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ABSTRACT 21 

The brain tumor immune microenvironment (TIME) continuously evolves during glioma 22 

progression, but only a limited view of a highly complex glioma associated immune contexture 23 

across isocitrate dehydrogenase mutation (IDH) classified gliomas is known. Herein, we present 24 

an unprecedentedly comprehensive view of myeloid and lymphoid cell type diversity based on 25 

our single cell RNA sequencing and spectral cytometry-based interrogation of tumor-associated 26 

leukocytes from fifty-five IDH stratified primary and recurrent human gliomas and three non-27 

glioma brains. Our analyses revealed twenty-two myeloid and lymphoid cell types within and 28 

across glioma subtypes. Glioma severity correlated with microglial attrition concomitant with a 29 

continuum of invading monocyte-derived microglia-like and macrophages amongst other 30 

infiltrating conventional T and NK lymphocytes and unconventional mucosa associated invariant 31 

T (MAIT) cells. Specifically, certain microglial and monocyte-derived subpopulations were 32 

associated with antigen presentation gene modules, akin to cross-presenting dendritic cells 33 

(DCs). Furthermore, we identified phagocytosis and antigen presentation gene modules 34 

enriched in Triggering receptor expressed on myeloid (TREM)-2+ cells as a putative anti-glioma 35 

axis. Accelerated glioma growth was observed in Trem2 deficient mice implanted with CT2A 36 

glioma cells affirming the anti-glioma role of TREM2+ myeloid cells. In addition to providing a 37 

comprehensive landscape of glioma-specific immune contexture, our investigations discover 38 

TREM2 as a novel immunotherapy target for brain malignancies.  39 
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INTRODUCTION 40 

The discovery of meningeal and parenchymal access of immune cells1 and the presence of 41 

meningeal2-4 and dural lymphatics5 in the central nervous system (CNS) has led to redefinition 42 

of the brain being immunologically distinct rather than immune privileged; a notion held for 43 

several decades6. In brain pathologies such as traumatic injury or neurodegenerative disorders, 44 

phagocytic cells comprising brain resident microglia and CNS associated 45 

monocytes/macrophages are the first responders to resolve associated inflammation. For 46 

instance, in Alzheimer’s disease the protective role of microglia in clearing amyloid plaques has 47 

been established to prevent disease progression7. In contrast, tumor associated macrophages 48 

have been linked to poor prognosis in brain neoplasms such as gliomas that arise from 49 

transformed neural progenitor cells8,9. Although primarily phagocytic in nature, myeloid cells are 50 

plastic and can undergo functional diversification under the influence of dysregulated cytokine 51 

and chemokine milieu contributed by both infiltrating bone marrow derived leukocytes as well as 52 

tumor cells10-13. Myeloid cell functions can also be differentially influenced by tumor necrosis and 53 

inflammation, a defining feature of IDH-wt when compared to IDH-mut gliomas14. Standard of 54 

care treatments such as surgical resection followed by temozolamide and ionizing radiation can 55 

unintendedly cause disruption of anatomical barriers, immunomodulation and necrosis, all of 56 

which can skew the properties of myeloid cells and other leukocytes15,16.  57 

Studies pertaining to immune cell heterogeneity of gliomas at single cell resolution are 58 

emerging, however these studies are either restricted to myeloid cells13,17-21 or lack in-depth 59 

characterization of low grade  in comparison to high grade gliomas17,18,22-24. Furthermore, given 60 

that most immunotherapy clinical trials are prioritized in relapsed patients25, understanding the 61 

treatment induced changes of brain TIME with unbiased approaches in recurrent tumors of all 62 

glioma subtypes are imperative. Glioma specific TIME studies are broadly focused on microglia 63 

/macrophages collectively referred as glioma-associated macrophages (GAMs), myeloid-64 

derived suppressor cells (MDSCs), and tumor infiltrating lymphocytes (TILs)23,26. However, 65 

oversimplified myeloid cell diversity and M1/M2 functional dichotomization ignores the 66 

phenotypic heterogeneity and plasticity in these cell types27-29. Recent cytometry studies have 67 

captured the leukocyte diversity of the brain TIME in primary gliomas and brain metastasis30,31 68 

to a certain extent albeit based on a priori markers.  69 

To address these knowledge gaps and delineate the glioma associated leukocyte 70 

diversity in the TIME, we performed single cell (sc)- and bulk RNA Sequencing (RNA-seq) and 71 

spectral cytometry analyses on tumor-associated leukocytes from fifty-five IDH-stratified primary 72 
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(treatment naïve) and standard of care treated recurrent glioma subtypes to define their immune 73 

landscape. In addition to corroborating established myeloid dominant glioma characteristics, we 74 

redefine glioma TIME by superimposing our advanced findings across glioma subtypes with 75 

largely IDH-wt glioma restrictive studies17,18,22-24. Our major findings include the following: i) We 76 

observed significant attrition of microglia (MG) accompanied by increased infiltration of classical 77 

monocytes (c-Mo), monocyte-derived-microglia-like (Mo-MG or MG-like), -macrophages (MDM) 78 

and conventional dendritic cells (cDC)-2 in recurrent IDH-wild type gliomas relative to other 79 

glioma subtypes; ii) We demonstrate eleven transcriptionally distinct glioma associated MG 80 

states inclusive of tumoricidal, inflammatory and metabolic phenotypes; ii) Infiltration of Tregs, 81 

NK cells and mucosa associated invariant T (MAIT) were significantly abundant in recurrent IDH-82 

wild type gliomas; and iv) We identified glioma associated myeloid cells with triggering receptor 83 

expressed on myeloid (TREM)-2  cells enriched for phagocytosis and antigen-presentation gene 84 

modules as putative anti-glioma axis and demonstrate their anti-glioma functions using a 85 

xenograft mouse model. In summary, our reverse translational glioma immunophenotyping 86 

investigations reveal an unprecedently advanced landscape of glioma TIME that can be 87 

exploited for future immunotherapy applications. We further uncover TREM2 as a novel glioma 88 

specific immunomodulatory target with likely implications in other brain malignancies.   89 

 90 

RESULTS 91 

Transcriptionally defined immune cell diversity in IDH-mutation stratified human gliomas 92 

To discern glioma associated immune cell diversity, we performed single cell RNA sequencing 93 

(scRNA-seq) on flow sorted CD45+ leukocytes obtained from tumors of eighteen IDH-mutation 94 

classified patients comprising IDH-mutant primary (IMP; n=4), IDH-mutant recurrent (IMR; n=6), 95 

IDH-wild type primary (IWP; n=4), or IDH-wild type recurrent (IWR; n=4) gliomas (hereafter 96 

referred as glioma subtypes). Three quasi-normal, non-glioma brains (NGBs) either from a grade 97 

