normalization of spike protein 58 

length.  59 

This study is the first to use Langland's formula to combine all the factors, including the 60 

mass, charge, isoelectric point, hydrophilic and hydrophobic properties, and equipotential of 61 

the amino acids to analyze the spike proteins from Omicron and other coronaviruses. The 62 

hydrophilic and hydrophobic properties express the ability of viral spike proteins to interact 63 

with human cells. There is a linear relationship between the isoelectric point of the amino acids 64 

and the pH value of the amino acids. The isoelectric point and pH value of the amino acid 65 

sequences change the equivalent charge potential. There is also a linear relationship between 66 

hydrophilic and hydrophobic properties of the amino acids and the heat or intrinsic energy 67 

level. The hydrophobicity and the heat/intrinsic energy change the equivalent mass. In the 68 

following sections, we use the equivalent mass and charge value as the ratio to calculate the 69 

overall Mass-Charge ratio. The viral basic reproduction numbers (R0 values) are also an 70 

essential factor for us to determine the correlation of infectivity. R0 values are the expected 71 

number of the cases directly generated by one case in a population where it assumes that all 72 

individuals are susceptible to infection [9]. R0 value is the indicator for the level of contagious 73 

infectious diseases. For example, the R0 value of smallpox is 3.5-6 (varies under different 74 

medical conditions) [10]. The R0 value for the primary strain of the SARS-CoV-2 virus is 75 

estimated to be 1.4-2.4 [11]. The detailed R0 value for each SARS-CoV-2 variant is listed in 76 

Table 1. Another statistics used in the analysis is the death rate for each variant's virulence. A 77 

study published by the Public Health Ontario analyzed the patients infected with the Omicron 78 

variant (37296 cases) or Delta variant (24432 cases) and chose 9087 cases from each variant 79 

to analyze the death rate. Their results showed that the death rate for the Omicron variant was 80 

0.03%, while the death rate for the Delta variant was 0.3% [12]. 81 
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 82 

2. Normalization of Separate Quadrant Covariance 83 

The Mass-Charge parameter is used to measure the fluctuation-term memory of time 84 

series. It relates to the autocorrelations of the time series and the derivatives of the Poincare 85 

transform of the time series or the momentum generation function at the origin [13]. Studies 86 

involving the Mass-Charge parameter were originally developed by the Fuchsian Group in 87 

solving differential equations.  88 

Using Langland's formula, we calculate w, h, q, and p to obtain the complete viral spike 89 

protein sequences. After the complete sequence is obtained, the N subsequences of the 90 

complete sequence are constructed with the window shift of 1, the window length of 16, and 91 

the 15 subsequences at the end to reduce the window length in turn. 92 

In this study, we employ the Mass-Charge from Langlands program in below formula (1). 93 

 94 

𝑚𝑚𝑚𝑚 =
𝜔𝜔 + 𝑧𝑧ℎ
𝑞𝑞 + 𝑧𝑧𝑧𝑧

 (1) 95 

 96 
The full sequence of Mass-Charge is defined as 𝑆𝑆 = {𝑚𝑚𝑚𝑚1,𝑚𝑚𝑚𝑚2, … ,𝑚𝑚𝑚𝑚𝑛𝑛}, the n was 97 

the length of a full viral spike protein. In the above formula, 𝜔𝜔 is the molecular mass; ℎ is 98 

the hydrophilic and hydrophobic index; q is the charge; p is the isoelectric point; z is equivalent 99 

to Finsler distance between viral spike protein and human cell receptor, typical range from 0.01 100 

to 10000 (nm), and the default is 1. Excel is used to calculate the default, MATLAB is used to 101 

calculate the non-default distance variation map, and cross-check with the Excel calculation. 102 

2.1. The Convergence and Divergence 103 

The convergence of the viral protein are calculated by formula (2), the divergence of 104 

the viral protein are calculated by formula (3).  105 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  
𝐴𝐴𝐴𝐴𝐴𝐴�𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎,𝑎𝑎)� + 𝐴𝐴𝐴𝐴𝐴𝐴�𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐(𝑏𝑏,𝑏𝑏)�

2
− 𝐴𝐴𝐴𝐴𝐴𝐴�𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎,𝑏𝑏)� (2) 106 

𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  
𝐴𝐴𝐴𝐴𝐴𝐴�𝐷𝐷𝑚𝑚𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎,𝑎𝑎)� + 𝐴𝐴𝐴𝐴𝐴𝐴�𝐷𝐷𝑚𝑚𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐(𝑏𝑏,𝑏𝑏)�

2
− 𝐴𝐴𝐴𝐴𝐴𝐴�𝐷𝐷𝑚𝑚𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎,𝑏𝑏)� (3) 107 

