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Research Highlights

• Longitudinal changes in cognitive responses to coarse print tuning, visual word from

structure, and whole word representation were examined in early readers.

• Visual word form structure processing demonstrated striking patterns of growth with

nearly doubled in EEG amplitude and increased left lateralization.

• Longitudinal changes in brain responses to visual word form structural information

were linked to the growth in rapid automatic naming for letters.

• No longitudinal changes were observed for whole word representation processing and

coarse tuning for print.
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Abstract

Learning to read depends on the ability to extract precise details of letter combina-

tions, which convey critical information that distinguishes tens of thousands of visual

word forms. To support fluent reading skill, one crucial neural developmental process

is one’s brain sensitivity to statistical constraints inherent in combining letters into

visual word forms. To test this idea in early readers, we tracked the impact of two

years of schooling on within-subject longitudinal changes in cortical responses to differ-

ent properties of words (coarse tuning for print, and fine tuning to visual word forms

and whole word representations) and their growth in reading skill. Three stimulus

contrasts—words versus pseudofonts, words versus pseudowords, pseudowords versus

nonwords—were presented while high-density EEG Steady-State Visual Evoked Po-

tentials (SSVEPs, n=31) were recorded. Internalization of abstract visual word form

structures over two years of reading experience resulted in a near doubling of SSVEP

amplitude, with increasing left lateralization. Longitudinal changes in brain responses

to such word form structural information were linked to the growth in reading, espe-

cially in rapid automatic naming for letters. No such changes were observed for whole

word representation processing and coarse tuning for print. Collectively, these find-

ings indicate that sensitivity to visual word form structure develops rapidly through

exposure to print and is linked to growth in reading skill.

Keywords EEG–SSVEP Visual word form structure Whole word representation

Reading growth Reliable Components Analysis (RCA) Early readers
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1

1 Introduction2

Visual word recognition is a rapid yet complex process involving multiple dimensions of3

analysis, including the specific shape of each letter form, the rules of letter combination4

within a word form, and whole word representation. Given this complexity, it has long been5

an ambition of developmental and educational cognitive neuroscience research to clarify how6

emerging expertise at different levels of word processing is connected with changes in visual7

reading circuits and how these neural changes influence reading skills. Such work can help8

elucidate the neural basis of individual differences in reading acquisition and reading skills,9

and also help demonstrate within-individual changes due to specific educational activities.10

A large body of literature (Bentin et al., 1999; Brem et al., 2005; Eberhard-Moscicka et11

al., 2015; Maurer et al., 2006; Wang & Maurer, 2017) has investigated visual word recognition12

by contrasting responses to words versus visual controls (e.g., pseudofonts, strings combined13

with artificial character set font). Taken together, studies have consistently reported brain14

sensitivity to words compared to pseudofonts, a finding that is referred to as “coarse neural15

tuning” for print (Maurer et al., 2006). During development, coarse neural tuning starts to16

emerge when children begin to read, following an inverted U-curve with an initial increase17

(van de Walle de Ghelcke et al., 2021) and then a later decrease starting in second grade18

(Maurer et al., 2006, 2010).19

The often-used coarse neural tuning contrast (words versus pseudofonts) is limited, how-20

ever, in its connection to theory-driven insights into word recognition development, which21

stress the importance of multiple levels of word reading expertise (Carreiras et al., 2014).22

This limitation leads to ambiguity in recovering the unique contributions of specific proper-23

ties of words to developmental changes in reading and brain circuitry. Thus it is an open24

question whether coarse neural tuning reflects merely the aggregation of increasing word25

Abbreviations: Reliable Components Analysis (RCA); steady-state visual evoked potentials (SSVEP).
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specific knowledge, or instead reflects insights into word form structures, perhaps as they26

map to phonological patterns (Maurer & McCandliss, 2007).27

Event-related potential (ERP) studies have attempted yet failed to isolate different levels28

of visual word processing in early readers (Eberhard-Moscicka et al., 2015; Zhao et al., 2014).29

For instance, Zhao and colleagues found brain sensitivity to visual word form structure30

only in 7-year-old children with high reading fluency, but failed to reveal sensitivity to31

whole visual word knowledge (Zhao et al., 2014). At the same time, steady-state visual32

evoked potential (SSVEP) paradigms have been increasingly used, as this approach rapidly33

measures discrimination responses with high signal-to-noise ratio (SNR) in only a few minutes34

of stimulation (Norcia et al., 2015) and has high test-retest reliability (Dzhelyova et al.,35

2019). Despite these advantages, SSVEP studies on word reading have not yet successfully36

differentiated effects of learning at the whole word level from effects of word form structure37

learning in early readers (i.e., kindergartners in Lochy et al. (2016) or first and second38

graders in van de Walle de Ghelcke et al. (2021)). More importantly, no study so far has39

systematically tracked the developmental trajectories and neural dynamics of multiple levels40

of word reading expertise in early reading acquisition.41

The current study aims to address this gap by isolating different levels of word reading42

expertise that emerge over the course of reading development, and by better connecting43

brain signals related to these different levels of word recognition with early reading fluency44

and reading growth.45

In our recent SSVEP study (Wang et al., 2022), we isolated different levels of word-related46

information using multiple well-controlled contrasts and an adjusted SSVEP paradigm. Typ-47

ically, SSVEP paradigms involve presentation of two categories of stimuli that differ in a48

particular aspect (e.g., words versus pseudofonts) at two distinct, experimentally defined49

periodic rates. Previous SSVEP studies have used this “base/deviant” approach at faster50

stimulation rates, wherein deviant stimuli were embedded within a sub-multiple of the base51

rate that is greater than two, for example, 1.2 Hz deviant and 6 Hz base rates. We used an52
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adjusted paradigm—which we refer to as “image alternation” mode—involving slower stim-53

ulation rates, where image exemplars from two categories of stimuli alternate at slower 1 Hz54

alternation and 2 Hz base rates. This slower image alternation mode has been shown to elicit55

responses with a higher SNR (Yeatman & Norcia, 2016; Barzegaran & Norcia, 2020; Wang56

et al., 2021) than base/deviant approaches and may thus be more suitable for capturing57

reading-related brain signals in children (Wang et al., 2022).58

We used three stimulus contrasts. First, the commonly used words–pseudofonts contrast59

was included to probe coarse neural tuning. Second, we used a pseudowords–nonwords con-60

trast to investigate responses specific to orthographic structures within visual word forms61

while controlling for visual familiarity and whole word representation. In this contrast, well-62

structured orthographically reasonable letter combinations (pseudowords) were alternated63

with letter strings that violate orthographic constraints (nonwords). Notably, to avoid po-64

tential confounding of consonant-vowel distributions, orthographically illegal nonwords were65

created by reordering letters from consonant-vowel-consonant (CVC) pseudowords instead66

of pure consonant strings used in previous contrasts (Zhao et al., 2014). Finally, responses67

to whole visual words was examined through a words–pseudowords contrast, which serves68

to contrast information on the level of a word unit while controlling for letter and letter69

combination structure experience.70

In all, the stimulus contrasts and stimulation rates in the present study are those used71

in our recent non-longitudinal SSVEP study (Wang et al., 2022). Additionally and most72

importantly, longitudinal EEG data were recorded over a two-year interval in order to (1)73

track the developmental profile of different levels of word information, and (2) clarify to what74

extent sensitivity to visual word form structure and/or sensitivity to whole word knowledge75

relates to reading fluency and reading growth.76
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2 Methods77