I meningioma patient or refractory epileptic non-neoplastic patients were used as controls (Fig. 98 

1A and Supplementary Table S1). Using a previously described immune cell enrichment 99 

protocol32 and CD45+ sorting strategy, we consistently obtained highly pure CD45hi/CD45lo 100 

leukocyte subpopulations in gliomas and NGBs (Fig. 1A and Supplementary Fig. S1A-C). This 101 

is in contrast to previous studies using human glioma specimens that were not able to resolve 102 

these two distinct CD45hi/CD45lo subpopulations33-35.  103 

Overall scRNA-seq dataset was batch corrected with Harmony using COMBAT software 104 

(Supplementary Fig. S1D-G). A low rejection rate in K-BET indicated homogeneous mixing of 105 
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samples after batch correction (Supplementary Fig. S1H) as detailed in methods. Furthermore, 106 

we removed the likely doublets/multiplets, cell debris, and low-quality cells using a multistep 107 

approach (see Methods). Unsupervised clustering followed by Uniform Manifold Approximation 108 

and Projection (UMAP) analyses resolved 144,678 cells into two major immune compartments 109 

predominated by myeloid (n=100,587) and lymphoid cells (n=44,091) within and across glioma 110 

subtypes in line with previous reports30,31,36,16,17,21-23 with the exception of IWR gliomas, which 111 

had similar proportions of myeloid and lymphoid cell populations (Fig. 1B). Glioma associated 112 

myeloid cells exhibited a continuum of overlapping gene features (SPP1, APOE, C1QC) with 113 

MG and macrophage (MAC) subsets yet resolved by core MG gene set including CX3CR1, 114 

GPR34, P2RY12, P2RY13, SALL1, TAL1, and TMEM119 amongst others (Fig. 1C, 115 

Supplementary Fig. S1J).   Dendritic cells (DC), monocytes (Mo), and neutrophils were clearly 116 

identified based on expression of canonical gene signatures (Fig. 1C, Supplementary Fig. S1I 117 

and J).  118 

Brain resident MG represented the largest myeloid cell type in NGB and IMP (Fig. 1C). 119 

In contrast, in response to MG attrition, invading MG-like cells co-expressing MG- (SORL1, 120 

SAMD9L, GPR34) and MAC- (GLDN, MSR1, CD163) signature genes, VCAN+FCN1+ classical 121 

monocytes (c-Mo), TCF7L2+FCGR3A+ non-classical monocytes (nc-Mo), CD163+MARCO+FN1+ 122 

MAC, TMEM176A+SELENOP+ MDM proportionately increased in IMR, IWP and IWR glioma 123 

subtype (Fig. 1C, Supplementary Fig. S1J). Increased trends with professional antigen 124 

presenting cells (APC) such as CLEC9A+ cDC1, CD1C+ cDC2 and IL3RA+ plasmacytoid DC 125 

(pDC) were observed in IWR gliomas compared to other glioma subtypes. Other notable glioma 126 

associated myeloid cells included indistinguishable cell type with enriched interferon (IFN) 127 

stimulated gene signatures (IFI44L, IFI6, ISG15) defined as MAC/MG_IFNs, and proliferative 128 

genes (MKI67, PCLAF) expressing Myeloid_Proliferative (Myeloid_prolif) cells and JMJD1C+ 129 

Neutrophils (Fig. 1C, Supplementary Fig. S1J). We speculate that the influx of non-MG myeloid 130 

cells is a consequence of depleting niches of MG akin to observations in inflammation associated 131 

conditions where tissue resident macrophage attrition has been reported37.  132 

Inter- and intratumoral glioma associated lymphoid cell types resolved into T 133 

lymphocytes, TRDC+ γδ-T cells, SLC4A10+ Mucosa associated invariant T (MAIT) cells, NKG7+ 134 

KLRF1+ Natural Killer (NK) cells, CD3D+NKG7+ Natural Killer T (NKT) cells, CD79A+MS4A1+B 135 

lymphocytes and MZB1+IGHG1+ plasma cells (Fig. 1D, Supplementary Fig. S1K and 1L). 136 

Notably, amongst lymphoid lineage cells, we identified rare infiltrating populations of MAIT 137 

(0.18%- 4.14%) and NKT (0.35% - 26.4%) in human glioma TIME, which have not been 138 
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previously reported38. We observed glioma subtype specific enrichment patterns, such as 139 

apparently reduced MG and abundance of T-cell and monocyte-derived cells in all patients in 140 

the IWR group (Supplementary Fig. S1M). Overall, we report twelve myeloid and ten lymphoid 141 

cell types with transcriptionally defined phylogenic cellular relationships in the TIME of IDH 142 

stratified primary and recurrent human gliomas (Supplementary Fig. S1N).  143 

 144 

Glioma associated transcriptional immune cell phenotypes validated by spectral 145 

cytometry  146 

In view of transcriptionally redefined immune cell diversity across glioma subtypes, we validated 147 

scRNA-seq inferred cell types with correlative protein markers. A 40-parameter protein marker 148 

panel was designed (Supplementary Table S2) to corroborate majority of inferred cell types 149 

(Supplementary Fig. 1N). A comprehensive spectral cytometry-based phenotyping 150 

immunoassay was performed across fifty-five patients covering all glioma subtypes and three 151 

refractory epileptic non-neoplastic patients (detailed in Supplementary Table S1). We 152 

confirmed P2RY12+CX3CR1+MG as the most abundant cells across glioma subtypes with 153 

highest proportions evident in NGB and IMP (Fig. 2A). Total P2RY12+CX3CR1+MG and even 154 

reactive CD11c+MG were dramatically reduced with glioma recurrence in IMR and IWR 155 

compared to IMP and IWP glioma subtype respectively. A concomitant significant increase in 156 

CD11c+CCR2+Mo-MG, CD14+CD16-c-Mo, CD68+CCR2+MDM and CD1c+cDC2 was observed 157 

in IWR relative to IMP glioma subtype while other myeloid cell types such as CD16-CD14+nc-158 

Mo, CD68+CCR2+MDM, Clec9A+cDC1 (Fig. 2 B-E) and CD66b+ neutrophils (not shown). 159 

Amongst lymphoid lineage cells Foxp3+Tregs, CD56hiNK, CD56loNK cells and 160 

TCRVa7.2+mucosa associated invariant T (MAIT) were significantly abundant in IWR gliomas 161 

with co-presence of CD4, CD8 T, NKT, and gd-T cells across glioma subtypes (Fig 2F-H). 162 