 108 

In formula (2) and formula (3), a and b are two different viral protein sequences; AMG 109 

is average moving gate function; 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎,𝑏𝑏) is the converging covariance of viral protein a 110 

and viral protein b, 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎,𝑎𝑎)  and 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐(𝑏𝑏,𝑏𝑏)  are the special case which is that viral 111 

protein a was equal to viral protein b, they are calculated from one viral protein sequence with 112 

reference to itself instead of to other baseline one. 𝐷𝐷𝑚𝑚𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎,𝑏𝑏) is the diverging covariance of 113 
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a and b; 𝐷𝐷𝑚𝑚𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎,𝑎𝑎) and 𝐷𝐷𝑚𝑚𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐(𝑏𝑏,𝑏𝑏) also the special case of 𝐷𝐷𝑚𝑚𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎,𝑏𝑏). We calculate from 114 

formula (4) and formula (5). 115 

𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎,𝑏𝑏) = �
(a–𝐴𝐴𝐴𝐴𝐴𝐴(𝑟𝑟) × (𝑏𝑏–𝐴𝐴𝐴𝐴𝐴𝐴(𝑏𝑏)), (a–𝐴𝐴𝐴𝐴𝐴𝐴(𝑟𝑟) × (𝑏𝑏–𝐴𝐴𝐴𝐴𝐴𝐴(𝑏𝑏)) ≥ 0

0, (a–𝐴𝐴𝐴𝐴𝐴𝐴(𝑟𝑟) × (𝑏𝑏–𝐴𝐴𝐴𝐴𝐴𝐴(𝑏𝑏)) < 0 (4) 116 

𝐷𝐷𝑚𝑚𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎,𝑏𝑏) = �
0, (a–𝐴𝐴𝐴𝐴𝐴𝐴(𝑟𝑟) × (𝑏𝑏–𝐴𝐴𝐴𝐴𝐴𝐴(𝑏𝑏)) ≥ 0

−(a–𝐴𝐴𝐴𝐴𝐴𝐴(𝑟𝑟) × (𝑏𝑏–𝐴𝐴𝐴𝐴𝐴𝐴(𝑏𝑏)), (a–𝐴𝐴𝐴𝐴𝐴𝐴(𝑟𝑟) × (𝑏𝑏–𝐴𝐴𝐴𝐴𝐴𝐴(𝑏𝑏)) < 0 (5) 117 

 118 

The AMG operator is defined in here, the arithmetic mean with moving window length 119 

function.  120 

Y = AMG(X) (6) 121 
 122 

In the operator of formula (6), X = {𝑥𝑥𝑖𝑖|𝐷𝐷 ∈ [1,𝐶𝐶]} , Y = {𝑦𝑦𝑖𝑖|𝐷𝐷 ∈ [1,𝐶𝐶]} . The 123 

calculation of AMG operator is formula (7). 124 

 125 

𝑦𝑦𝑖𝑖 =
∑ 𝑥𝑥𝑖𝑖
𝑖𝑖+𝑔𝑔𝑎𝑎𝑝𝑝
𝑖𝑖
𝐶𝐶𝑟𝑟𝑧𝑧

(7) 126 

 127 

2.2. The Positive Correlation and Negative Correlation 128 

Positive Correlation: 129 

𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 =
𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎,𝑏𝑏)��������������

��a–𝐴𝐴𝐴𝐴𝐴𝐴(𝑟𝑟)�
2������������������ × ��𝑏𝑏–𝐴𝐴𝐴𝐴𝐴𝐴(𝑏𝑏)�

2�������������������
(8) 130 

Negative Correlation: 131 

𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑝𝑝𝑔𝑔𝑎𝑎𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 =
𝚤𝚤𝑚𝑚𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎,𝑏𝑏)��������������

��a–𝐴𝐴𝐴𝐴𝐴𝐴(𝑟𝑟)�
2������������������ × ��𝑏𝑏–𝐴𝐴𝐴𝐴𝐴𝐴(𝑏𝑏)�

2�������������������
(9)

 132 

Pearson Correlation: 133 

𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑎𝑎𝑐𝑐𝑝𝑝𝑐𝑐𝑛𝑛 = 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑝𝑝𝑔𝑔𝑎𝑎𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 (10) 134 

 135 

2.3. The Center Gravity Positive, Center Gravity Negative and M/Q Span 136 

Center Gravity Positive: 137 

𝑚𝑚𝐶𝐶𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑛𝑛𝑝𝑝𝑝𝑝𝑐𝑐𝑔𝑔𝑝𝑝 = �
∑ 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎,𝑏𝑏) × 𝐼𝐼
∑ 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎,𝑏𝑏)

� × 𝛿𝛿 (11) 138 

 139 
[] operator is Rounding operator; 𝛿𝛿 is percentage, due to different length of viral proteins;  140 

𝛿𝛿 =
𝑁𝑁𝑝𝑝𝑝𝑝𝑠𝑠
𝑁𝑁𝑝𝑝

(12) 141 
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𝑁𝑁𝑝𝑝𝑝𝑝𝑠𝑠  is the standard baseline viral protein sequence length, 𝑁𝑁𝑝𝑝  is now viral protein 142 

sequence. I is a sequence from 1 to the length of viral protein sequence.   143 

 144 

Center Gravity Negative: 145 

𝑚𝑚𝐶𝐶𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝐷𝐷𝑖𝑖𝑝𝑝𝑝𝑝𝑐𝑐𝑔𝑔𝑝𝑝 = �
∑ 𝐷𝐷𝑚𝑚𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎,𝑏𝑏) × 𝐼𝐼
∑ 𝐷𝐷𝑚𝑚𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎,𝑏𝑏)