2.1 Participant Sample78

Thirty-three English-speaking children, with normal or corrected-to-normal vision and no79

reading disabilities, completed behavioral and EEG sessions at two time points. Samples80

were collected during October through November, 2019 (T11), and again two years later81

(T2). Two participants were excluded due to data quality issues, resulting in N = 3182

participants (16 males, 15 females), whose EEG data were analyzed. The T1 sample included83

10 kindergarteners, 12 first graders, and 9 second graders (m = 6.78 years, s = 0.81 years),84

and correspondingly 10 second graders, 12 third graders, and 9 fourth graders at T2 (mean85

= 8.78 years, s = 0.79 years).86

2.2 Behavioral Assessment87

Behavioral assessments were administered in separate sessions on average 7.97 (s = 4.97)88

days and 4.58 (s = 7.21) days either before or after the EEG session for T1 and T2, respec-89

tively. All children were tested on two sub-tests of the Comprehensive Test of Phonological90

Processing, Second Edition (CTOPP-II, Wagner et al. (2013))—Rapid Automatized Naming91

(RAN) of colors and letters—for their phonological awareness and rapid naming abilities. In92

addition, the Sight Word Efficiency (SWE) and the Phonemic Decoding Efficiency (PDE)93

subtests of the Test of Word Reading Efficiency, Second Edition, (TOWRE-II, Torgesen94

et al. (2012)) were used to measure efficiency of sight word recognition and phonemic de-95

coding ability. We used the letter-word identification subset of Woodcock-Johnson Tests of96

Achievement, Fourth Edition (WJ-IV; Schrank et al. (2014)) to assess word decoding abil-97

ity. Finally, the handedness of each participant was defined by the Edinburgh Handedness98

Inventory (Oldfield, 1971). Participant demographics and results of behavioral assessments99

1At T1, a total of 57 healthy, English-speaking children participated. Out of these initial 57 subjects,
nine were excluded from further analyses (e.g.,EEG data quality issues). The remaining sample (N=48)
included 15 kindergarteners, 16 first graders and 17 second graders (see Wang et al. (2022)).
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are summarized in Table 1.100

2.3 Stimuli and Experimental Paradigm101

Four types of stimuli were used: Words, pseudofonts, pseudowords, and nonwords. Words102

were high frequency (average: 2110 per million, range: 629–5851 per million) three-letter103

CVC English words rendered in Courier New font. Pseudofonts were word stimuli presented104

in the Brussels Artificial Character Set font (BACS-2, Vidal & Chetail (2017)), which provide105

well-matched visual controls of Courier New letters. Pseudowords were generated on an106

item-by-item basis by semi-randomly rearranging letters of words stimuli while retaining a107

CVC structure, rendering them still pronounceable with well-matched bigram frequencies108

(t(30) = 0.26, p = 0.79) and orthographic neighborhood sizes (t(30) = 0.79, p = 0.43)109

with words. Finally, nonwords stimuli were also built on an item-by-item basis by semi-110

randomly shuffling letters across pseudowords to produce unpronounceable exemplars not111

following English orthographic and phonological rules. Bigram frequencies and orthographic112

neighborhood sizes of nonwords and pseudowords differed significantly (both t(30) > 6.26,113

both p < 0.001). In all, we prepared 32 high-frequency W, 16 PF, 32 PW and 16 NW, for a114

total of 96 stimulus exemplars. All stimuli images, spanning 9.4 (horizontal) by 2.5 (vertical)115

degrees of visual angle, were presented in black font on a gray background at the center of116

the screen. Stimuli images and background contrast was set at 95%.117

Using these four categories of stimuli, three different contrast conditions were investi-118

gated: Coarse print tuning (words–pseudofonts alternation), whole word representation pro-119

cessing (words–pseudowords alternation), and sensitivity to visual word form structure (pseu-120

dowords–nonwords alternation). The three conditions were presented in the aforementioned121

fixed order (see Limitations). To avoid potential learning effects from stimulus repetition in122

SSVEP studies (De Rosa et al., 2022), the 16 words used in the words–pseudofonts condition123

differ from those words used in words–pseudowords; the 16 pseudowords in words–pseudowords124

differ from those in pseudowords–nonwords. Each condition started with a blank screen125
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shown for a random interval of 1500–2500 ms. Then, a given image was presented for 500126

ms, with a complete cycle of stimulus alternation lasting 1000 ms; these periods denote127

the 2-Hz base frequency (i.e., 2 items per second) and 1-Hz alternate frequency (i.e., one128

item/alternate per second), respectively. Stimulus conditions and examples are shown in129

Figure 1. Participants performed a repetition detection task, pressing a button on a re-130

sponse pad with their preferred hand after detection of a stimulus presented three times131

consecutively (Figure 2).132

Twelve successive 1-second epochs (each containing 2 stimuli: 1 alternative stimulus, 1133

control stimulus) comprised one trial. For each condition, 12 trials were presented in pre-134

randomized sequences. Four “non-target” trials, four “terminal” trials, and four “catch” trials135

depending on whether and when repetition targets appeared. Specifically, non-target trials136

contained no repeated stimuli (Figure 2A); in terminal trials, repeated stimuli appeared at137

the end (Figure 2B); while repeated stimuli randomly appeared elsewhere during catch trials138

(Figure 2C). Only one target appeared in each terminal and catch trial. Feedback on task139

performance was provided after the end of each trial. Participants were given breaks as140

needed between trials.141

Because EEG data from catch trials contained movement artifacts related to the key142

press, EEG data corresponding only to the four non-target trials and four terminal trials143

were analyzed. For these 8 trials included per participant, the first and last 1-second epochs144

of each 12-second trial were excluded to avoid transient responses associated with ocular145

artifacts which occurred more at beginnings and endings of trials. In all, 10 epochs (i.e.,146

seconds) of data from each of 8 trials per participant were analyzed.147

2.4 Experimental Procedure and Data Acquisition148

Participants sat in a dimly lit room 1 m away from a computer screen. Prior to EEG149

recording, participants were instructed on the repetition detection task and performed a150

brief practice session with corrective feedback. EEG sessions took approximately 45–50151
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minutes, including setup and between-trial breaks. As compensation, each child received a152

small token gift after the study.153

128-sensor EEG (Electrical Geodesics, EGI NA 400 amplifier) were recorded against154

Cz reference, sampled at 500 Hz. Impedances were kept below 50 kΩ. Recorded data155

were digitally low-pass (50 Hz) and high-pass (0.3 Hz) filtered offline using Net Station156

Waveform Tools. Filtered data were then imported into in-house signal processing software157

for preprocessing.158

2.5 EEG Preprocessing and Analysis159

During preprocessing, EEG data were first re-sampled to 420 Hz. This was done to ensure160

an integer number (herein 7) of time samples per video frame given the frame rate of 60 Hz,161

as well as integer numbers of frames (i.e., 60 frames per 1 Hz cycle and 30 frames per 2 Hz162

cycle) per stimulus cycle given the current stimulation frequencies of 1 Hz and 2 Hz. Then,163

sensors were interpolated with the average of data from six neighboring sensors if more than164

