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Abstract 
 
Background 
Single-cell RNA sequencing (scRNA-seq) analysis analyzes the type and state 
of individual cells by estimating the gene expression of each cell and enables 
researchers to study the biological phenomena that cannot be observed in bulk 
RNA sequencing.  
 
Motivation 
However, the current scRNA-seq quantification tools estimate the gene 
expression profile of each cell independently, ignoring the fact that there are 
multiple cell types in the scRNA-seq data and the expression level should be 
highly correlated with the cell type. Since scRNA-seq suffers from a low 
sequencing depth, the conventional strategy leads to a high proportion of 
missing values in the gene expression profile, obscuring the biological 
characteristics of cell subpopulations and further impacting the correctness of 
the subsequent downstream analysis. 
 
Results 
In this study, we proposed Quasic, a novel scRNA-seq quantification pipeline 
which examines the potential cell subpopulation information during 
quantification, and uses the information to calculate the gene expression level. 
Using the human peripheral blood mononuclear cells and the simulated 
doublet dataset, we verified that Quasic not only correctly reinforced the cell 
signatures, but also identified the corresponding cell subpopulations and 
biological pathways more accurately. In addition, we also applied Quasic to the 
breast cancer cell line dataset (MCF-7), and successfully identified more 
potentially therapeutic resistant cells of which characteristics are consistent 
with that from previous studies.  
 
Conclusions 
The proposed pipeline can let the gene expression profile of each cell be more 
consistent with the corresponding subpopulation, making the biological features unique 
to the subpopulation more apparent and convenient for analysis. By using Quasic, 
researchers can effectively extract the desired cell subpopulation information from their 
sampled cells, enable them to perform cell subpopulation-related studies more 
accurately.  
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Introduction 
Single-cell RNA sequencing (scRNA-seq) is a high-throughput technology 

that can measure the expression of the entire transcriptome of each cell. By 
analyzing scRNA-seq data, researchers can detect novel biological discoveries 
omitted by traditional bulk RNA sequencing methods, such as revealing rare 
and crucial cell populations among cells, displaying regulatory relationships 
between cell types and genes, or even tracking the trajectories of cell lineages 
in development. 

In recent years, multiple tools have been developed to perform 
quantification of scRNA-seq, which represents exanimating the gene 
expression level from the raw reads generated by the sequencer, such as Cell 
Ranger1, Alevin2, Kallisto3 and STARsolo4. These quantification tools use 
different strategies to handle specific demands. For example, Cell Ranger and 
STARsolo use a general aligner called STAR5 to perform the alignment, while 
Alevin and Kallisto choose to use pseudo alignment to reduce the time-
consuming problems of STAR. Moreover, these four quantification tools also 
perform different cell barcode correction strategies and use different methods 
to quantify the unique molecular identifiers (UMI), leading to the estimation of 
gene expression profiles as well as the downstream analysis (such as finding 
the differential expression genes) perform diversely to some extent6. 

Although each of these quantification tools has been wildly used by the 
researchers of scRNA-seq to date, there are some crucial problems in current 
quantification tools. First of all, since the information on cell subpopulation 
within the scRNA-seq data often plays an important role in scRNA-seq 
downstream analysis, the subpopulation structure in the sampled cells is often 
ambiguous. More specifically, due to the low sampling rate of scRNA-seq, there 
may be a high proportion of missing values or biased estimation in scRNA-seq 
data, which causes the difference of biological features between clusters to be 
usually inconspicuous. Cells may express dissimilarly with other cells even if 
they have shared the same cell type label (see Fig. S1). Moreover, the scarcity 
of gene expression in sequenced cells or the whole subpopulation also makes 
researchers hard to extract the characteristics from them, and the examination 
of cell subpopulation analysis, which is often the main goal of scRNA-seq 
analysis, would be hard to perform accurately. Generally, researchers can deal 
with the above problems using imputation tools to infer the missing values in 
gene expression profiles based on various statistical models. However, 
currently developed imputation tools often induce false signals which may 
mislead the researcher7. 
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To improve the quantification of single-cell RNA sequencing data, in this 
study, we proposed a subpopulation-aware scRNA-seq quantification pipeline 
called Quasic (quantification of single cell with subpopulation structure-aware 
constraints), which considers the subpopulation information during the 
optimization for quantification. Quasic aims to (1) facilitate cell type 
identification, especially for the cells with low gene expression, (2) strengthen 
the features of cell subpopulations and make the characteristics captured by 
downstream analyses more robust and precise, and (3) enhance the difference 
between cell subpopulations, making the results of cell type comparison more 
significant. In the following paragraph, we would demonstrate the advantages 
of subpopulation-aware quantification, and how it reinforces the scRNA-seq 
downstream analysis for the researchers.  