� × 𝛿𝛿 (13) 146 

 147 
M/Q Span: 148 

𝐴𝐴𝑀𝑀𝑆𝑆𝑧𝑧𝑟𝑟𝐶𝐶 =  |𝑚𝑚𝐶𝐶𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑛𝑛𝑝𝑝𝑝𝑝𝑐𝑐𝑔𝑔𝑝𝑝 − 𝑚𝑚𝐶𝐶𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝐷𝐷𝑖𝑖𝑝𝑝𝑝𝑝𝑐𝑐𝑔𝑔𝑝𝑝| + ReLU�𝑚𝑚𝐶𝐶𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝐷𝐷𝑖𝑖𝑝𝑝𝑝𝑝𝑐𝑐𝑔𝑔𝑝𝑝 − 𝑚𝑚𝐶𝐶𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑛𝑛𝑝𝑝𝑝𝑝𝑐𝑐𝑔𝑔𝑝𝑝� (14) 149 

Here ReLU(x) is defined as Max (0, x). 150 

 151 

2.4. Infective Reproduction Rate and Max Position 152 

 153 

𝑅𝑅𝑅𝑅𝑝𝑝 =  
𝐴𝐴𝑀𝑀𝑆𝑆𝑧𝑧𝑟𝑟𝐶𝐶𝑝𝑝 × 𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑠𝑠

𝐴𝐴𝑀𝑀𝑆𝑆𝑧𝑧𝑟𝑟𝐶𝐶𝑝𝑝𝑝𝑝𝑠𝑠
(15) 154 

 155 
𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑠𝑠 is the standard baseline virus sequence infective reproduction rate; 𝑅𝑅𝑅𝑅𝑝𝑝 is estimated 156 

viral reproduction rate; 𝐴𝐴𝑀𝑀𝑆𝑆𝑧𝑧𝑟𝑟𝐶𝐶𝑝𝑝𝑝𝑝𝑠𝑠  is the viral protein sequence standard M/Q Span; 157 

𝐴𝐴𝑀𝑀𝑆𝑆𝑧𝑧𝑟𝑟𝐶𝐶𝑝𝑝 is estimated viral protein sequence M/Q Span. Reproduction rate here is used to 158 

approximate the observed R0 number. 159 

 160 

Max Positive Position 161 

𝐴𝐴𝑀𝑀𝑀𝑀 = 𝑚𝑚𝑧𝑧 �𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎,𝑏𝑏)� (16) 162 
 163 

The “mp| |” is the operator that get the position of max value in 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎,𝑏𝑏). 164 

Max Negative Position 165 

𝐴𝐴𝑁𝑁𝑀𝑀 = 𝑚𝑚𝑧𝑧 �𝐷𝐷𝑚𝑚𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎,𝑏𝑏)� (17) 166 

 167 

2.5. M/Q Density and Virulence 168 

𝐴𝐴𝑀𝑀𝐷𝐷𝐶𝐶𝐶𝐶𝑀𝑀𝐷𝐷𝑐𝑐𝑦𝑦 = √𝐴𝐴𝑀𝑀𝑀𝑀 ∗ 𝐴𝐴𝑁𝑁𝑀𝑀 −𝐴𝐴𝑀𝑀𝑆𝑆𝑧𝑧𝑟𝑟𝐶𝐶𝑝𝑝 (18) 169 
 170 

𝑉𝑉𝐷𝐷𝐶𝐶𝑉𝑉𝑟𝑟𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝑝𝑝 =
𝐴𝐴𝑀𝑀𝐷𝐷𝐶𝐶𝐶𝐶𝑀𝑀𝐷𝐷𝑐𝑐𝑦𝑦𝑝𝑝 × 𝑉𝑉𝐷𝐷𝐶𝐶𝑉𝑉𝑟𝑟𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝑝𝑝𝑝𝑝𝑠𝑠

𝐴𝐴𝑀𝑀𝐷𝐷𝐶𝐶𝐶𝐶𝑀𝑀𝐷𝐷𝑐𝑐𝑦𝑦𝑝𝑝𝑝𝑝𝑠𝑠
(19) 171 

 172 
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𝐴𝐴𝑀𝑀𝐷𝐷𝐶𝐶𝐶𝐶𝑀𝑀𝐷𝐷𝑐𝑐𝑦𝑦𝑝𝑝𝑝𝑝𝑠𝑠 is the standard baseline viral protein sequence M/Q density; 𝐴𝐴𝑀𝑀𝐷𝐷𝐶𝐶𝐶𝐶𝑀𝑀𝐷𝐷𝑐𝑐𝑦𝑦𝑝𝑝 173 

is now viral protein sequence M/Q density; 𝑉𝑉𝐷𝐷𝐶𝐶𝑉𝑉𝑟𝑟𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝑝𝑝𝑝𝑝𝑠𝑠  is the viral standard virulence; 174 

𝑉𝑉𝐷𝐷𝐶𝐶𝑉𝑉𝑟𝑟𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝑝𝑝 is current viral virulence.  175 

 176 

3. Excel calculations of normalized semi-covariance for spike proteins from SARS-CoV-177 

2 and other coronaviruses  178 

To prove the usage of the simplified Mass-Charge variances, we compare the 179 

correlation of SARS-CoV-2 viral spike protein with other coronaviral spike proteins [14].  180 