Altogether, we confirmed all major cell types and their enrichment patterns across glioma 163 

subtypes. 164 

 165 

Transcriptional heterogeneity and inferred functional states of microglial cells in human 166 

gliomas 167 

In humans, the CNS associated microglial states have been defined in Alzheimer’s39, multiple 168 

sclerosis40 and to a limited extent in primary IDH-wt and IDH-mut gliomas using single cell 169 

transcriptomics17,18,23,41. We sub-clustered and delineated MG into eleven distinct states 170 

distributed across glioma subtypes (Fig. 3A, Supplementary Fig. S2B-E). These MG clusters 171 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.11.08.514794doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.08.514794
http://creativecommons.org/licenses/by-nc-nd/4.0/


were distinguished from the rest of the myeloid cells based on the core MG gene sets inclusive 172 

of MG specific transcription factors; TAL1 and SALL1 (Fig. S1J).  173 

To evaluate functional features, we performed gene ontology (GO) analysis which identified MG 174 

expressing unique markers with subtype specific clustering. This included glioma restricted 175 

antigen presentation associated gene modules (e.g., CSTD, MS4A4A) in MG_APC-Like 1 and 176 

MG_APC-like 2 clusters and a lipid metabolism associated LPL+ MG_Lipid Metab. Cluster (Fig. 177 

3B, Supplementary Fig. S2C). We also observed IDH-mut glioma restricted MG clusters that 178 

included BAG3+MG_hsp and ATF expressing metabolically enriched MG_OxPhos (Fig. 3B, 179 

Supplementary Fig. S2C). MG that was predominantly seen in NGB were P2RY12+ 180 

MG_homeostatic and CCL4L2 expressing inflammatory MG_Inflam 1 cluster associated with 181 

response to tumor necrosis factor, Interleukin-1 and lipopolysaccharide GO term (Fig. 3B, 182 

Supplementary Fig. S2C). Tissue macrophages exhibit multifaceted polarization in response 183 

to microenvironmental cues, hence we evaluated the polarization spectrum of MG with nine 184 

distinct macrophage activation programs as previously described27. We assessed polarization 185 

states of MG clusters with a spectral polarization view rather than dichotomous M1/M2 186 

polarization model and identified palmitic acid responsive gene module associated with 187 

MG_Inflam1 along with IL-4 responsive polarization states in MG_APC-like 2 and MG_OxPhos 188 

clusters (Fig. 3C).  A GNLY+TNF+ cluster defined as MG_Tumoricidal was also noted across 189 

glioma subtypes. Furthermore, we subclustered the unidentifiable MAC/MG_IFNs cluster, which 190 

enabled resolution of this cluster into MAC and MG phenotypes. These IFN gene associated 191 

clusters were CD163+LYZ+MAC_IFN, GNLY+TMIGD3+MG_IFN GNLY+IL1A+MG Inflam 2 (Fig. 192 

3C, Supplementary Fig. S2D-E) and associated gene signatures are suggestive of their 193 

contribution to inflammation in gliomas. Overall, we identified transcriptionally heterogeneous 194 

MG with their inherent functional likelihoods across glioma subtypes. 195 

 196 

Spectrum of invading non-MG myeloid cells in human gliomas 197 

In order to understand non-MG myeloid cell diversity, which have been a subject of intense 198 

investigation in IDH-wt gliomas12,13,18,20,21,33, we performed a comprehensive analyses of 199 

invading non-MG myeloid subpopulations across IDH-classified gliomas and identified sixteen 200 

non-myeloid cell states (Fig. 3D). We uncovered six MAC and two MDM clusters. Based on DEG 201 

and GO analysis we annotated glioma associated macrophages as IL10+MAC_Anti-Inflam, 202 

multiple metabolic phenotypes such as clusters enriched with hypoxia genes (e.g., SDS, 203 

HMOX1) MAC_Metab/Hypoxia 1, MAC_Metab/Hypoxia 2 and LIPA+MAC_Lipid Metab 204 
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subpopulations. A cluster of LYVE1 expressing MAC associated with vasculature defined as 205 

MAC_Perivascular was observed across glioma subtypes (Fig. 3E, Supplementary Fig. S2F-206 

G). Amongst the MDMs, C1QA+MDM_Phagocytic 1 was associated with receptor mediated 207 

endocytic process and JUN+SELENOP+MDM_Inflam subset correlated with positive regulation 208 

of inflammation GO term (Fig. 3E, Supplementary Fig. S1M, S2F-G). Although MDMs showed 209 

marked increase in IWR glioma subtype, abundance of MAC was proportionately similar across 210 

IMP, IMR and IWP gliomas (Fig. 2D). Monocytic infiltrates in glioma TIME included significantly 211 

abundant FCN1+CD14+c-Mo in IWR compared to IMP gliomas whereas FCGR3A+TCF7L2+ nc-212 

Mo did not show any noticeable differences across other glioma subtypes (Fig. 3D, 2C, 213 

Supplementary Fig. S1M, S2F). Glioma associated inflammation led to DC infiltration in 214 

contrast to negligible DCs in NGB CD1C+cDC2 was significantly abundant in IWR glioma 215 

subtypes, while a proportionally similar levels of infiltration of CLEC9A+cDC1 and IL3RA+pDC 216 

were observed across other glioma subtypes (Fig. 3D, 2E, Supplementary Fig. S1M, S2F-G). 217 

Taken together, our data provides advanced insight of infiltrating myeloid cell subsets in the 218 

glioma TIME and highlights their similarities and differences with MG. 219 

 220 

Identification of Trem2 as an anti-glioma modulator 221 

To gain a deeper understanding of pathways altered in MG, we inspected genes that regulate 222 

phagocytosis and antigen presentation in myeloid cells, especially MG_APC-Like 1 and 223 

MG_APC-like 2 clusters (Fig. 4A). These clusters were enriched for HLA-DR (Fig. 4A), a major 224 

histocompatibility complex (MHC) class II gene. In addition, we found higher expression of 225 

TREM2 and its regulator MS4A6A (Fig. 4B), both of which play crucial roles in microglial 226 

functions and gene risk loci for Alzheimer’s disease, where MG play a protective role. Recent 227 

studies have also demonstrated a role for Trem2 in immunosuppression of cancer 42,43. To 228 

examine the influence of TREM2 on glioma growth, we implanted CT-2A glioma cells in C57BL/6 229 

WT mice and compared survival differences with Trem2-/- mice. Genetic ablation of Trem2 230 

promoted tumor growth in mice (bioluminescence data not shown) and showed significantly 231 

reduced survival compared to syngeneic WT mice with intracranial gliomas (Fig. 4C). These 232 

data demonstrate that in contrast to previous studies on systemic cancers44,45, TREM2+ myeloid 233 

cells play an anti-tumor role in GBM.  234 

 235 

DISCUSSION 236 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.11.08.514794doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.08.514794
http://creativecommons.org/licenses/by-nc-nd/4.0/