 
Results 
Framework overview 

To begin with, we first assume that cells in the same biological 
subpopulation should collectively share the same genetic characteristics and 
that the characteristics of subpopulations are distinct from each other. To model 
this during the gene expression estimation, we designed a quantification 
method called subpopulation-aware quantification, which constrains the gene 
profile by weighing the gene expression levels calculated by original 
quantification and the corresponding cluster signature for the cell. Moreover, 

Figure 1. Overview of Quasic. Three stages are contained in the whole pipeline, including (1) Initial 
quantification, (2) Clustering, and (3) Subpopulation-aware quantification. the clustering and the 
subpopulation-aware quantification stages will be repeated until the adjusted rand index between two 
continuous clustering results > 0.95. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.11.08.515740doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.08.515740
http://creativecommons.org/licenses/by-nc-nd/4.0/


the weighing would be determined by the cell-specific term that represents the 
confidence level of the cluster results for a particular cell (see Methods). 
 In addition to the subpopulation-aware quantification, the entire 
framework could be divided into three stages (see Fig. 1), including 1) initial 
quantification, 2) clustering, and 3) subpopulation-aware quantification. In the 
initial quantification stage, our framework executes traditional quantification 
implemented based on Alevin2. In the following clustering stage, our 
framework performs some preprocessing steps (see Methods) and uses 
Louvain algorithm8 to cluster the cells based on the initial gene expression 
profile. Next, in the subpopulation-aware quantification stage, our framework 
extracts the characteristic of each subpopulation by calculating cluster 
assigning scores and building the cluster signatures. The gene abundance 
would also be quantified based on the subpopulation information in this stage. 
Note that the clustering and the subpopulation-aware quantification stages will 
be repeated until the clustering results were highly similar between two 
continuous iterations (Adjust rand index > 0.95). 
 
Strengthening of the characteristics and subpopulation structure  

In this section, we used the real human PBMCs (peripheral blood 
mononuclear cells) (see Methods) to verify the ability of cell type feature 
amplification for Quasic. The PBMC dataset contains seven cell types6, which 
were CD4+ T cells, dendritic cells, CD8+ T cells, NK cells, B cells, monocytes, 
and platelets. In the following paragraph, we would show that the cells in each 
cell type express significantly different after the subpopulation-aware 
quantification. 

First, we used UMAP9 to visualize the association of these PBMC cells. Fig. 
2a-c showed that compared to other pipelines, our tools aggregated the cells in 
the same cell type closer to the UMAP space, implying that the features 
captured by the dimensional reduction methods are more similar for the cells 
in the same cell type. Second, we also calculated the Pearson correlations 
between cells and their corresponding cell type’s center using the PBMC 
markers (see Fig. 2d). The results showed that the cell would express the crucial 
genes more similar to what it was supposed to be due to the properties of cell 
type. Moreover, we used the package called SAVER10, a well-known imputation 
tool for scRNA-seq published in Nature Methods, to impute the gene 
expression profiles generated by other quantification pipelines. We compared 
Quasic to the expression level after the imputation. The results were shown in 
Fig. 2e, showing that despite every quantification tool would express similar to 
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the corresponding cell type after the imputation of SAVER, none of them could 