Since Excel is capable of handling ReLU, we simplify the calculation with normalization 181 

between two variables only, although more than two can also be done. Since each coronaviral 182 

protein from animal or human has different electrical charge level [15], we normalize the 183 

covariance by the variance respectively (so that the comparison is focused on the pure 184 

difference) [16]. We calculated the whole sequences of spike proteins [17] and plotted the curve 185 

forward starting from the low end to high end (from 1 to 1500 or 1900 depends on the length 186 

of the spike proteins). By using the moving window of 16 neighboring amino acids [18], we 187 

calculated the covariance and average over the same area of the sequences to make the curve 188 

more visually smooth for easily comparisons [19]. Figures 1 to 3 show the calculation results 189 

for the most related spike protein sequences out of past years from murine coronaviruses, from 190 

SARS-CoV-2 and the variants Omicron, Delta, IHU, and from seasonal coronaviruses OC43, 191 

229E, HKU1, and NL63 for human (Table 2) [20-22].  192 

 193 

3.1. The analysis results for Wuhan strain spike protein in comparison with spike proteins 194 

from SARS-CoV-2 variants 195 

We compared the spike protein of Wuhan strain SARS-CoV-2 (NC_045512.2) with the 196 

spike proteins from SARS-CoV2 variants including Mu (B.1.621; GISAID: 197 

EPI_ISL_4029606), Delta (B.1.617; GISAID: EPI_ISL_1731198), Omicron (GISAID: 198 

EPI_ISL_6951145), IHU (B.1.640; GISAID: EPI_ISL_8416940), Indonesia variant 199 

(B.1.466.2; GenBank: QTS26735), Alpha/UK variant (B.1.1.7; EPI_ISL_744131), and BA.5 200 

(B.1.1.529+BA; EPI_ISL_12464782). For the comparison, Wuhan strain spike protein is used 201 

as a baseline, and Delta variant used as a reference point. We set 𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑠𝑠=2.08 (Delta variant), 202 

and 𝑉𝑉𝐷𝐷𝐶𝐶𝑉𝑉𝑟𝑟𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝑝𝑝𝑝𝑝𝑠𝑠=2.15% (Delta variant). The analyses results are presented in Figure 1. It 203 

appears that most changes of the Mass-Charge ratios (the peaks and dips in Figure 1A to 1F) 204 

occur in the N-terminal half or the middle region of the spike proteins but rarely occurs in the 205 
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C-terminal half of the spike proteins. The N-terminal half or the S1 subunit of the spike proteins 206 

carries the receptor-binding domain (RBD) of the spike protein while the middle region of the 207 

spike protein may have the function that directly or indirectly affects the interactions of RBD 208 

to the ACE2 receptor. Mutations in the surrounding region of the RBD may have epistatic effect 209 

on the binding of the spike protein to the ACE2 as we reported previously [23]. Epistasis is the 210 

combinatory effect of two or more mutations in a genome [24].  Epistatic mutations may allow 211 

spike protein to adopt a specific conformation for better or more efficient interaction of RBD 212 

with ACE2 [23]. The RBD is located between 331 and 528 amino acid residues of the spike 213 

proteins [23]. All the variants (including Figure 1A to 1F) show the changes of Mass-Charge 214 

ratios in the RBD region of the spike proteins as compared to Wuhan strain spike protein. These 215 

changes in the RBD region affect the infectivity and transmissibility of the viral variants. It is 216 

also noticed that the changes of Mass-Charge ratios frequently occur closely on both sides of 217 

the RBD region in all the variants (Fig. 1A to 1D & 1F) except the variant B.1.466.2 (Fig. 1E). 218 

Overall, there are more changes in the RBD regions of the Omicron and its subvariant BA.5 219 

spike proteins (Fig. 1C and 1G) as compared to others (Fig. 1A, 1B, 1D, 1E, and 1F).  As said 220 

above, these Mass-Charge ratio changes on both sides of RBD may have direct or indirect 221 

impacts on the interactions of RBD with ACE2 receptor. It is also noted that there are not many 222 

changes in the C-terminal region of the variant spike proteins (Fig. 1A to 1F), indicating that 223 

this region is relatively stable or conserved during evolution.     224 
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Figure 1. The analysis results of spike protein from Wuhan strain SARS-CoV-2 in comparison 226 
with spike proteins from SARS-CoV-2 variants. The peaks and the dips in the graphs represent 227 
variations in Mass-Charge ratio of the amino acids of the spike proteins, meaning that 228 
mutations occur in this region resulting in changes in charge/mass of the amino acids. The 229 
wider peaks or dips represent the changes involved in more amino acid changes of the spike 230 
proteins. The peaks indicate positive correlation and the dips indicate negative correlation. The 231 
dips mean opposite changes in the charge/mass of the amino acids of the spike proteins. The 232 
dips may have stronger impact on the biological function of the proteins than the peaks.  Panel 233 
A: Normalized semi-covariance for generalized mass-charge ratio of Mu variant (B.1.621) 234 
spike protein baselined on Wuhan strain spike protein. Panel B: Normalized semi-covariance 235 
for generalized mass-charge ratio of Delta variant (B.1.617) spike protein baselined on Wuhan 236 
strain spike protein. Panel C: Normalized semi-covariance for generalized mass-charge ratio 237 
of Omicron variant spike protein baselined on Wuhan strain spike protein. Panel D: Normalized 238 
semi-covariance for generalized mass-charge ratio of IHU variant (B.1.640) spike protein 239 
baselined on Wuhan strain spike protein. Panel E: Normalized semi-covariance for generalized 240 
mass-charge ratio of Indonesia variant (B.1.446.2) spike protein baselined on Wuhan strain 241 
spike protein. Panel F: Normalized semi-covariance for generalized mass-charge ratio of 242 
Alpha/UK variant (B.1.1.7) spike protein baselined on Wuhan strain spike protein. Panel G: 243 
Normalized semi-covariance for generalized mass-charge ratio of BA.5 (B.1.1.529+BA) spike 244 
protein baselined on Wuhan strain spike protein.   245 