Using single cell transcriptomic profiling, our study uncovers the cellular and molecular 237 

landscape of brain-specific glioma immunity. We observed that both myeloid and lymphoid 238 

subpopulations exhibit remarkable cellular diversity depending on IDH status and disease 239 

severity. Recent high throughput studies have elegantly demonstrated the spatio-temporal 240 

distribution of microglial subsets in humans and mice46. These studies established the plasticity 241 

of microglial cell states and reveal mechanisms by which MG contribute to limiting or promoting 242 

neurodegenerative diseases46. We observed attrition of tissue-resident microglial cells with a 243 

concomitant increased infiltration of non-MG myeloid cells as a distinct feature in IDH-wt 244 

gliomas, which is consistent with recent reports30,31. In our investigation, we even report 245 

reduction in MG in relapsed IDH-mutant gliomas and the highest MG attrition evident in IWR 246 

gliomas. Acute inflammation induces transient loss of embryonically derived tissue-resident 247 

macrophages as a result of necroptosis and concomitant replenishment either through self-248 

renewal or monocytic input as has been described in murine spleen, liver and lungs37. In line 249 

with this, we speculate migration of bone marrow derived myeloid cells as a compensatory 250 

mechanism of homeostatic myelopoiesis to fill depleting brain macrophage niches. Our results 251 

showing increased proportion of Mo-MG like cells in response to dramatic reduced MG in IWR 252 

gliomas provides a likely clue for such replenishment patterns in human gliomas. Our findings 253 

with MG provide evidence for multifaceted inflammatory phenotypes characterized by IL1A, 254 

TNF, IL6, IL10 and GNLY expression on various MG subsets. Although recent bulk mRNA-seq 255 

analysis pointed to cumulative spectral nature of glioma associated MG31, we clarify 256 

heterogeneity of polarization states and identify an unreported palmitic acid (PA) responsive and 257 

widely acknowledged IL-4 responsive gene modules in distinct clusters of MG. A Glucocorticoid 258 

induced signature has been reported with SEPP1high Mo-TAMS13. Together our findings suggest 259 

distinct polarization states amongst the multispectral polarization background in glioma 260 

associated MG rather than M1/M2 dichotomy. 261 

We observed that certain MG subsets abundantly expressed genes involved in both MHC 262 

class I (B2M) and class II (HLA-DRB1) molecules suggestive of their APC-like characteristics. 263 

With virtues of antigen presenting molecules, APC-like MG can potentially direct proliferation 264 

and secretion of cytokines in CD4 and CD8 T cells, a hypothesis that is worthy of further 265 

investigation. Interestingly we found that while MG express both MHC class I and class II gene 266 

modules; MAC or MDM are largely restricted to MHC class II. Although MG can orchestrate APC 267 

like functions, their reduced numbers may likely contribute to tumor immune escape. Recent 268 

studies have shown that MG localization is confined to the tumor border compared to 269 
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macrophages which are enriched in the tumor core, implying that MG may have distinct spatio-270 

phenotypic features compared to peripheral myeloid cells22. Our study also identified novel 271 

clusters of mo-DCs and MDMs that can also possess APC-like properties. Therefore, the dogma 272 

of DCs as bona fide immune sentinels and microglia and GAMs as being mainly tumor supportive 273 

needs to be revisited. 274 

Despite the evidence of lymphopenia in glioma patients47 and minimal responsiveness or 275 

treatment refractoriness to checkpoint blockade interventions (e.g., nivolumab)48, GBM 276 

immunotherapy clinical trials are T cell centric. In this study, we report paucity of lymphocytes in 277 

primary gliomas, and therefore exclusive T cell-based therapies, may not be effective for such 278 

patient cohorts. In contrast, myeloid cells represented 50-80% of leukocytes compared to 279 

lymphocytes across gliomas. Recent studies have shown that targeting the innate immunity 280 

using either depletion strategies or inducing tumor phagocytosis as alternative 281 

immunomodulatory therapies in GBM49. Here, we show that TREM2 as a putative target with 282 

anti-glioma properties. Although TREM2 was shown to be immunosuppressive in other cancers, 283 

TREM2 genetic ablation induced glioma growth in mice indicating differential functions of 284 

TREM2 in brain tumors. Further investigation of TREM2 expression in brain resident and 285 

infiltrating immune cells is warranted.  286 

In summary, our unbiased high dimensional studies have paved the way for an advanced 287 

understanding of immune landscape across gliomas that can be exploited for novel 288 

immunotherapy strategies for these cancer types.  289 
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METHODS 323 

 324 

Human brain tumor and tissue collection   325 

The brain tumor/tissue samples were collected from seventeen- patients post appropriate 326 

informed consent during neurosurgery with detailed information pertaining to gender, age, 327 

glioma grade, subtype and, brain site of tumor extraction etc. mentioned in Supplementary 328 

Table S1. The brain tumor/tissue samples were collected as per MD Anderson internal review 329 

board (IRB)-approved protocol numbers LAB03-0687, LAB04-0001 and 2012-0441. Non-tumor 330 

brain tissue sample was collected from patient undergoing neurosurgery for epilepsy as per 331 

Baylor College of Medicine IRB-approved protocol number H-13798. All experiments were 332 

compliant with the review board of MD Anderson Cancer Center, USA. 333 

 334 

Preparation of leukocyte single cell suspensions from brain tumor and tissue.   335 

The resected brain tumors and, tissues were either freshly processed or transiently stored 336 

overnight MACS Tissue Storage solution (Cat. #130-100-008, Miltenyi Biotec) at 4 degree 337 

Celsius (in case of delayed surgeries) and processed immediately next morning. The brain 338 

tumor/tissue were finely minced and, enzymatic dissociation was performed in prewarmed 339 

digestion medium containing 100 μg/ml Collagenase D (Cat. #11088866001, Sigma-Aldrich) 340 

and, 2U/ml DNase (Cat. #D9905K/ NC0893386, Fisher Scientific) for 45 minutes at 37 degree 341 

Celsius.  The enzymatic reaction was neutralized using 2% serum (Cat. #16140-071, gibco) in 342 

IMDM. The enzyme-digested tissues were homogenized by passing through an 18.5G gauge 343 

needle (Cat. #305196, BD) five times followed by further homogenization using syringe piston 344 

on a 100-μ cell strainer (Cat. #0877119/ Corning 352360) placed on a 50ml Falcon. The residual 345 

tissue on the strainer were mechanically dissociated using the piston of a 3ml syringe (Cat. 346 