Figure 2 Ability of cell type feature amplification of Quasic. (a)-(c) UMAP visualization of different 
quantification tools: (a) Cell Ranger, (b) Alevin, (c) Quasic. (d) Pearson correlation between gene 
expression of cells with corresponding cell type signatures. For each cell type, the mean expression of 
cells was first calculated, and the Pearson correlations between every cell in this cell type and the 
corresponding mean expression were further averaged and recorded in the figure. (e) Cell type similarity 
of different quantification tools before/after the imputation. The modularity used for Louvain 
optimization was recorded in the figure, and so did the average Pearson correlation of PBMC markers. 
The results of the same quantification method were colored in similar colors, and the arrow represents 
the change after the imputation was performed. 
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amplify the subpopulation structure among the biological data as well as 
Quasic.  

Finally, to further examine the effectiveness of downstream analysis for 
Quasic, we performed the GSEA11 (Gene Set Enrichment Analysis), a well-used 
computational approach that evaluate whether a given gene set shows 
statistically significant between two or more samples with different biological 
conditions. We compared the examination of GO (gene ontology) terms on the 
biological process between different gene expression profiles that were 
generated from different quantification tools and evaluated the quantities of 
these GO terms in different q-value thresholds (see Fig. 3a). The results showed 
that in some the cell types (B cells, CD4+ T cells, NK cells), gene expression 
quantified by Cell Ranger found the minor numbers of GO terms, while Quasic 
and Cell Ranger used with SAVER were able to help GSEA to find more GO 
terms within the samples. However, in some cell types, such as Dendritic cells, 
CD8+ T cells, and Monocytes, GSEA found extremely high amounts of GO 
terms if SAVER was used for imputation. To check the biological rationality for 
these GO terms, we used NaviGO12 to visualize the relationship between these 
finding GO terms. Fig. 3b showed that for B cells, all three methods found 
similar groups of GO terms, and most of the GO terms were highly correlated 
with B cells (phagocytosis recognition13, B cells, activation, membrane 
invagination14). In contrast, Fig. S2 showed that for dendritic cells, Cell Ranger 
and Quasic found some GO terms that were highly correlated with Dendritic 
cells. For example, GO terms correlated with major histocompatibility complex 
(MHC), which is used for presenting antigen-derived peptides in Dendritic 
cells, were found frequently for the scenario of Quasic, and the correlation 
between cell adhesion and ATP synthesis toward dendritic cells has also been 
studied by Harjunpaa et al.15 and Wculek et al.16. However, the GO terms 
identified in the condition of Cell Ranger with SAVER were internally 
irrelevant and poorly correlated with Dendritic cells.  

In conclusion, although the imputation tool helps identify more GO terms, 
it also misrecognizes some GO terms irrelevant to the cell since it amplifies the 
gene expression level imprecisely. On the other hand, Quasic not only can help 
the researchers to identify more GO terms than other quantification tools but 
also avoids the misrecognition that is severely harmful to the researchers to 
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examine the biological condition of their samples.  

 

Figure 3. Gene Set Enrichment Analysis results for PBMC datasets. (a) Numbers of GO terms found 
by multiple quantification conditions in different q-value thresholds. (b) GO terms visualization by 
NaviGO for B cells. NaviGO would calculate the Resnik Semantic Similarity (RSS) for each GO term pair 
and use Multidimensional Scaling (MDS) to perform dimension reduction. For each subgraph, the x-axis 
and y-axis represent the first and second coordinates after MDS. Each black node represents a GO term, 
and the GO terms with high correlation (which implies their common ancestor were near to themselves) 
will be close to the figure.  
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Improvements in doublets detection  
Droplet-based scRNA-seq platforms often suffer from the “Doublets” issue, 

which represents two or more cells being considered as a single cell because some 

Figure 4 Improvements of doublets detection. (a) – (d) UMAP visualization of different quantification 
tools for doublet simulation data. (e) F1-score of doublet prediction in different simulation dataset. 
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GEMs (Gel Beads in Emulsion) mistakenly contain multiple cells during the 
sequencing library preparation. To avoid affecting the downstream analysis by these 
doublets, researchers are recommended to identify and filter them before analyzing. In 
recent years, several tools have been developed to perform doublet detection, such as 
Scrublet17, Scds18, and DoubletFinder19. In this section, we used the simulation doublets 
datasets to examine whether Quasic could amplify doublets' characteristics correctly 
and benefit doublet detection.  