 246 

Further to the data presented in Figure 1, Table 1 shows the detailed analysis results for 247 

the comparison of Wuhan strain spike protein with the spike proteins from SARS-CoV-2 248 

variants. In Table 1 (also in Tables 2 and 3 as well), the Center Convergence is the center point 249 

of positive momentum, meaning that the Mass-Charge ratio's positive momentum on both sides 250 

of the spike protein sequence is equivalent; while the Center Divergence represents the center 251 

point of negative momentum, meaning that the Mass-Charge ratio's negative momentum on 252 

both sides of the sequence is equivalent. The M/Q Span is the non-Euclidean distance between 253 

the center of convergence and the center of divergence.  The Reproduction rate in the table is 254 

the calculated result from the analyses. Max Positive Position is the maximal point of positive 255 

momentum, meaning that the Mass-Charge ratio on this point reaches the maximal positive 256 

value; while the Max Negative Position is the maximal point of negative momentum, meaning 257 

that the Mass-Charge ratio on this point reaches the maximal negative value. M/Q Density is 258 

the non-Euclidean height between the center of convergence and the center of divergence. 259 

Virulence in the Tables is the calculated results from this algorithm for the viruses. From the 260 

analysis results presented in Table 1, it appears that the calculated viral reproduction rates are 261 

very close to the R0 values reported in the literature. In particular, the calculated reproduction 262 

rate for Omicron (7.79) is almost identical to the reported R0 value for Omicron (7.0) in the 263 
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literature, suggesting that the calculated result by using the algorithm based on the Mass-264 

Charge changes in the amino acids of the spike proteins may accurately predict the infectivity 265 

of the viral variant. More importantly, the virulence in Table 1 calculated by using the algorithm 266 

is closely within the range of death rates reported in the literature, indicating that the calculated 267 

virulence of the viral variants may predict the death rate caused by the viral variants. The 268 

calculated virulence of Omicron subvariant BA.5 is higher to that of Omicron in Table 1. A 269 

new study using multiscale investigations published in October 13, 2022 suggests that the risk 270 

of BA.4/5 to global health is greater than that of original BA.2 and that BA.4/5 is more 271 

pathogenic than BA.2 [25], which is consistent with our calculation. However, due to popular 272 

vaccination/boosters and advanced COVID therapies available, the actual death rate caused by 273 

BA.5 infection appears to be similar to that of Omicron (Table 1). BA.5 may have immune 274 

escape from current vaccination and therapies, but the symptoms and severity of the disease 275 

caused by BA.5 infection may be reduced by available vaccination and therapies [25].         276 

 277 
Table 1: Analysis results of spike protein from SARS-CoV-2 Wuhan strain in comparison 278 
with spike proteins from SARS-CoV-2 variants. 279 

Wuhan (baseline)/ 
Delta (reference) 

Delta  Omicron IHU 
(France) 

Indonesia 
variant 

Mu 
variant 

UK 
(Alpha) 

BA.5 

Positive Correlation 99.44% 98.09% 98.80% 99.59% 99.28% 99.58% 98.27% 
Negative 
Correlation 

0.17% 1.00% 0.59% 0.27% 0.52% 0.32% 0.89% 

Pearson Correlation 0.9927 0.9709 0.9821 0.9932 0.9876 0.9926 0.9738 
Center 
Convergence 

629 631 633 626 628 626 633 

Center Divergence 557 361 419 707 478 655 417 
M/Q Span 72 270 214 162 150 58 216 
Reproduction Rate 2.08 7.79 6.17 4.67 4.33 1.67 6.23 
R0 Value* 5.08 7.0 8.2 6.79 3.5 5.6 7.0 
Max Positive 
Position 

518 518 516 516 517 516 518 

Max Negative 
Position 

616 216 490 757 485 614 616 

M/Q Density 493  64  289  463  351 505  349 
Virulence 2.15% 0.28% 1.26% 2.02% 1.53% 2.20% 1.52% 
Death Rate* 0.3%-

3.4% 
0.06%-
0.3% 

0.9%-
2.3% 

1.0%-
2.3% 

2.0%-
3.0% 

1.3-5.3% 0.06%-
0.3% 

* The R0 value and the death rate were obtained from Wikipedia.  280 

 281 

3.2. Analysis results for Omicron spike protein in comparison with spike proteins from 282 

human common cold coronaviruses and murine coronaviruses  283 

We compared the Omicron spike protein with the spike proteins from murine 284 

coronaviruses FJ64 (Murine coronavirus RA59/R13; Genbank: FJ647218.1) and AB55 285 
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(GenBank: AB551247.1) as well as from human common cold (seasonal) coronaviruses 229E 286 