#309657, BD). The single cells thus obtained were washed in 2% PBS and, centrifuged at 350g 347 

for 5 minutes at 4 degree Celsius. The resulting pellet was further subjected to 33% 348 

PercollTM (Cat. #17-0891-01, Sigma-Aldrich) gradient and centrifuged at 800g without brakes for 349 

12 minutes at 4 degree Celsius. The resulting pellet was subjected to the RBC lysis reaction 350 

(Cat. #R7757-100ML, Sigma-Aldrich) for 10 minutes at room temperature (R.T.) and reaction 351 

was stopped with 1X PBS (Cat. #21-040-CV, Corning) and resulting cell pellet obtained by 352 

centrifugation (500g, 5min, 4 degree Celsius). The single cells were filtered and cryopreserved 353 

in 10% DMSO (Cat. #D8418, Sigma-Aldrich) in FBS (Cat. #F4135, Sigma-Aldrich) in liquid 354 
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nitrogen (-196 degree Celsius) after a transient storage at -80 degree Celsius until further 355 

processing. 356 

 357 

CD45 staining and FACS sorting  358 

The cryopreserved leukocytic cells were briefly thawed at 37 degree Celsius and washed with 359 

complete RPMI 1640 (Cat. #10-040-CV, Corning) containing 10% FBS (Cat. #16140-071, 360 

gibco), 1% PSG (Cat. #P4333, Sigma), 10mM HEPES (Cat. #R5158, Sigma) and, incubated at 361 

37 degree Celsius for 30 min. Post incubation, cells were washed with 2% FBS containing PBS 362 

and incubated with 1:20 FcR blocking reagent (Cat. #130-059-901, Miltenyi Biotec) in 2% PBS 363 

for 10 min at RT. The Fc blocked cells were stained with 1:200 diluted anti-human CD45-APC 364 

(Cat. #130-113-114, Miltenyi Biotec) for 20 min at 4 degree Celsius in dark. The CD45-stained 365 

cells were mixed with lived dead Sytox-Green stain (Cat. #S7020, ThermoFisher Scientific) and 366 

CD45+ cells were sorted with BD FACS AriaTMIII. 367 

 368 

Single Cell RNA Sequencing (scRNA-seq) Library Preparation 369 

scRNA-seq was performed using 10x Genomics Chromium Single Cell Controller. Sorted cells 370 

were washed with 1X PBS and suspended in PBS/0.04% BSA. Cells were double-checked for 371 

viability and cell number by using the countess II FL and microscope. All cells were diluted to a 372 

concentration of 500-1000 cell/μl in PBS/0.04% BSA before being used for single cell 10X 3’v3. 373 

Single cells were captured using the 10X genomic controller according to the beads types and 374 

chip used for the experiments. The 10X genomic Chromium Single cell 3’ GEM, library and Gel 375 

bead Kit ’v3 (cat. #1000075) and chromium chip B single cell kit (pat. #1000073) were used to 376 

capture cells on the controller; cell recovery targeted was in a range of 5000 - 10000 cells. 377 

Captured cells then undergo a GEM-RT, cDNA amplification, and all purification in accordance 378 

to the 10X protocol. Cleanup cDNA was checked via a tape station (Agilent 42000) HSD5000 379 

(cat# part # 5067-5593) for cDNA traces. 25% of the cDNA was used to generate the library, 380 

and the Chromium i7 multiplex kit (part #120262) was used to identify each sample. Library 381 

cleanup was performed using AMPure beads and QC was done again with tape station D1000 382 

tapes (Part # 5067-5583). Ten libraries of equal amount were pooled to give a final concentration 383 

of 10nM and submitted for sequencing with the NovaSeq6000 S2 sequencer, 28 cycles for 384 

read1, 8 cycles for i7 index, and 91 cycles for read 2 through the ATGC core at MD Anderson. 385 

Sequence data was then put through the 10X genomic cell ranger 3.0 pipeline. QC and Fastq 386 

files were obtained and checked for data quality, and Fastq files were used to do further analysis. 387 
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RNA Isolation 388 

RNeasy Mini Kit (Cat. #74104, Qiagen) was used to extract sorted cells and achieve efficient 389 

purification of total RNA from small amounts of starting material. The technology simplifies total 390 

RNA isolation by combining the stringency of guanidine-isothiocyanate lysis with the speed and 391 

purity of silica-membrane purification to ensure highest-quality RNA with minimum copurification 392 

of DNA. With the RNeasy Mini Kit, total RNA can be purified from 10 to 1 x 107 animal or human 393 

cells, 0.5–30 mg human tissues. Briefly, samples are first lysed and then homogenized. Ethanol 394 

is added to the lysate to provide ideal binding conditions. The lysate is then loaded onto the 395 

RNeasy silica membrane. RNA binds (up to 100 μg capacity), and all contaminants are efficiently 396 

washed away. For certain RNA applications that are sensitive to very small amounts of DNA, 397 

the residual amounts of DNA remaining can be removed using a convenient on-column DNase 398 

treatment. Pure, concentrated RNA is eluted in 20–100 μl water. 399 

 400 

Low input mRNA sequencing 401 

Illumina Compatible low input mRNA libraries were prepared using the Smart-Seq V4 Ultra Low 402 

Input RNA kit (Takara Bio, USA) and KAPA HyperPlus Library Preparation kit (Roche). Briefly, 403 

full length, double-stranded cDNA was generated from 8ng of total RNA using Takara’s SMART 404 

(Switching Mechanism at 5’ end of RNA Template) technology. The ds cDNA was amplified by 405 

nine cycles of LD-PCR, then purified using Ampure Beads (Agencort). Following bead elution, 406 

the cDNA was evaluated for size distribution and quantity using the Fragment Analyzer High 407 

Sensitivity NGS Fragment Analysis Kit (Agilent Technologies) and the Qubit dsDNA HS Assay 408 

Kit (ThermoFisher) respectively. The cDNA was enzymatically fragmented, and 20ng of the 409 

fragmented cDNA was used to generate Illumina compatible libraries using the KAPA HyperPlus 410 

Library Preparation kit. The KAPA libraries were purified and enriched with 2 cycles of PCR to 411 

create the final cDNA library. The libraries were quantified using the Qubit™ dsDNA HS Assay 412 