First, we used the single-cell RNA-seq data, which had performed FACS 
(fluorescence- activated cell sorting) and was purified in cell type to simulate 
the doublets (see Methods). The quantification by Alevin and Quasic were then 
performed on the simulation data respectively and UMAP was used for 
visualization. The results in Fig. 4a-b clearly showed that Quasic could separate 
the doublet and the purified cell type cluster. Moreover, since the separation 
seemed too uncomplicated for the 20% doublets simulation, we added a 
proportion of ambient RNA to the doublet simulation data. The experiment 
results for the doublet simulation data with ambient RNA were illustrated in 
Fig. 4c-d, showing that Quasic could still separate the doublet cluster and the 
purified cell type cluster in the confusing condition. Finally, we used 
DoubletFinder19, a common doublet detection tool for droplet- based scRNA-
seq, to examine whether Quasic was a benefit for doublet identification. The 
experiments were performed on simulation data with different mixing 
proportions of doublet and ambient RNA (see Fig. 4e). The results showed that 
Quasic is favorable for DoubletFinder recognizing the doublets more 
accurately than Alevin at all kinds of simulation data, proving that Quasic was 
able to correctly amplify characteristics of doublets, and was helpful for the 
doublet detection tool to identify doublets precisely.  

The practicality of identifying rare subpopulation cells in cancer data  
In this section, we used a breast cancer scRNA-seq dataset (MCF7, see 

Methods), which contained a rare proportion of cells called pre-adapted cells 
(PA cells), to prove that Quasic was capable of identifying those rare cells and 
may be helpful in a practical situation. PA cells are the cells identified in the 
MCF-7 cell line by Hong et al.20, in which the authors examined the 
transcriptional variability of plastic cells and defined a rare cell subpopulation 
that displayed increased survival under acute-ET (endocrine therapy) 
compared with other cells. 

To examine whether Quasic was more beneficial in amplifying the features 
of PA cells, we quantified the scRNA-seq data applied in the study (GSE122743) 
by Cell Ranger and Quasic, respectively. The UMAP visualization of the 
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quantification results were shown in Fig. 5a. It is obvious that while the 81 PA 
cells, which were identified by Hong et al., were scattered in the UMAP space 
under the quantification of Cell Ranger, Quasic was able to gather the PA cells 
into the two small subpopulations. Moreover, considering the biological 
characteristics of these two subpopulations, it showed that the DEGs 
(differentially expressed genes) of them are highly overlap with the DEGs 

Figure 5 Analysis of MCF-7 dataset and the biological features comparison between two specific 
subpopulations and PA cells. (a) UMAP visualization of MCF-7 dataset in different quantification tools. 
The PA cells identified by the previous study were colored in orange, and the two PA aggregated clusters 
were marked by red frames in the right subgraph. (b) The overlap of positive and negative DEGs between 
two specific subpopulations an PA cells. (c) The up-regulated genes and down-regulated hallmark gene 
sets identified by our pipeline quantification, where the letters with boldface represent the hallmark gene 
sets were also recognized by the original study. 
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found in the original study of PA cells (see Fig. 5b). Also, the statistically 
significant Hallmark gene sets identified by GSEA for Quasic are highly 
coincide with the gene sets that the original paper had found (Fig. 5c).  

In conclusion, since the biological characteristics between the two 
subpopulations and the origin identified 81 PA cells were very similar, we 
considered that these two subpopulations might also contain a high proportion 
of PA cells, and the potential PA’s features of these two subpopulations could 
only be recognized under the proposed subpopulation-aware quantification. 