(GenBank: NC_002645.1), OC43 (GenBank: MN488635.1), NL63 (GenBank: KY554970.1), 287 

and HKU1 (GenBank: MN488637.1). For this comparison, we use Omicron spike protein as 288 

the baseline and OC43 spike protein as a reference. We set 𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑠𝑠 =1.56 (OC43), 289 

𝑉𝑉𝐷𝐷𝐶𝐶𝑉𝑉𝑟𝑟𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝑝𝑝𝑝𝑝𝑠𝑠=0.02% (OC43).  Figure 2 shows the analysis results for Omicron spike protein 290 

in comparison with the spike proteins from murine coronaviruses and human common cold 291 

coronaviruses. Unlike the data presented in Figure 1, there are more changes in Mass-Charge 292 

ratios between Omicron spike protein and the spike proteins from the murine and seasonal 293 

coronaviruses as shown in Figure 2. Phylogenetic analysis of the viral genomes shows that 294 

Omicron and variant B.1.1.7 are closely related to Wuhan strain virus as shown in Fig. 1C and 295 

1F; but, as compared to Wuhan strain virus and its variant B.1.1.7, Omicron is closer to seasonal 296 

coronaviruses NL63 and 229E and then to HKU1 and OC43. The phylogenetic analysis also 297 

shows that OC43 and HKU1 as well as NL63 and 229E are closer to murine coronaviruses in 298 

evolution (Fig. 3). However, these differences are not apparently observed in Fig. 2. Overall, 299 

unlike data presented in Fig. 1, there are a lot of more dissimilarities between Omicron spike 300 

protein and the spike proteins from human common cold coronaviruses and murine 301 

coronaviruses (Fig. 2), suggesting distant relationship between Omicron and these 302 

coronaviruses in evolution.     303 

 304 
Table 2: Analysis results of Omicron spike protein in comparison with spike proteins from 305 
human seasonal common cold coronaviruses 306 

Omicron (baseline)/OC43 (reference) OC43 229E NL63 HKU1 
Year: 2021 1953 1965 2004 2004 
Positive Correlation 59.06% 56.80% 53.97% 59.38% 
Negative Correlation 20.32% 19.93% 21.87% 20.46% 
Pearson Correlation 0.3874 0.3686 0.3210 0.3893 
Center Convergence 695 686 681 674 
Center Divergence 569 629 632 611 
M/Q Span 126 57 49 63 
Reproduction Rate 1.56 0.71 0.61 0.78 
Max Positive Position 1180 1112 1197 1171 
Max Negative Position 274 352 432 1290 
M/Q Density 443  569  670  1166  
Virulence 0.020% 0.026% 0.030% 0.053% 
Death Rate* 0.02% 0.03% 0.045% 0.10% 

* The data were obtained from Wikipedia.  307 
 308 
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Further to the data presented in Fig. 2, Table 2 shows the detailed analysis results for 309 

the comparison of Omicron spike protein with the spike proteins from human common cold 310 

coronaviruses. As compared to the centers of convergence presented in Table 1 (626 to 633) 311 

for SARS-CoV-2 variants, the centers of convergence for the spike proteins from seasonal 312 

coronaviruses is shifted to the right (674 to 695) of the sequence. The centers of divergence for 313 

spike proteins from SARS-CoV-2 variants are scattered from 361 to 707 (Table 1); while the 314 

centers of divergence for the spike proteins from seasonal coronaviruses are more located at 315 

the region from 569 to 632 (Table 2). The max positive positions for SARS-CoV-2 variants are 316 

centralized to 516 to 518 (Table 1); while the max positive positions for seasonal coronaviruses 317 

are centralized to 1112 to 1197 (Table 2). The max negative positions for SARS-CoV-2 variants 318 

and seasonal coronaviruses are mostly scattered on the N-terminal regions of spike proteins 319 

(216 to 757) except HKU1 (1290) (Tables 1 and 2). More importantly, the virulence calculated 320 

by the algorithm using the parameters for the common cold coronaviruses is very closely to the 321 

actual death rates reported in the literature (Table 2). This further demonstrates that the 322 

calculated virulence may predicate the virulence of the viruses, i.e., the death rate caused by 323 

the coronavirus infection.    324 

 325 
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 326 
Figure 2. The analysis results for Omicron spike protein in comparison with spike proteins 327 
from murine coronaviruses and human common cold coronaviruses. The peaks and the dips in 328 
the graphs represent variations in Mass-Charge ratio of the amino acids of the spike proteins, 329 
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meaning that mutations occur in this region resulting in changes in charge/mass of the amino 330 
acids. The wider peaks or dips represent the changes involved in more amino acid changes of 331 
the spike proteins. The peaks indicate positive correlation and the dips indicate negative 332 
correlation. The dips mean opposite changes in the charge/mass of the amino acids of the spike 333 
proteins. The dips may have stronger impact on the biological function of the proteins than the 334 
peaks.  Panel A: Normalized semi-covariance for generalized mass-charge ratio of murine 335 
coronavirus FJ64 spike protein (Genbank: FJ647218.1) baselined on Omicron spike protein. 336 
Panel B: Normalized semi-covariance for generalized mass-charge ratio of murine coronaviral 337 
spike protein (GenBank: AB551247.1) baselined on Omicron spike protein. Panel C: 338 
Normalized semi-covariance for generalized mass-charge ratio of spike protein from human 339 
common cold coronavirus 229E baselined on Omicron spike protein. Panel D: Normalized 340 
semi-covariance for generalized mass-charge ratio of spike protein from human common cold 341 
coronavirus OC43 baselined on Omicron spike protein. Panel E: Normalized semi-covariance 342 
for generalized mass-charge ratio of spike protein from human common cold coronavirus NL63 343 
baselined on Omicron spike. Panel F: Normalized semi-covariance for generalized mass-344 
charge ratio of spike protein from human common cold coronavirus HKU1 baselined on 345 
Omicron spike protein.  346 
 347 