15 % of samples exceeded a ± 60 µV amplitude threshold. The continuous EEG data were165

then re-referenced to average reference (Lehmann & Skrandies, 1980) and segmented into166

1-second epochs. Epochs with more than 10 % of time samples exceeding a ± 60 µV noise167

threshold, or with any time sample exceeding an artifact threshold of (± 70 µV ) (reflecting168

e.g., eye blinks, eye movements or body movements), were rejected from further analyses.169

Recursive Least Squares (RLS) filters were then used to filter the epoched EEG signal170

in the time domain (Tang & Norcia, 1995). The filters were tuned to each of the analysis171

frequencies (i.e., alternate frequency 1 Hz, base frequency 2 Hz, and their harmonics) and172

converted to complex amplitude values by means of the Fourier transform. Complex-valued173

RLS outputs were decomposed into real and imaginary Fourier coefficients as input for174

subsequent analyses.175
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2.5.1 Reliable Components Analysis (RCA)176

Instead of analyzing periodic responses from several pre-selected (literature- or SNR-based)177

sensors that may lead to a bias in reporting false positives (Kilner, 2013) and fail to sepa-178

rately describe activities underlying multiple cortical sources (Wang et al., 2021), we spatially179

filtered the sensor-space data using RCA. RCA has been shown to capture and isolate dif-180

ferent neural processes arising from different underlying sources (Dmochowski et al., 2012),181

and topographies of corresponding spatial filters can strongly resemble lead fields generating182

observed SSVEPs (Dmochowski et al., 2015).183

RCA is a matrix decomposition technique, which decomposes the entire 128-sensor array184

into a set of reliable components that maximizes between-trial covariance relative to within-185

trial covariance (Dmochowski et al., 2012, 2015). Given a sensor-by-feature (i.e., real and186

imaginary Fourier coefficients at selected frequencies of interest) EEG data matrix, RCA187

computes optimal weightings of sensors (i.e., linear spatial filters), through which the sensor-188

by-feature matrices transformed to component-by-feature matrices, with each component189

representing a linear combination of sensor (Dmochowski et al., 2015).190

The resulting weight vectors (spatial filters) are vectors of length Nsensor which represent191

linear weightings of sensors (i.e., linear spatial filters). Sensor-space EEG data can then be192

projected through (i.e., multiplied by) these weight vectors to transform the spatial dimension193

of the data from sensors to spatial components, where the number of components is typically194

much smaller than the number of sensors. The spatial filtering process of RCA is conceptually195

similar to process of deriving linear spatial components using Principal Components Analysis196

(PCA) in that both involve eigenvalue decompositions returning multiple components sorted197

in descending order of criteria explained; however, where PCA optimizes sensor weightings198

to maximize variance explained within one data matrix, RCA computes sets of weights to199

maximize covariance across pairs of data matrices (trials). Moreover, in contrast to PCA,200

the spatial filters computed by RCA are not constrained to be orthogonal (Dmochowski et201

al., 2012). Technical details on the RCA technique are provided by Dmochowski et al. (2012,202
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2015).203

RCA produces three outputs that are of interest in our present analyses. First, the weight204

vectors themselves, which are the eigenvectors of the RCA calculation, can be visualized as205

scalp topographies using a forward-model projection (Parra et al., 2005). These visualiza-206

tions are thought to reflect the propagation of synchronized activity captured by the weight207

vectors onto the scalp (Parra et al., 2005). Next, each weight vector (eigenvector) is accom-208

panied by an eigenvalue, which we refer to as the coefficient of a given component. These209

coefficients give a measure of optimized across-trials correlation for each component. Finally,210

the component-space data (i.e., the spatially filtered sensor-space data) undergo subsequent211

analysis and visualization.212

2.5.2 RCA Calculations213

In order to test whether low-level visual features were well matched across conditions, we214

computed RCA on base frequency and its harmonics. Specifically, we computed RCA over215

the first five harmonics of the base (2 Hz, 4 Hz, 6 Hz, 8 Hz, and 10 Hz). As done in a previous216

analysis of a superset of T1 data (Wang et al., 2022), these calculations were performed on217

all conditions together to enable direct quantitative comparisons of responses to low-level218

visual stimulus features in a shared component space. However, we computed RCA for T1219

and T2 separately in order to investigate potential developmental changes of such responses.220

To assess the processing difference between alternate and control stimuli, we computed221

RCA over the first five odd harmonics of alternate (1 Hz, 3 Hz, 5 Hz, 7 Hz, and 9 Hz),222

excluding even/base harmonics (2 Hz, 4 Hz, 6 Hz, 8 Hz, and 10 Hz). We computed RCA223

separately for each condition and testing time point to investigate different neural mecha-224

nisms underpinning multiple levels of information processing that were evoked by different225

stimulus contrast conditions over developmental stages.226
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2.5.3 Statistical Analyses of RC Data227

Statistical significance of the coefficients (eigenvalues) of RCA components was assessed228

using permutation test. As in Wang et al. (2022), we generated surrogate versions of the229

sensor-space data: For every 1-second epoch of a 10-second trial (accounting for within-trial,230

across-epoch correlations introduced by RLS filtering) the phases of the data were rotated231

by a random angle, independently for each harmonic. We computed RCA over 500 such232

surrogate versions of the data and treated the resulting distributions of RCA coefficients as233

null distributions for computing p-values of the observed (intact) coefficients. These p-values234

were then corrected for multiple comparisons using FDR (Benjamini & Yekutieli, 2001). The235

significance of coefficients for alternate RCA calculations were tested separately for each236

condition, given RCA was computed separately for each condition in order to investigate237

different neural mechanisms underpinning multiple levels of word information processing.238

In contrast, the significance of coefficients for base RCA calculations was tested on three239

conditions together, as the calculation of spatial filters on three conditions together enables240

direct quantitative comparisons of responses to low-level visual stimulus features in a shared241

component space (Wang et al., 2022).242

For each RC, a 1-second epoch of frequency-domain component-space data contained 10243

data points (5 harmonics times 2 real and imaginary coefficients). Component-space data244

were first averaged across 1-second epochs on a per-participant basis. Following this, statis-245

tical analyses were performed across distributions of participants. We performed Hotelling’s246

two-sample t2 tests (Victor & Mast, 1991) on distributions of real and imaginary Fourier247

coefficients on a per-harmonic, per-component basis to identify responses that differed sig-248

nificantly from zero in the complex plane, correcting for multiple comparisons using False249

Discovery Rate (FDR, Benjamini & Yekutieli (2001)).250

To identify and compare overall response amplitude across multiple significant harmonics,251

we combined harmonic response amplitude using the root sum of squares (henceforth referred252

to as RSS projected amplitude), that is, the square root of the summed squared amplitudes253
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at multiple harmonics (Tlumak et al., 2011; Appelbaum et al., 2010).254

For alternate harmonics results (RCA trained on each condition separately), we first255

computed a two-way repeated-measures ANOVA with within-subjects factors of condition256

and testing time point on response amplitude (RSS amplitude) across three stimulus con-257

trasts. Then, we performed paired-sample, two-tailed t tests on RSS projected amplitudes258

across testing time points for RC separately in each condition; for words–pseudowords and259

pseudowords–nonwords, where only the first harmonic (1 Hz) was significant, we further260

performed paired-sample t tests (two tailed) on projected amplitude at 1 Hz. For base261

harmonics results (RCA trained on three conditions together), we performed a two-way262

repeated-measures ANOVA (within-subjects factors of condition and testing time point) on263