Discussion 
Although the above experiments have shown the capability of amplifying 

the correct gene features and the comparative advantages over the imputation 
tools for Quasic, the robustness of the proposed subpopulation-aware 
quantification in some scRNA-seq data with peculiar features still needs to be 
testified. For example, as mentioned before, the scRNA-seq data usually suffers 
from dropout events which represent the multiple missing values in the gene 
expression profiles. According to some previous studies21, typical scRNA-seq 
data can contain up to 90% zero values in the expression matrix. Theoretically, 
Quasic could recover the expression correctly for these particular 
circumstances as long as the specific gene features of the cell subpopulation do 
not lose due to the low sequencing depth, but some related experiments need 
to be done and testified in the future.  

Another notable issue for our proposed framework is the constraint 
intensity for the subpopulation-aware quantification. Although the current 
subpopulation constraints have considered the confidence levels of the cluster 
results for the cells, since cells would be gradually similar to the single cluster 
signature that had been clustered in, the global intensity of the subpopulation 
constraint should be set purposely by the users. For example, since the cells in 
the previous breast cancer experiments (see Results) were all from the same 
cell-line (MCF-7) and the heterogeneities were implicit, only if the global 
intensity was set at a high value, the aggregation of PA cells could be seen in 
the UMAP space (see Fig. S3). Therefore, the user should decide the global 
intensity of the subpopulation constraint more purposely since the different 
constraints would lead to different visible subpopulation structures for the 
sampled cells and impact the downstream analysis. 

Finally, since other scRNA-seq quantification tools have implemented 
multiple preprocessing strategies before quantification (e.g., different read 
filtration or UMI deduplication approaches), Quasic should include these 
preprocessing steps in the future. Moreover, various methods have been 
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developed for clustering scRNA-seq data, and each clustering algorithm has its 
own advantages in accuracy depending on the attributes of scRNA- seq data. 
Since the clustering result plays an important role in the correctness of our 
framework, the effectiveness of different clustering algorithms in alliance with 
the subpopulation-aware quantification should be further exanimated, and our 
pipeline should be implemented to allow users to choose their own desired 
clustering strategies. 

Conclusions 
In this study, we proposed a subpopulation-aware quantification pipeline 

for scRNA-seq data, which aim to strengthen the biological features of 
subpopulations and favor the downstream analysis. We demonstrated that 
Quasic can amplify the PBMC markers for each cell type correctly, which not 
only facilitates cell type identification, but also make the biological pathways 
found by GSEA more precise and accurate. Furthermore, we used the doublet 
simulation data to prove that the doublets' attributes would be recognized 
clearly through our pipeline, and the features of doublets could also be 
captured easily by doublet detection tools. In the end, by using Quasic in 
alliance with differentially expressed gene analysis, we identified more 
potentially therapeutic resistance cells in the breast cancer data whose 
characteristics are consistent with previous studies, proving that our pipeline 
helps discover the rare cell subpopulation in scRNA-seq data. 

In conclusion, Quasic can let the gene expression profile of each cell be 
more consistent with the corresponding subpopulation, making the biological 
features unique to the subpopulation more apparent and convenient for 
analysis. Using the proposed quantification pipeline, researchers can 
effectively extract the desired cell subpopulation information from their 
sampled cells, enable them to perform cell subpopulation-related studies more 
accurately. 
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Methods 
Materials 
Real Human 5k Peripheral blood mononuclear cells (PBMCs): The human 
PBMC raw reads were downloaded from the 10x Genomics website. The data 
contains about 5025 cells, and 7 different cell types (CD4+ T cells, dendritic cells, 
CD8+ T cells, NK cells, B cells, monocytes, and platelets) were recognized by 
Brüning et al.6. In our experiments, the raw reads of this PBMC dataset were 
used as input for different quantification pipelines, and the clustering was 
further performed by Seurat22. 
Doublet simulation data: We used the PBMC dataset, classified by FACS 
(fluorescence activated cell sorting), to simulate the heterotypic doublets. The 
purified cell type of PBMC reads were sequenced from Zheng et al.1 and were 
downloaded from https://www.10xgenomics.com/resources/datasets/. 
Since some of the cell type datasets were not really purified and may contain 
other cells with different cell types (which had also been shown in the 
supplementary of the paper1), we only selected CD19+ B cells, CD34 cells and, 
CD56 NK cells for simulation. Moreover, we filtered the cells which did not 
express the corresponding markers in the datasets to ensure the correctness of 
the cell type label. 