 348 

Figure 3. Phylogenetic tree for complete genomes of SARS-COV-2 (Wuhan strain, B.1.1.7, 349 
and Omicron), human common cold coronaviruses (NL63, 229E, OC43, and HKU1), and 350 
murine coronaviruses (Genbank Accession #: AB551247.1, MW620427.1, GU593319.1, 351 
FJ647220.1, FJ884686.1, MF618252.1 and FJ647219.1) by using Clustal Omega. 352 
 353 
 354 
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3.3. The analysis results for OC43 spike protein in comparison with spike proteins from 355 

murine coronaviruses and seasonal coronaviruses    356 

We compared OC43 spike protein with the spike proteins from MW62 (murine 357 

coronavirus MHV-3; GenBank: MW620427.1), FJ64 (GenBank: FJ647218.1), AB55 358 

(GenBank: AB551247.1), GU59 (GenBank: GU593319.1), FJ88 (GenBank: FJ884686.1), and 359 

HKU1 (GenBank: MN488637.1). In this comparison, OC43 spike protein is used as the 360 

baseline and the FJ88 spike protein is used as a reference. We set 𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑠𝑠 =1.0 (FJ88), 361 

𝑉𝑉𝐷𝐷𝐶𝐶𝑉𝑉𝑟𝑟𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝑝𝑝𝑝𝑝𝑠𝑠=60% (FJ88). The murine coronaviruses are murine hepatitis virus (MHV) and 362 

are positive single-stranded RNA coronaviruses of ~31kb. These viruses are highly infectious 363 

and fetal. MHV infection of rodents can cause ~60% death and the mortality can reach 100% 364 

in infant mice [26,27]. The standard virulence is thus set at 60% in this analysis, but the 365 

reference for virulence can be changed upon the viruses to be used in the analysis. Figure 4 366 

shows the analysis results of OC43 spike protein in comparison with the spike proteins from 367 

murine coronaviruses and seasonal coronavirus HKU1. It can be seen from Figure 4 that the 368 

similarity of the Mass-Charge ratios between OC43 spike protein and murine/HKU1 369 

coronaviral spike proteins is closer as compared to those between Omicron and 370 

seasonal/murine coronaviruses presented in Fig. 2, but the similarity in Fig. 4 is less than those 371 

between Wuhan strain virus and its variants presented in Fig. 1. It is also noted that the patterns 372 

of Mass-Charge ratios displayed in Fig. 4A to 4E are highly similar to each other. Another 373 

important observation is that the variations in the C-terminal part of the spike protein sequences 374 

are smaller than the variations in the N-terminal region and the middle region of the spike 375 

protein sequences (Fig. 4), further indicating that this region is relatively stable in terms of 376 

Mass-Charge ratios and protein sequence.      377 

Table 3 presents the detailed analysis results for the comparison of OC43 spike protein 378 

with the spike proteins from murine coronaviruses, showing that Mass-Charge variances reveal 379 

more dependency and trend of each protein sequence evolution [28]. From the analyses, the 380 

virulence of MHV strains AB551247.1 and GU593319.1 is similar to the strain FJ884686.1 at 381 

~60%; while the virulence of MHV strain FJ647218.1 (42.45%) is less than strain FJ884686.1.     382 

 383 

 384 
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Figure 4. The analysis results of OC43 spike protein in comparison with spike proteins from 386 
other coronaviruses. The peaks and the dips in the graphs represent variations in Mass-Charge 387 
ratio of the amino acids of the spike proteins, meaning that mutations occur in this region 388 
resulting in changes in charge/mass of the amino acids. The wider peaks or dips represent the 389 
changes involved in more amino acid changes of the spike proteins. The peaks indicate positive 390 
correlation and the dips indicate negative correlation. The dips mean opposite changes in the 391 
charge/mass of the amino acids of the spike proteins. The dips may have stronger impact on 392 
the biological function of the proteins than the peaks. Panel A: Normalized semi-covariance 393 
for generalized mass-charge ratio of murine coronaviral spike protein (GenBank: 394 
MW620427.1) baselined on OC43 spike protein. Panel B: Normalized semi-covariance for 395 
generalized mass-charge ratio of murine coronaviral FJ64 (GenBank: FJ647218.1) spike 396 
protein baselined on OC43 spike protein. Panel C: Normalized semi-covariance for generalized 397 
mass-charge ratio of murine coronaviral AB55 (GenBank: AB551247.1) spike protein 398 
baselined on OC43 spike protein. Panel D: Normalized semi-covariance for generalized mass-399 
charge ratio of murine coronaviral GU59 (GenBank: GU593319.1) spike protein baselined on 400 
OC43 spike protein. Panel E: Normalized semi-covariance for generalized mass-charge ratio 401 
of murine coronaviral FJ88 (GenBank: FJ884686.1) spike protein baselined on OC43 spike 402 
protein. Panel F: Normalized semi-covariance for generalized mass-charge ratio of human 403 
seasonal coronaviral HKU1 (GenBank: MN488637.1) baselined on OC43 spike protein.  404 