(ThermoFisher), then multiplexed 7 libraries per pool. The pooled libraries were quantified by 413 

qPCR using the KAPA Library Quantification Kit (KAPA Biosystems), and assessed for size 414 

distribution using the TapeStation 4200 (Agilent Technologies). The libraries were then 415 

sequenced, one pool per lane, on the Illumina HiSeq4000 sequencer using the 76bp paired end 416 

format. 417 

 418 

scRNA-seq Data Analysis 419 
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Raw sequencing data processing, quality check, data filtering, doublets removal, 420 

batch effect evaluation and data normalization. The raw scRNA-seq data were pre-421 

processed (demultiplex cellular barcodes, read alignment, and generation of gene count matrix) 422 

using Cell Ranger Single Cell Software Suite provided by 10x Genomics. Detailed QC metrics 423 

were generated and evaluated. Cells with low complexity libraries or likely cellular debris (in 424 

which detected transcripts are aligned to less than 200 genes) were filtered out and excluded 425 

from subsequent analyses. Low-quality cells where >20% of transcripts derived from the 426 

mitochondria were considered apoptotic and also excluded. Following the initial clustering, likely 427 

cell doublets were removed from all clusters. Doublets were identified using a multi-step 428 

approach: 1) library complexity: cells with high complexity libraries (in which detected transcripts 429 

are aligned to more than 6500 genes) were removed; 2) Cluster distribution: doublets or 430 

multiplets likely form distinct clusters with hybrid expression features and exhibit an aberrantly 431 

high gene count; 3) cluster marker gene expression: cells of a cluster express markers from 432 

distinct lineages (e.g., cells in the T-cell cluster showed expression of myeloid cell markers and 433 

vice versa); 4) doublet detection algorithm: DoubletFinder50, an algorithm to predict doublets in 434 

scRNA-seq data, was applied to further identify and clean doublets that could have been missed 435 

by steps 1-3. We carefully reviewed canonical marker genes expression on UMAP plots and 436 

repeated the above steps multiple times to ensure elimination of most barcodes associated with 437 

cell doublets. 438 

Following removal of poor-quality cells and doublets, a total of 144,678 cells were retained for 439 

downstream analysis. Library size normalization was performed in Seurat  v3 (version 3.1.1)51 440 

on the filtered gene-cell matrix to obtain the normalized UMI count as previously described52.  441 

Statistical assessment of possible batch effects was performed using the R package k-BET (a 442 

robust and sensitive k-nearest neighbor batch-effect test) (PMID: 30573817). k-BET was run on 443 

cells from all samples, and on major cell types including microglia cells and CD8 T cells 444 

separately with default parameters. Each cell type was down sampled to 500 cells. We chose 445 

the k input value from 1% to 100% of the sample size. In each run, the number of tested 446 

neighborhoods was 10% of the sample size. The mean and maximal rejection rates were then 447 

calculated based on a total of 100 repeated k-BET runs. Following estimation of sample 448 

processing- or sequencing-related batch effects using k-BET, we employed Harmony for actual 449 

batch effect correction53. Harmony was run with default parameters to remove batch effects in 450 

the PCA space when clustering of major cell lineages before any clustering analysis or cell type 451 

identification/annotation was performed. We carefully evaluated the performance of Harmony in 452 
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terms of its ability to integrate batches while maintaining cell type separation. Harmony was run 453 

on all cells to firstly identify major cell types. It was also run on each of the major cell types for 454 

subclustering analysis to further identify different cell states. To quantify the performance of 455 

Harmony, we further used k-BET and compared the rejection rate (reflecting batch effect) before 456 

and after Harmony. The data after Harmony showed a low rejection rate, indicating an excellent 457 

performance of batch effect correction in this study. 458 

Moreover, we also applied the local inverse Simpson’s Index (LISI) to assess the performance 459 

of Harmony. As described previously53 , the ‘integration LISI’ (iLISI) measures the degree of 460 

mixing among datasets (batches), ranging from 1 in an unmixed space to the number of datasets 461 

(batches) in a well-mixed space. And the ‘cell-type LISI’ (cLISI) measures integration accuracy 462 

using the same formulation but computed on cell-type labels instead. An accurate embedding 463 

has a cLISI close to 1 for every neighborhood, reflecting separation of different cell types. Before 464 

batch correction with Harmony, cells were mainly grouped by dataset (iLISI is around 1) and 465 

cells from different cell types were mixed (cLISI is far from 1). After batch correction with 466 

Harmony, iLISI and cLISI were re-computed in the Harmony embedding. iLISI is around 3.5, 467 

indicating a high degree of mixing among different datasets, and cLISI is very close to 1, 468 

reflecting excellent separation of different cell types while remain the well-mixed space. 469 

 470 

 Unsupervised cell clustering and dimensionality reduction: Seurat v3 (version 471 

3.1.1)51 was applied to the normalized gene-cell matrix to identify highly variable genes (HVGs) 472 

for unsupervised cell clustering. To identify HVGs, the vst method in the Seurat package51 was 473 

used with default parameters. Principal component analysis (PCA) was performed on the top 474 

2000 HVGs. The elbow plot was generated with the ElbowPlot function of Seurat51 and based 475 

on which, the number of significant principal components (PCs) were determined. The 476 

FindNeighbors function of Seurat was used to construct the Shared Nearest Neighbor (SNN) 477 

Graph, based on which the unsupervised clustering was done with Seurat function FindClusters. 478 

Different resolution parameters for unsupervised clustering were then examined in order to 479 

determine the optimal number of clusters. For visualization, the dimensionality was further 480 

reduced using Uniform Manifold Approximation and Projection (UMAP)54 method with Seurat 481 

function RunUMAP. The PCs used to calculate the embedding were as the same as those used 482 

for clustering. Two rounds of clustering were performed to identify major cell types (MG, non-483 

MG myeloid cell, NK and T cells) and cell transcriptomic states within each major cell type. In 484 

the first round, 30-nearest neighbors of each cell were determined based on 30PCs to construct 485 
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SNN graph. The clustering was performed with resolution 0.8 and each cluster was annotated 486 

by known markers (see Determination of major cell types and cell states). Two major cell 487 

families comprising lymphoid- and, myeloid- cells, as well as negligible number of neural-like 488 

contamination were identified. The second-round clustering was performed on myeloid- and, 489 

lymphoid- cells respectively to identify cell states within each major cell types. For myeloid cell 490 

clustering, 40-nearest neighbors of each cell were determined based on 40 PCs to construct 491 

SNN graph. The clustering was performed with resolution 2, which resulted the identification of 492 

34-cell states. For lymphoid cell clustering, the SNN graph was constructed based on 20-nearest 493 

neighbors of each cell that were determined by 30 PCs. The clustering was performed with 494 

resolution 2, which resulted the identification of 28-cell states. 495 

 496 

Determination of major cell types and cell states: To define the major cell type of each 497 

single cell, differentially expressed genes (DEGs) were identified for each cell cluster using the 498 