RSS projected amplitudes for each RC separately.264

We used the Circular Statistics toolbox (Berens et al., 2009) to compare distributions of265

RC phases for harmonics with significant responses at both testing time points. For alternate266

harmonics, we computed circular t tests at a given harmonic between two testing points;267

here, words–pseudofonts results were corrected for 3 comparisons, while words–pseudowords268

and pseudowords-nonwords involved no multiple comparisons as only the first harmonic was269

significant. For base harmonics, using the Circular Statistics Toolbox (Berens et al., 2009),270

we computed circular ANOVA across three conditions at each harmonic within time point,271

followed by pairwise circular t tests; results were FDR-corrected across 5 comparisons (5272

significant harmonics).273

2.5.4 Visualization of RCA Data274

In visualizing the EEG results, we first present scalp topographies (i.e., forward-model pro-275

jection of the spatial filters) of reliable components. Second, we present mean responses276

of projected data as vectors in the 2D complex plane: The vector length represents the re-277

sponse amplitude and the angle of the vector relative to 0 degrees (counterclockwise from the278

3 o’clock direction) represents the phase. Error ellipses around the vectors are the standard279
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errors of the mean (SEM). Third, we present amplitudes (µV ) at each harmonic for each280

component in bar plots, with statistically significant responses indicated with asterisks, as281

determined by adjusted pFDR values of Hotelling’s two-sample t2 tests of combined real and282

imaginary coefficients.283

2.6 Analysis of brain-behavior relationships284

We explored possible brain-behavior relationships using RSS projected amplitudes from285

alternate RCA output for words–pseudofonts and 1 Hz amplitude for words–pseudowords286

and pseudowords–nonwords in conjunction with reading scores. To test the association be-287

tween brain signals and reading performance at different developmental stages, we performed288

linear regressions of response amplitude with each of the reading scores (i.e., RANcolor,289

RANletter, TOWRE, and WJ), separately for T1 and T2. Next, to relate the development290

of brain responses to changes in reading performance, we computed linear regression of the291

change in response amplitude from T1 to T2 (RSST2−RSST1 for words–pseudofonts, ampli-292

tude at 1 HzT2 − amplitude at 1 HzT1 for words–pseudowords and pseudowords–nonwords),293

with corresponding reading performance improvements (i.e., RANcolorT2 − RANcolorT1,294

RANletterT2 − RANletterT1, TOWRET2 − TOWRET1, and WJT2 −WJT1). Outliers deter-295

mined by Cook’s Distance (Cook, 1977) based on the regression model were removed if they296

exceeded the 4/n threshold (n total data points).297

2.7 Behavioral Analysis298

For the repetition detection task performed during EEG sessions, we computed d’ based on299

the z-transformed probabilities of hits and false alarms (Macmillan & Creelman, 2004). A300

two-way repeated-measures ANOVA with within-subjects factors of condition and testing301

time point was computed on d’ across conditions and time points.302
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3 Results303

3.1 Alternate RCA Results304

Reliable component (RC) coefficients, which indicate the extent of across-trials covariance305

explained by a given component, dropped steeply after the first RC (see supplement, Figure306

S2). We therefore focused our alternate RCA results solely on the maximally correlated307

component, RC1. A two-way repeated-measures ANOVA showed a significant main effect of308

condition (F(2,60) = 56.80, p<0.001) and a significant interaction effect between condition309

and testing time point (F(2,60) = 6.77, p<0.01). No significant main effect of testing time310

point was found (F(1,30) = 0.08, p=0.78).311

3.1.1 Development of sensitivity to word form structure (pseudowords–nonwords)312

For responses to pseudowords–nonwords, the contrast designed to probe visual word form313

structure processing, RC1 is maximal over occipital electrodes on both hemispheres at the314

first testing time point, T1 (Figure 3A). Responses are statistically significant at the first315

two harmonics 1 Hz and 3 Hz (Hotelling’s two-sample t2 test, pFDR < 0.01, corrected for316

10 comparisons, Figure 3C). At the second testing time point, T2, the activation is more317

left lateralized (Figure 3B) with statistically significant responses at only the first harmonic,318

1 Hz (pFDR < 0.001, corrected for 10 comparisons, Figure 3C). Developments of lateralizaion319

of brain responses at T1 and T2 are shown in Figure S5B.320

In order to investigate changes in response amplitude across testing time points, we321

computed paired sample t-tests (two tailed) of amplitude. We considered only the first two322

harmonics (1 Hz and 3 Hz), for which responses were significant at at least one testing time323

point. Paired t-test (two tailed) of RC1 amplitudes at 1 Hz showed that amplitudes at324

T2 are significantly higher than (nearly double) those at T1 (t(1, 30) = 2.74, pFDR < 0.01,325

corrected for two comparisons), while no significant difference between testing time points326

was observed at 3 Hz (t(1, 30) = 0.71, pFDR = 0.48, corrected for two comparisons). There327
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was no significant difference in phase at 1 Hz (the only significant harmonic at both testing328

time points) between the testing time points (circular t-test; p = 0.55).329

3.1.2 Development of whole word representation processing (words–pseudowords)330

The words–pseudowords contrast was designed to detect whole word representation process-331

ing. We first calculated RCA on each testing time point separately, as was done for the other332

two contrasts. Since EEG responses to this contrast were relatively weak, we further pooled333

the sensor-space data across testing time points to calculate the RCA filters.334

As shown in Figure 4A&B, the topographies of RC1 trained on T1 and T2 separately335

include activation over occipital and temporal electrodes, with relatively weak and noisy re-336

sponses. The topography of RC1 trained on the two time points together includes activation337

at more anterior left vOT electrodes (Figure 4C). Projected data were statistically significant338

at 1 Hz (pFDR < 0.01) and 5 Hz (pFDR < 0.05) at T1, and only at 1 Hz (pFDR < 0.01) at T2339

(Figure 4D). A paired sample t-test (two tailed) showed no significant difference in RC1 RSS340

amplitude between T1 and T2 (t(1, 30) = 1.88, p = 0.07). In addition, a paired-sample t-test341

of projected amplitude at the first harmonic (significant at both testing time points) showed342

no significant difference between T1 and T2 (t(1, 30) = 0.33, p = 0.74). Phase comparisons343

between testing time points at 1 Hz (Figure 4E) were also not significant (circular t-test;344

p = 0.17).345

3.1.3 Development of coarse print tuning (words–pseudofonts)346

For responses to the words–pseudofonts contrast, aimed at coarse print tuning, the topog-347

raphy of RC1 at T1 includes bilateral peaks at posterior vOT electrodes (Figure 5A). At348