 405 
Table 3: Analysis of OC43 spike protein in comparison with spike proteins from murine 406 
coronaviruses. 407 

OC43 (baseline)/FJ88 (reference) FJ64 AB55 GU59 FJ88 
Positive Correlation 83.28% 83.34% 85.09% 83.43% 
Negative Correlation 6.37% 6.31% 5.87% 6.37% 
Pearson Correlation 0.7691 0.7702 0.7922 0.7706 
Center Convergence 670 751 750 755 
Center Divergence 541 638 638 634 
M/Q Span 129 113 112 120 
Reproduction Rate 7.70 6.73 6.68 7.19 
Max Positive Position 1157 1531 1531 1531 
Max Negative Position 934 1293 1293 1293 
M/Q Density 911  1294  1295 1287 
Virulence 42.45% 60.33% 60.37% 60.00% 

 408 
 409 
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410 
Fig. 5. Effects of different distance Z of the Langlands program on viral virulence (amplitude). 411 
The curves highlighted in the ovary circle represent the M/Q ratio for optimal distance to 412 
interact with the receptors. The arrow direction represents the increase in virulence.  413 
 414 

415 
Fig. 6. Effects of different distance Z of the Langlands program on viral infectivity (angle). The 416 
arrow direction represents the increase in infectivity. 417 
 418 

Fig. 5 and Fig. 6 show the effects of different Z values (binding distance) for different 419 

strains of coronaviruses. The valley (binding depth) of the virulence for the different strains of 420 

viruses is slightly different based on the previous analysis. For example, in Fig. 5, the Omicron 421 

variant has a valley with a similar high magnitude to BA5 and Delta. However, a slightly bigger 422 

horizontal Z position value than the Delta variant suggests its lower virulence. Fig. 6 shows the 423 

effect of different Z values based on the angle (binding width). The larger the Z value and the 424 

higher the angle is, the more contagious the virus. The SARS-CoV-1 shows the lowest angle, 425 

while the Omicron variant BA2 and BA5 with the highest Z value is the most infectious variant 426 

known. 427 
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 428 
 429 

Fig. 7. Comparison of different active centers of convergence for SARS-CoV-2 variant spike 430 
proteins vs. appearing month and its linear prediction of viral stabilization. 431 

 432 
Based on our analysis of the binding coverage for each variant in the past months, we can 433 

draw the trend line to demonstrate the evolution of the coronaviruses (Fig. 7). If the binding 434 

coverage drops to zero, the viruses may not need further mutations in this region for its 435 

infectivity and virulence or the virus may be stabilized relatively. Alternatively, further 436 

mutations may not significantly increase the viral infectivity or virulence.  437 

 438 

Conclusion 439 

This study presents the construction of a Mass-Charge covariance for equivalent analysis 440 

of coronaviral spike protein fluctuations using an equivalent moment basis with a simple 441 

algorithm coded in Excel, and other similar tools can be used too. This novel Mass-Charge 442 

model reveals an extra performance index over the traditional model, like infective 443 

reproduction rate and virulence estimation. The study also compares the spike proteins from 444 

murine coronaviruses to the spike proteins from human common cold seasonal coronaviruses. 445 

The results of the Mass-Charge calculation show the differences between animal and human 446 

coronaviral spike proteins that traditional covariance definition and calculation may overlook. 447 

It also reveals the unique positive and negative charge (mutation) section center positions in 448 

the viral spike proteins (where the convergence and divergence sections are located). By using 449 

the normalization procedure, the new algorithm removes the self-correlation of each viral spike 450 

protein and displays only the cross-correlation between the viral spike proteins. By analyzing 451 
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various parameters of viral protein sequences using the algorithm, the infectivity and the 452 

virulence of the viruses or viral variants may be accurately predicted, particularly when a new 453 

virus or a new viral variant is emerging. If the viral infectivity and virulence can be estimated 454 

or predicted, it will provide important information for preventative measures or therapeutic 455 

preparedness for the diseases caused by the virus and its variants.   456 

It is envisioned that the Mass-Charge model is a promising alternative for the coronaviral 457 

spike protein analysis as well as for other human and viral protein analyses. The model will be 458 

useful to combine inter-virus and intra-virus characterizations. The simplified Excel calculation 459 

is very easy to use, accurate enough, and forward compatible with the traditional Pearson model 460 

and calculations. The more complicated Matlab code is good for experienced users to do more 461 

deep analyses for viral biology and evolution and for drug development. The example code is 462 

available from an Excel file on the GitHub and Matlab servers: 463 

(https://github.com/steedhuang/Poincare-Fuchs-KleinAutomorphicFunction-COVID19-464 
Mutations). 465 
(https://www.mathworks.com/matlabcentral/fileexchange/106870-calculate-langlands-466 
automorphic-mass-charge-spectrum). 467 

 468 
  469 
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