FindAllMarkers analysis in the Seurat package51 and the top 50 most significant DEGs were 499 

carefully reviewed. The top 50 most significant differentially expressed transcription factors were 500 

also identified and reviewed by performing FindAllMarkers only on an aggregated TF list55. In 501 

parallel, feature plots were generated for top 20 DEGs and a suggested set of canonical 502 

lymphoid and myeloid cell markers, a similar approach as previously described56,57 followed by 503 

a careful manual review and annotation. The two approaches are combined to infer major cell 504 

types for each cell cluster according to the enrichment of marker genes and top-ranked DEGs 505 

in each cell cluster, and the global cluster distributions as previously described57. We sub-506 

clustered the major myeloid and lymphoid populations iteratively and rigorously annotated the 507 

resulting cell-clusters using a combination of a) top 50 DEGs, b) top 50 differentially expressed 508 

lineage defining transcription factors and c) canonical immune signature genes. 509 

Hierarchical relationship analysis: To study the hierarchical relationships among cell 510 

types identified in this study, unsupervised cluster analysis was performed. Pairwise Spearman 511 

correlations were calculated from average expression level (Seurat function 512 

AverageExpression) of each cell type, based on which Euclidean distances between cell types 513 

were calculated.  Hierarchical cluster analysis was performed by R function hclust and the 514 

dendrogram was drawn using R package ggtree58. 515 

 516 

Gene Ontology Enrichment Analysis: Top 100 DEGs from each cluster (MG and non-517 

MG myeloid cells) were used for Gene Ontology enrichment analysis using Bioconductor 518 
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package ClusterProfiler59. Significantly enriched GO-BP (Gene Ontology-Biological processes) 519 

terms were retrieved by setting the threshold of FDR<0.05 and minimum overlapping gene set 520 

size=3. Enriched terms having >=3 queried genes were manually selected using immunological 521 

keywords. Bubble plots were made using ggplot2 R package. 522 

 523 

Macrophage Polarization Gene Set Enrichment Analysis: Top 100 DEGs from each 524 

cluster (MG, MAC and MDMs) were used for gene module enrichment analysis with reference 525 

gene signatures previously defined27  using Bioconductor package ClusterProfiler59 and plotted 526 

as circos plots31  using ggplot2 R package. 527 

 528 

Flow Cytometry staining 529 

The cryopreserved cells were thawed at 37 degree Celsius and washed with10% FBS 530 

(Catalogue No. F4135, Sigma) in Iscove’s DMEM (1X, Catalogue No. 10-016-CV, Corning). The 531 

washed cells were pelleted by centrifugation at 500g for 5 mins. Cells were incubated with the 532 

10% FBS containing Iscove’s DMEM media at 37°C for 30 mins before staining. PBS washed 533 

cells were stained with a fixable Live Dead Blue Dead cell stain dye (Catalogue No. L34962, 534 

Invitrogen) for 15 mins at 4°C. The Stained cells were washed with 1X PBS. Fc block was 535 

performed with a combination of Fc block -Human Tru Stain Fc block (Catalogue No. 422301, 536 

Biolegend), Nova Block Solution, (Catalogue No. M071437, Phitonex, Cell Blox Blocking Buffer, 537 

Catalogue No. B001T03F01) for 10 mins at 4°C. After Fc block, cell surface staining was 538 

performed with antibody cocktail (mentioned in Supplementary Table S2) diluted in BD Horizon 539 

Brilliant Stain buffer (Catalogue No.  566385, Becton Dickinson) and FACS buffer. For cell 540 

surface staining incubate was done for 30 mis at 4°C in dark. The stained cells after staining 541 

were washed with FACS buffer fixed with 200ul True Nuclear fixation buffer (True Nuclear 4X 542 

Fix Concentrate, Catalogue No. 73158, Biolegend and True Nuclear Fix Diluent, Catalogue No. 543 

73160, Biolegend) overnight at 4°C. Overnight fixed cells were permeabilized with 1X 544 

Permeabilization buffer (True Nuclear 10X Perm, Catalogue No. 73162, Biolegend) for 545 

intracellular staining. Permeabilized cells were stained with the intracellular antibody cocktail 546 

(refer to Supplementary Table S2) for 20 mins at 4°C.The stained cells were resuspended in 547 

FACS buffer and data was acquired on Cytek Aurora 5 laser spectral flow cytometer. 548 

 549 

Cytometry Analyses 550 

The acquired data was analyzed by Cytek SpectroFlo and Becton Dickinson FlowJo 10.8.1. 551 
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Mouse experiments and survival analysis 552 

Six-week-old WT and TREM2-/- mice were obtained from Jackson laboratories. One week after 553 

guide screw implantation, 10,000 CT-2A cells were injected intracranially. Animals were 554 

monitored for tumor growth using bioluminescence imaging. For survival analysis, we used the 555 

log-rank test to calculate P values between groups, and the Kaplan-Meier method to plot survival 556 

curves using GraphPad Prism9 version 9.2.0 software.   557 
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Figure Legend 

 

Fig. 1 | The single cell transcriptional landscape of glioma TIME.  

A) A schema depicting the experimental workflow from sample preparation (see Methods) of 

resected brain tissues/tumors to scRNA-seq data generation and spectral flow cytometry 

validation and computational analysis. Patients were stratified as non-glioma brain (NGB; n = 3) 

and IDH-mutant primary (IMP; n = 4), IDH-mutant recurrent (IMR; n = 6), IDH-wild type primary 

(IWP; n = 4), IDH-wild type recurrent (IWR; n = 6) groups; hereafter collectively referred as 

glioma subtypes (see details in Supplementary Table 1). The dissociated CD45-APC-stained 

cells were FACS sorted to obtain pure CD45+ glioma associated leukocytes. Subsequently 

matched sc-RNAseq and bulk RNA-Seq was performed followed by computational analysis. sc-

RNA seq inferred cell types were validated by spectral cytometry. B-D), Uniform manifold 

approximation and projection (UMAP) visualization of unsupervised clustering analysis of (B) all 

immune cells (n = 144,678) that passed quality filtering (see Methods), (C) myeloid lineage 

clusters (n = 100,587), and (D) lymphoid lineage clusters (n = 44,091). Cells are color coded for 

their inferred cell types (left) and the glioma subtypes of their corresponding tumors (middle).   
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Fig. 2 | Glioma associated leukocyte diversity corroborated with spectral flow cytometric 

analyses.  