T2, the topography is more lateralized and maximal at left vOT electrodes (Figure 5B &349

supplement Figure S1B). The projected data were statistically significant in the first three350

harmonics (1 Hz, 3 Hz, and 5 Hz, pFDR < 0.001; corrected for 10 comparisons) at T1, and351

all five harmonics at T2 (1 Hz, 3 Hz, and 5 Hz, pFDR < 0.001, 7 Hz and 9 Hz, pFDR < 0.05;352
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corrected for 10 comparisons, Figure 5C). A paired sample t-test (two-tailed) showed no sig-353

nificant difference in RC1 amplitude between T1 and T2 (t(1, 30) = 1.10, p = 0.28). Phase354

comparisons (Figure 5D) between testing time points at 1 Hz, 3 Hz and 5 Hz showed no355

significant difference (circular t-test; pFDR > 0.37, corrected for 3 comparisons); phases were356

not compared for 7 Hz and 9 Hz given that signals were significant at only one testing time357

point.358

3.2 Brain-behavior relationships359

Brain-behavior analyses were performed to assess the relationship between component-space360

EEG amplitudes and behavioral reading abilities: Rapid naming abilities ( RANcolor, RANletter),361

word reading efficiency (TOWRE), and word decoding ability (WJ). See Behavioral Assess-362

ments in Materials and Methods section and Table 1 for detailed information.363

At T1, no clear relationships were found between response amplitudes of RC1 and reading364

scores for all three contrasts either before or after outlier removal (all pFDR > 0.17, corrected365

for 4 comparisons).366

However, brain-behavior relationships changed with 2 years of reading instruction in367

school (T2), as illustrated by significant linear relationships between response amplitudes to368

words–pseudofonts with WJ (word decoding, r = 0.5, pFDR < 0.05, corrected for 4 compar-369

isons, Figure 6A), as well as pseudowords–nonwords with RANletter (r = 0.4, pFDR < 0.05,370

corrected for 4 comparisons) and WJ (word decoding, r = 0.7, pFDR < 0.001, corrected371

for 4 comparisons, Figure 6B), after removal of outliers. No significant relationships were372

found between response amplitudes to the words–pseudowords contrast and reading scores373

(all pFDR > 0.28).374

Even more interestingly, we found a strong correlation between brain signal improvement375

(Amplitude at 1 HzT2 − Amplitude at 1 HzT1) for visual word form structure (pseudowords-376

nonwords) and letter reading speed improvement (RANletterT2−RANletterT1 , r = 0.6, pFDR <377
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0.01, after outlier removal and correction for five comparisons), see Figure 6C 2.378

3.2.1 Base RCA Results379

We performed RCA on EEG responses at the base frequency and its harmonics (2 Hz, 4 Hz,380

6 Hz, 8 Hz, and 10 Hz) in order to investigate neural activity underlying low-level visual381

processing. Similar with alternate results, we focused the base results on the maximally382

correlated component RC1. Figure 7A displays the topographies of RC1 separately for T1383

(top) and T2 (bottom). RC1s are similar across testing time points, which are distributed384

over bilateral occipito-temporal region. Amplitudes (bar plots) are presented in Figure 7B.385

Figure 7C presents projected data (i.e., projecting data through the spatial filter) in the386

complex plane and shows overlapping amplitudes (vector lengths) and phases (vector angles)387

across three conditions and time points. Two-way repeated-measures ANOVA with within-388

subjects factors condition and testing time point revealed that neither the main effects nor389

the interaction were significant (all F < 2.61, all p > 0.1) on the projected amplitudes at390

each harmonic for RC1. Comparisons of phase across three conditions within a testing time391

point showed no significant difference (circular ANOVA, T1: all F < 2.61, all p > 0.1, T2:392

all F < 2.61, all p > 0.1). Thus, we consider the responses at the base frequency to be393

comparable across conditions and testing time points.394

3.3 Behavioral Results395

We computed d’ based on the z-transformed probabilities (the mean and standard deviation396

(SD) across three conditions are summarized in Table 2.) of hits and false alarms (Macmillan397

& Creelman, 2004). A two-way repeated-measures ANOVA of d’ revealed a main effect of398

testing time point, with a higher hit rate at T2 compared to T1 (F (1, 185) = 17.04, p <399

0.001). No significant difference was found across the three conditions (F (2, 185) = 1.95, p =400

0.15), and no interaction between condition and testing time point was found (F (2, 185) =401

2Regression models in Figure 6 still hold after running models with age as a covariate.
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1.80, p = 0.17).402

4 Discussion403

Over two years of school reading instruction, visual word form structure processing demon-404

strated striking patterns of growth: EEG responses nearly doubled in amplitude with in-405

creased left lateralization (Figure 3). More importantly, cortical entrainment of visual word406

form structure was significantly correlated with the growth in reading skill, especially in407

automatic rapid naming of letters. No such changes were observed for whole word repre-408

sentation processing, indicating that sensitivity to visual word form structure is uniquely409

linked to growth in reading. Theoretically, this finding sheds new light on current theories of410

word reading development and provides implications for models of visual word recognition.411

Practically, it yields insights for educational interventions and activities to improve reading412

fluency.413

4.1 Development of brain sensitivity to visual word form structure414

(pseudowords–nonwords) in early readers415

Behavioral studies have shown that sensitivity to visual word form structure develops rapidly416

through exposure to print (Deacon et al., 2013), even in fully unfamiliar and complex scripts417

(Chetail, 2017). Here, we measured changes in brain sensitivity (in terms of response ampli-418

tude and topography) underpinning word form structure processing over two years of reading419

instruction. The doubled response amplitude likely reflects increased sensitivity to ortho-420

graphically reasonable word form structures, perhaps as they map to phonological patterns,421

as a result of reading expertise due to repeated exposure to print (Compton, 2000).422

The maximally reliable spatial component of word form structure processing was dis-423

tributed over the occipito-temporal (OT) regions and became increasingly left lateralized424

over two years (Figure 3A&B and supplement Figure S1). Presumptive activation over the425
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left OT area here is consistent with previous studies showing its involvement in prelexical426

orthographic processing (Binder et al., 2006; Cohen et al., 2002; McCandliss & Noble, 2003).427

For example, an fMRI study with adult participants found sensitivity of the left lateral428

fusiform (occipitotemporal) gyrus to familiar over unfamiliar letter sequences (as measured429

by mean positional bigram frequency), even when these sequences did not resemble words430

(Binder et al., 2006). With the slower frequency rates (compared with 2 Hz oddball em-431

bedded in 10 Hz base in Lochy et al. (2016)) and a relatively explicit repetition detection432

task used in the present study, it is also likely that the brain responses to stimulus con-433

trasts reflect orthographic and/or phonological decoding. Debska and colleagues (Dębska434

et al., 2019) suggested the involvement of automatic orthographic decoding in pseudoword435

recognition especially under orthographically demanding tasks (e.g., phoneme matching task436

in their study, repetition detection task in our study). Future studies with different tasks437

and/or more precise manipulations to control potential decoding are needed to improve our438

knowledge on this issue.439

Previous studies have not examined the lateralization changes of word form structure440

processing in early readers. Instead, most previous findings are centered on the lateralization441

patterns of coarse neural tuning effect and support the assumption that the degree of left442

lateralization for print is dependent on the level of reading expertise with a script (Maurer443

et al., 2008; Spironelli & Angrilli, 2009). Indeed, we also found a left lateralization shift for444

coarse print tuning as in previous literature (Araújo, Faísca, et al., 2015; Brem et al., 2005;445

Hauk et al., 2006; Zhao et al., 2014). Moreover, the current study extends previous findings446

and additionally revealed a left lateralization shift for visual word form structure tuning.447

Right hemisphere activation is usually detectable in the early stages of learning to read,448

and tends to reduce or disappear as development proceeds (Turkeltaub et al., 2003). This449

reduced involvement of right hemisphere areas over the course of reading development reflects450

the experience-driven functional refinement of the skill zone for reading, which manifests as451

greater recruitment of left hemispheric OT regions (Turkeltaub et al., 2003). Of note, no452
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lateralization changes were found for whole-word lexical processing (pseudowords–nonwords).453

The current findings on different patterns of lateralization changes for different levels of word454

information processing further reveal that such changes are not a genetic lateralization shift455

of left vOT over time. Rather, it shows specificity of letter and word form structure, at least456

during the early reading stage.457

4.2 Correlations between brain sensitivity to visual word form struc-458

ture and reading fluency459

We also found that brain sensitivity to word form structure contributes to reading fluency.460

Children with larger response amplitudes to word form structure had better reading perfor-461

mance in rapid letter naming (RAN for letters) as well as word decoding (measured with462

letter-word identification using WJ) at T2 (Figure 6B). This finding aligns with the obser-463

vation of brain sensitivity to visual word form structure in skilled adult readers but not464

in dyslexic individuals (Araújo, Faísca, et al., 2015). Such deviation between typical and465

dyslexic readers suggests a connection between sufficient tuning to visual word form struc-466

ture and typical reading skills. In relation to this, a developmental ERP study demonstrated467

neural sensitivity to visual word form structure in 7-year-old children with high reading abil-468

ity, but not in those with low reading skill (Zhao et al., 2014). Collectively, the current study469

and previous ERP studies provide evidence that the ability to detect and apply visual word470

form structure is a crucial factor promoting reading success (Conrad et al., 2013).471

4.3 Correlations between brain sensitivity to coarse tuning and472

reading skill473

Previous SSVEP studies (e.g., preschoolers in Lochy et al. (2016); first and second graders in474

van de Walle de Ghelcke et al. (2021)) revealed significant correlations between response am-475

plitude for coarse print tuning and reading scores. In the current study, however, amplitude476
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of the coarse tuning contrast was only related to reading skill (specifically word decoding477

ability) at T2 but not at T1. Such discrepancies may be due to the relatively explicit task478

(repetition detection task, rather than monitoring fixation color change in previous studies)479

and slower presentation rates in an alternation paradigm used in our design.480

First, explicit tasks might focus purely on proficiency ability differences (Zobl, 1992),481

rather than implicit tasks that might ambiguously combine proficiency ability differences482

with spontaneous tendencies and strategies (Nosek et al., 2011). Children in a sample might483

have equal ability to carry out a computation when explicitly directed to do so (and thus484

no correlation with skill), yet still differ in their spontaneous tendency (Bennett-Branson485

& Craig, 1993) to carry out the task given an implicit task situation, and that implicit486

tendency may well correlate with skill level (Liang et al., 2021). In addition, we found the487

relationships between brain responses and reading skills grew stronger over 2 years via the488

more explicit task. This finding further supports the assumption that this is a longitudinal489

change in computational ability (evoked by an explicit task) rather than longitudinal changes490

in spontaneous tendencies (evoked by an implicit task). Hence, explicit tasks might hold491

advantages for tracking development in studies that focus more on ability differences when492

other influences (like spontaneous goal or strategy differences) are minimized.493

Second, in contrast to previous fast frequency rates in an oddball paradigm (e.g., 2 Hz494

oddball and 10 Hz base in Lochy et al. (2016)), the slower rates (i.e., 1 Hz alternate and495

2 Hz base) in a two-stimulus evenball design (e.g., alternating pseudowords and nonwords496

once per second) may also explain the discrepancy. Slower presentation rates may drive497

more attention to the visual word form encoding/decoding processes, which may enable the498

capture of processing stability of coarse tuning and result in diminished correlations between499

amplitude and reading skill, especially at the very beginning of reading acquisition (herein500

at T1).501

Future studies outside of the scope of the current investigation will be explicitly designed502

to better capture the influences of different frequency rates and different task modulations503
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on neural responses and brain-behavior correlations.504

4.4 Correlation between development of brain signal and growth in505

reading fluency506

Remarkably, our results showed that the development of brain sensitivity to word form507

structure is significantly correlated with growth in early reading skill. We found that early508

readers with larger changes in amplitudes to word form structure had higher improvement509

in RAN (letters not colors, Figure 6C).510

A potential interpretation for this relationship is that beginning readers who are slow511

to identify individual letters may not activate the letters in memory close enough in time512

to encode the letter combinations that occur most frequently in print (Bowers et al., 1994).513

This is consistent with the assumption that the inability to sufficiently automatize letter514

recognition interferes with letter string processing and growth of orthographic knowledge515

(Manis et al., 2000). For instance, Bowers and colleagues reported a deficit in word form516

structure learning in their RAN deficit group (Bowers et al., 1999). Numerous studies have517

suggested that RAN is a strong predictor of reading fluency (for a meta-analysis, see Araújo,518

Reis, et al. (2015); for a review, see Georgiou et al. (2013)). Given that no significant519

correlations were found with RAN for colors, the current study provides support for the520

idea that the growth of brain sensitivity to visual word form structure specifically relates to521

reading fluency and reading development, instead of general articulation speed.522

In addition, it might be also possible that the development of brain sensitivity to word523

form structure reflects improvement in grapheme-to-phoneme conversion and/or decoding.524

During early reading acquisition, children first need to learn to decode letters into words525

by identifying letters and mapping letters to corresponding sounds. Years later, a form of526

perceptual expertise emerges in which groups of letters are rapidly and effortlessly conjoined527

into integrated visual percepts (McCandliss et al., 2003). Supporting this, researchers have528

also found automaticity of word decoding to be a critical component of fluent reading ability529
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(usually measured with RAN as in the present study) and is essential for high levels of reading530

achievement (Pikulski & Chard, 2005; Roembke et al., 2019). Moreover, slower presentation531

rates and the 3-in-a-row repetition detection task in the current study might draw more532

cognitive resources and attention to the decoding process.533

To conclude, the development of visual word form structure encoding and decoding mech-534

anisms is an important aspect of word recognition skill that allows readers to process letters535

and letter combinations rapidly and fluently. It will be interesting to explore the similar-536

ities/differences between effects of encoding and decoding on visual word form structure537

learning in future studies.538

4.5 Evidence for sensitivity to whole word representation in early539

readers540

Brain responses to word-level representations have also been studied previously; inconsistent541

results are presumably due to this effect being less pronounced and more task- and devel-542

opmental stage-dependent (Maurer et al., 2006; Xue et al., 2008). For example, past ERP543

studies (Zhao et al., 2014; Maurer et al., 2006) reported larger amplitudes for words than544

for pseudowords in children (7-8 y old 2nd graders), which was also demonstrated in adult545

ERP (Hauk et al., 2012) and SSVEP (Lochy et al., 2015) studies. In contrast, Brem et al.546

(an ERP-fMRI study with 10 y old children and adolescents, Brem et al. (2009)) and Hauk547

et al. (an ERP study with adults, Hauk et al. (2006)) reported stronger neural responses for548

pseudowords than for words. Yet other studies, including ERP (9-13 y old pre-adolescents549

in Araújo et al. (2012); 7.6 y old second graders in Eberhard-Moscicka et al. (2015); 6.5 y550

old kindergarteners in Maurer et al. (2006)) and SSVEP (5 y old preschoolers in Lochy et al.551