Scatter bar plots represent the proportion of indicated immune cell type (of total CD45+ 

leukocytes) across glioma subtypes; NGB (n = 3), IMP (n = 16), IMR (n = 11), IWP (n = 14) and 

IWR (n =14) as shown in (A) CX3CR1+P2RY12+ Microglial cells (MG); (B) Microglial subsets 

(gated on MG): CD11c-CCR2- Resting MG (left),  CD11c+CCR2- Reactive Microglia (middle), and 

CD11c+CCR2+ Monocyte-derived MG-like (Mo-MG); (C) Monocyte subsets (gated on CD3-

CD56-): CD14+CD16- Classical Monocytes (c-Mo), and CD14+CD16+ Intermediate monocytes 

(Int-Mo) and CD14-CD16+ Non-classical monocytes; (D) Macrophages (Gated on CD3-CD56-): 

CD68+CCR2- Macrophages (MAC), and CD68+CCR2+ Monocyte-derived Macrophages (MDM) 

(E) Conventional Dendritic cell (cDC) subsets (gated on CD11b+CD11c+HLADR+):  

Clec9A+CD1c- cDC1, and Clec9A-CD1c+ cDC2; (F) T cell subsets (Gated on CD3+); CD8+CD4- 

T cells, CD4+Foxp3- T cells and CD4+Foxp3- T regulatory (Tregs) cells; (G) Natural Killer cell 

subsets (gated on CD56+); CD56hiCD16lo Activated NK cells, and CD56loCD16hi Cytotoxic NK 

cells; (H) Unconventional T cell subsets: CD3+CD56+ Natural Killer T (NKT) cells, TCRgd+ (gd-T) 

cells TCRVa7.2+ Mucosal associated invariant T (MAIT) cells. Statistical significance was 

determined using by Kruskal Wallis test at p*<0.05, p**<0.01, p***<0.001.   
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Fig. 3 | Glioma associated myeloid cell diversity and their inferred functional states.  

(A) UMAP visualization of unsupervised clustering analysis of Microglia (MG, n = 63,332), 

displaying nine distinct cell states (top). Cells are color coded for their inferred cell types (top) 

and the glioma subtypes of their corresponding tumors (bottom). (B) Bubble plot depicting gene 

ontology (GO) analysis of glioma associated MG states. (C) Bubble plot showing 

overrepresented stimulus-specific Palmitic acid and Interleukin-4 (IL-4) polarization gene 

expression modules as multispectral polarization (see Methods). (D) UMAP visualization of 

unsupervised clustering analysis of non-MG myeloid cells (n = 37,255), displaying sixteen 

distinct cell states (top). Cells are color coded for their inferred cell types (top) and the glioma 

subtypes of their corresponding tumors (bottom). (E) Bubble plot depicting gene GO analysis of 

glioma associated non-MG myeloid cell states. (B, C, E) In B and E, each bubble represents a 

GO Term and in C, each bubble represents a polarization module. Bubble size corresponds to 

gene ratio and the color of the bubble indicates statistical significance. Only polarization modules 

with 5 or more overlapping genes and an adjusted p value of <0.05 are shown in C.  
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Fig. 4 | Identification of anti-glioma role of Triggering receptor expressed on myeloid 

(TREM)-2+ myeloid cells  

(A) UMAP visualization of (top) inferred MG states, expression of HLADR (bottom); (B) TREM2; 

(C) MS4A6A across MG clusters as shown in (A). (D) Representative percentage survival 

analyses of CT-2A glioma bearing mice TREM2-/- (n=20) versus WT mice (n=19) in C57BL/6 

genetic background. Statistical significance of survival was determined using Mantel-Cox log-

rank test at p*=0.038.  
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Supplementary Fig. S1 | (A): Flow cytometry pseudo color dot plots showing in (A) gating 

strategy with SYTOX-G-stained dead cells and CD45 expression on stained tumor associated 

leukocytes, in (B) differential CD45 expression (CD45lo and CD45hi) on leukocytes obtained from 

NGB controls and glioma subtypes as shown and in (C) representative pseudo color plots for 

purity of sorted CD45 cells. (D) iLISI (local inverse Simpson’s Index) computed for every cell’s 

neighborhood and summarized with density plots before batch correction. The UMAP were color 

coded by batch, patient and pathology. (E) cLISI computed for every cell’s neighborhood and 

summarized with density plots before batch correction. The UMAP were color coded by major 

cell types. (F) and (G), same as (D) and (E) but after batch correction. (H) Batch effects 

evaluation using the k-nearest neighbor batch-effect test (k-BET, see Methods). K-BET was run 

on 500 cells randomly selected from 1 myeloid cell type (MG) and 1 lymphoid cell type (CD8T) 

separately before and after batch correction. Shaded areas represent the 95th percentile of n = 

100 repeated k-BET runs. (I) UMAP visualization of unsupervised clustering analysis of glioma 

associated myeloid cells.  (J) Bubble plot showing the scaled expression (shown by the color of 

the circle) and percentage of expression (shown by the size of the circle) of different myeloid cell 

type specific genes. (K) Workflow showing the identification of major lymphoid cell types by 

multi-steps of sub-clustering. (L) Bubble plot showing the scaled expression (shown by the color 

of the circle) and percentage of expression (shown by the size of the circle) of different lymphoid 

cell type specific genes. (M) The stacked bar plot showing relative distribution of glioma 

associated myeloid and lymphoid cell types across sc-RNAseq sampled patients. (N) Phylogenic 

relationship between myeloid and lymphoid cell types revealed by hierarchical clustering 

analysis based on Euclidean distance between cell types (see Methods).  
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Supplementary Fig. S2 | (A): UMAP visualization of unsupervised clustering analysis of glioma 

associated MG, MG-like (colored) and non-MG myeloid (grey). (B) Four different community 

detection algorithms in Seurat were used to find the best clustering of MG cells. In each 

algorithm, resolution was tuned from 0.1 to 2 with step 0.1, under which the averaged silhouette 

width value and ROGUE value were calculated to evaluate the inter-cluster dissimilarity and 

cluster purity. Shaded region indicated the best trade-off between averaged silhouette width 

value and ROGUE value. (C) Bubble plot showing the scaled expression (shown by the color of 

the circle) and percentage of expression (shown by the size of the circle) of different lymphoid 

cell type specific genes. (D) UMAP visualization of unsupervised clustering analysis of glioma 

associated Myeloid interferons (Myeloid_IFN). Cells are color coded for their inferred cell types 

(left) and the glioma subtypes of their corresponding tumors (right). (E-F) Bubble plot showing 

the scaled expression (shown by the color of the circle) and percentage of expression (shown 

by the size of the circle) of different Myeloid interferon clusters and their specific genes in (E) 

and non-MG myeloid cells in (F). (G) Stacked bar plots showing corresponding %myeloid cell 

type composition across each glioma subtype. 
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