(2016); 6-7 y old first and second graders in van de Walle de Ghelcke et al. (2021)) studies552

found null effects.553

The current study was able to capture brain signals related to representation of familiar554

words over occipital and temporal regions (Figure 4), potentially due to slower presentation555
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rates in an SSVEP alternation paradigm with a repetition detection task. However, no556

correlations between response amplitudes and reading skills were found for this contrast in557

either of the two testing time points. The ambiguity of brain-behavioral relationships here558

might be due to the small size of this word representation effect (Eberhard-Moscicka et al.,559

2015). Future studies can examine this issue further by recruiting participants spanning a560

larger range of word representation processing and/or by employing more explicit tasks (e.g.,561

lexical decision task), which might better engage this type of processing. An alternative562

explanation is that the words we used were all very high frequency, simple, and short (3563

letters). Such stimuli do not require much attention on word decoding, resulting in less564

robust correlations with reading skills related to decoding (WJ) and automatized letter565

naming (RAN for letters). This speculation could be resolved through a further test of word566

form structure learning and reading development with more complex, longer stimuli with567

variable frequencies.568

4.6 Implications for reading models and educational neuroscience569

research570

Response amplitudes to coarse neural tuning (words–pseudofonts) were significantly corre-571

lated with amplitudes to word form structure (pseudowords–nonwords), instead of whole572

word representation (words–pseudowords), at both testing time points (see supplement, Fig-573

ure S3). Moreover, similar correlations between brain signal and reading skill (mainly word574

decoding ability) were found for contrasts of coarse neural tuning and word form struc-575

ture. These findings may indicate that, at least during early reading acquisition, the words-576

pseudofonts contrast often used in previous studies might primarily pick up information577

about sublexical letter form and/or word form structure rather than whole-word lexical578

processing.579

Despite high correlation and information overlap between coarse tuning (words–pseudofonts)580

and word form structure tuning (pseudowords–nonwords), developmental changes—in terms581
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of response amplitude—occurred only for word form tuning and not coarse tuning. Several582

factors may play a role in the disparity. First, cognitive and attentional processes of vi-583

sual word form structures in very high-frequency familiar words and unfamiliar pseudowords584

might be different. Compared with very familiar 3-letter words which most likely can be au-585

tomatically encoded (Spironelli & Angrilli, 2009), unfamiliar pseudowords possibly require586

additional attention and processing energy (e.g., decoding) due to lack of visual familiar-587

ity (Maurer et al., 2005). This increase in attention and potential effortful decoding might588

explain the amplitude increase mostly on these unfamiliar pseudowords forms. Second, it589

is likely that developmental changes of coarse tuning happen earlier than sublexical visual590

word form structure tuning. A previous SSVEP study found automatic encoding of familiar591

words (vs. pseudofonts) in preschoolers (Lochy et al., 2016). In an ERP study, Maurer592

and colleagues found increased coarse tuning in second graders compared with non-reading593

kindergarteners (Maurer et al., 2006). Our samples, however, included children spanning594

kindergarten to second grade with a two-year follow up, which might have missed the key595

increasing stage (i.e., between kindergarten to second grade). Thus, longitudinal studies596

with only beginning readers (i.e., kindergarteners) might better capture the developmental597

changes of coarse tuning. Finally, distinguishing words from pseudofonts involves different598

demands from distinguishing pseudowords from nonwords. Future studies comparing words599

and pseudowords processing in the same base context (e.g., pseudofonts) would speak directly600

to this question.601

Nevertheless, our findings of developmental changes of visual word form structure tuning602

over two years and the relationship with reading skill (mainly decoding) improvement suggest603

that word form structure processing plays a crucial role in reading fluency and reading growth604

in early readers.605

Sensitivity to word form structure has been rarely or not even taken into account in cur-606

rent models of visual word recognition (Chetail, 2015, 2017; Harm & Seidenberg, 2004). Most607

of these models, including Dual Route Cascaded (DRC) model (Coltheart et al., 2001) and608
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triangle model (Harm & Seidenberg, 1999), have focused mainly on properties of lexical-609

semantic and phonological representations and processes. It will be important for future610

research and reading models to implement visual word form structure in a manner analo-611

gous to what has been done with semantics and phonology. This extra word form structure612

component of the model would provide insights for bridging educational practice and neuro-613

science to improve early reading fluency.614

4.7 Limitations615

Several limitations of the present study should be addressed. First, we examined the longitu-616

dinal changes of the hierarchical processing of word information in an unbalanced condition617

order. We started with the intention to replicate and extend the coarse print tuning ef-618

fect (words–pseudofonts) that has been investigated in numerous studies. Then, we aimed619

to functionally dissociate two related functions of the visual word form system linked to620

two orthographic grain sizes (lexical and sublexical) by contrasts of words–pseudowords and621

pseudowords–nonwords, respectively. As a consequence, we cannot rule out the possibility622

of serial order carryover effects from one condition to the next. Future studies may use623

counterbalanced condition orders to more precisely capture the condition effects, although624

this would come at the cost of a much larger sample size. Second, the small sample sizes of625

the grade groups limit us from making conclusions about different brain-behavior relations626

based on different grades. Future studies with larger sample sizes in each age and/or grade627

group will enhance our ability to trace the developmental trajectories of brain-behavior rela-628

tionships in children at different stages of learning to read. Finally, an explicit task was used629

in the current study, which was revealed might hold advantages for tracking development in630

studies that focus more on reading ability differences (see Discussion). However, the explicit631

task increased the difficulty of disentangling encoding and decoding processing of words.632

Future studies including both implicit and explicit tasks may help to clarify whether the633

(development) changes of visual word form structure processing are specific to encoding or634
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decoding, or even both. Nevertheless, we believe our results still provide interesting insights635

into the developmental profile of different levels of word information and their effects on636

reading skill.637

5 Conclusion638

This longitudinal study demonstrates developmental changes—in terms of response ampli-639

tudes and left lateralization—of visual word form structure processing in early readers. More-640

over, the word form structure effect became stronger in faster readers, supporting its func-641

tional role in early reading ability. No such changes were observed for responses to whole642

word representation. Taken together, our results suggest that word form structure process-643

ing, which is indispensable for further accessing the phonology and semantics of written644

words, may be an important factor influencing reading ability growth. Such knowledge is645

crucial to better understand how children develop sensitivity to visual words and is insightful646

for models of visual word recognition.647
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Table819

Group 1 Group 2 Group 3

Sex (female/male) 3/7 6/6 6/3
Handedness (right/left) 9/1 10/2 8/1

T1 Kindergarten Grade 1 Grade 2
Age in years 5.88(±0.42) 6.81(±0.31) 7.74(±0.24)

Test of word reading efficiency (TOWRE) 10.55(±9.32) 63.33(±28.07) 79.22(±22.73)
Rapid automatic naming of colors (RANcolor) 42.80(±9.02) 37.50(±7.66) 36.89(±9.23)

Rapid automatic naming of letters (RANletter) 45.11(±15.00) 25.33(±6.34) 22.33(±2.78)
Word decoding ability (WJ) 15.50(±5.38) 43.83(±14.02) 51.44(±8.56)

T2 Grade 2 Grade 3 Grade 4
Age in years 7.90(±0.38) 8.80(±0.34) 9.73(±0.23)

Test of word reading efficiency (TOWRE) 79.30(±21.11) 100.42(±13.46) 104.11(±19.41)
Rapid automatic naming of colors (RANcolor) 30.20(±4.96) 31.42(±5.99) 27.63(±7.40)

Rapid automatic naming of letters (RANletter) 21.09(±3.20) 19.03(±3.89) 18.49(±4.27)
Word decoding ability (WJ) 54.11(±7.77) 62.33(±5.10) 62.22(±3.80)

Table 1: Subject characteristics and behavioral assessments at T1 and T2. Values are
mean(±SD). TOWRE: Number of real words and pronounceable nonwords read in 45 seconds.
RAN: Time (ms) used to quickly and accurately name all stimuli (e.g., letters or colors) on a test
form. WJ: Number of correctly named letters and words until getting 6 in a row wrong. T1: First
testing time; T2: Second testing time (two years later).

words–pseudofonts words–pseudowords pseudowords–nonwords

T1 1.00(±0.20) 1.04(±0.30) 1.10(±0.27)
T2 1.22(±0.18) 1.53(±0.24) 1.28(±0.23)

Table 2: d’ of the repetition detection task performance during EEG sessions for each
of three conditions at T1 and T2. d’ was computed based on the z-transformed probabilities
of hits and false alarms. Values are mean(±SD).
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Figures820
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Figure 1: Experimental Design. Examples of stimuli presented in the experiment. 1 Hz alternates
were embedded within a 2 Hz base stream in all three conditions. The first condition assessed coarse
print tuning with words alternating with pseudofonts (W–PF). The second condition assessed lexical
fine tuning with words alternating with orthographically legal pseudowords (W–PW). The third
condition assessed sublexical fine tuning with orthographically legal pseudowords alternating with
orthographically illegal nonwords (PW–NW). All contrasts were presented centered on the screen.
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Figure 2: Different types of trials in words–pseudofonts contrast. Twelve trials of pre-
randomized sequences were presented for each condition (words–pseudofonts contrast shown here
as an example): Four non-target trials (A), four terminal trials (B), and four catch trials (C). EEG
data corresponding to the four catch trials were excluded from analysis due to excessive response-
related movements during recording. For the eight trials included per participant, the first and last
1-second epochs of each 12-second trial were excluded to avoid transient responses associated with
ocular artifacts which occurred more at beginnings and endings of trials
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D
RC1
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C 1Hz

Figure 3: Alternate Analysis: Developmental changes of visual word form structure
tuning (pseudowords–nonwords) in early readers. A: Topographic visualization of the spatial
filter (bilateral OT) for the maximally reliable component (RC1) at T1; B: Topographic visualization
of the spatial filter (left OT) for RC1 at T2; C: Response data at the first harmonic (1 Hz, the
only significant harmonic at both testing time points) presented in the complex plane: Amplitude
information is represented as the length of the vector, and phase information in the angle of the
vector relative to 0 degree (counterclockwise from 3 o’clock direction), ellipses indicate standard
error of the mean (SEM). No significant phase difference (p = 0.55) was found between T1 and
T2; D: Projected amplitude for each harmonic at T1 (orange) and T2 (blue), respectively. The
first two harmonics were significant at T1, while only the first harmonic was significant at T2. A
significant difference (p < 0.01) was found at 1 Hz between T1 and T2. No significant differences
were revealed at other harmonics. **: pFDR < 0.01, ***: pFDR < 0.001.
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Figure 4: Alternate Analysis: Sensitivity to whole word representation
(words–pseudowords) in early readers. A&B: Topographic visualizations of spatial fil-
ters and responses amplitudes for the maximally reliable component (RC1) trained on T1 and
T2 separately; C: Topographic visualization of the spatial filter (more anterior left vOT) for RC1
trained on pooled T1 and T2 samples; D: Projected amplitude of RC1 (trained on T1 and T2
together) for each harmonic at T1 (orange) and T2 (blue), respectively. At T1, 1-Hz and 9-Hz
harmonics were significant, while only the 1-Hz harmonic was significant at T2. There was no
significant RSS amplitude difference (p = 0.07) between T1 and T2. Projected amplitude at the
first harmonic showed no significant difference (p = 0.74) either between T1 and T2; E: Response
data at the first harmonic (1 Hz, the only significant harmonic at both testing time points)
presented in the complex plane, where amplitude information is represented as the length of the
vector, and phase information in the angle of the vector relative to 0 degree (counterclockwise from
3 o’clock direction), ellipse indicates standard error of the mean (SEM). No significant phase
difference (p = 0.17) was found between T1 and T2; *: pFDR < 0.05, **: pFDR < 0.01.
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Figure 5: Alternate Analysis: development of coarse print tuning (words–pseudofonts)
in early readers. A: Topographic visualization of the spatial filter (less left lateralized) for the
maximally reliable component (RC1) at T1; B: Topographic visualization of the spatial filter (more
left lateralized) for RC1 at T2; C: Projected amplitude of RC1 for each harmonic at T1 (orange)
and T2 (blue), respectively. The first three harmonics were significant at T1, and all five harmonics
were significant at T2. RSS amplitude did not differ significantly (p = 0.28) between T1 and T2.
D: Response data in the complex plane, with T1 in orange and T2 in blue. Amplitude (vector
length) and phase (vector angle, counterclockwise from 0 degrees at 3 o’clock direction) overlap
between two testing time points especially for significant harmonics (first three harmonics). Ellipses
indicate standard error of the mean. No significant phase differences (1 Hz: pFDR = 0.61, 3 Hz:
pFDR = 0.61, 5 Hz: pFDR = 0.61) were found at first three significant harmonics between T1 and
T2. *: pFDR < 0.05, ***: pFDR < 0.001.
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Figure 6: Statistically significant correlations between reading and brain response am-
plitudes for words–pseudofonts and pseudowords–nonwords, after outlier removal. A:
Regression between RSS amplitude for words–pseudofonts and word decoding abiliy (Woodcock-
Johnson, WJ) at T2; B: Regressions between response amplitude at 1 Hz for pseudowords–nonwords
and rapid automatized naming of letters (RANletter) and WJ at T2; C: Regression between response
amplitude improvement (Amplitude at 1 HzT2 − Amplitude at 1 HzT1) at 1 Hz of pseudowords-
nonwords and RANletter improvement (RANletterT2−RANletterT1). No significant relations were
found for words–pseudowords. Note: The larger value of WJ and the smaller value of RANletter
represent better reading skill.
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Figure 7: Base analysis comparisons across three conditions and two testing time points.
A: Topographic visualizations of the spatial filters (T1: top; T2: bottom) for the first component
(RC1); B: Comparison of projected amplitude across three conditions (T1: top; T2: bottom).
Response amplitudes across five harmonics did not differ significantly across the three conditions
and two testing time points (p > 0.1); C: Response data of three conditions presented in the 2D
complex plane (T1: top; T2: bottom), where amplitude information is represented as the length of
the vectors, and phase information in the angle of the vector relative to 0 degrees (counterclockwise
from 3 o’clock direction), ellipse indicates standard error of the mean (SEM). Results showed
overlapping amplitudes (vector lengths) and phases (vector angles) across three conditions and time
points
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