The doublets were then simulated by mixing reads with two cells in 
different cell types at a certain proportion (mixing rates were chosen randomly 
and uniformly between 10% - 90%). Also, 10% / 20% ambient RNA reads, 
selected from the pool generated by randomly picking 300 cells for each cell 
type, were added to all cells (including the singlets and doublets) in the 
simulation dataset. 
MCF7 with a rare cell subpopulation (pre-adapted cells): The MCF7 single-
cell RNA-seq data was downloaded from Gene Expression Omnibus (GEO) 
website (https://www.ncbi.nlm.nih.gov/geo/) with the accession number 
GSM3484478. The PA cells (pre-adapted cells) were identified by Hong et al.20, 
while the barcodes and the differentially expressed genes of PA cells were also 
obtained from the same paper.  
 
Subpopulation-aware quantification  

As mentioned previously, despite of the correlation between cells and the 
relevance among or within the cell subpopulation being crucial for 
downstream analysis, such information is entirely unconsidered in current 
quantification methods. To model the subpopulation structure within the data, 
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we consider the likelihood model to incorporate a prior that describe the gene 
expression pattern of each cell type as follows: 

where 

and 

The above equations were modified from Salmon23 by adding the cell type 

specific term for each cell. For a given fragment set F (including total N 
fragments obtained after UMI deduplication) and gene set G (total M genes), 
we are eager to evaluate the gene abundance 𝛼 = {𝛼!, 𝛼"	, … , 𝛼$} (where 𝛼% 
represents the gene abundance for gene k). and the possibility for “fragment j 
is generated by gene i” is symbolled as Pr&𝑓&|𝑔'*, which is the summation of 
fragment aligned probabilities of every transcript belonging to gene i (Equation 
2). Moreover, the optimization equation should consider the prior, of which 
effect is similar to a regularization term to bound the estimation of 𝑔' by the 
cell type specific signature. Although the prior is unknown, given that cells of 
the same cell type express similarly, we can still estimate the prior according to 
the average gene expression among cells that share similar expression profiles. 
Furthermore, to reduce model complexity, we decided to add the 
subpopulation-constraint learnt from an additional coarse-grain quantification 
and clustering step to the original M-step update equation (which had been 
derived in Salmon23) that should achieve the similar bounding effect of the 
prior for each cell type, see Equation 4 and Table 1. 
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 To be more specific, the whole update equation for subpopulation-aware 
quantification was designed by weighing the gene expression levels calculated 
by original quantification and the corresponding cluster signature for the cell 
(𝜇',%). Moreover, the weighing was determined by the cell-specific weighting 
term 𝜆,, which represents the intensity of the subpopulation constraint of cell 
n. In brief, the term 𝜆, would be higher if the cluster of cell n was labeled with 
strong confidence. Both 𝜇',% and 𝜆, would be introduced in more detail later. 
 
Cluster assigning score calculation  

In the previous section, we mentioned that the parameter 𝜆, is used for 
regulating the intensity of the subpopulation constraint for the specific cell n. 
For each cell, the intensity of the subpopulation constraint for the quantification 
is modeled according to the confidence degree of the cell belonging to its 
labeled cluster, which means 𝜆, 	 ∝ 	 𝑆,, where 𝑆, is the confidence level and 
called the “cluster assigning score” for cell n. 
 In this study, we calculated cluster assigning scores based on the distance 
between the cell and the cluster centers in PCA space. The coordinates of each 
cluster center were calculated by the formula:  

Where k and p represent the index of cluster and principal component, g 
represents each of the variable genes selected in the previous clustering step. 
The formula was simply designed as projecting the centers of clusters in 
variable gene level (𝑀𝑒𝑎𝑛_𝐸𝑥𝑝	+	., represents the mean expression of variable gene 
g for cluster k) to the PCA space by multiplying with weights of the specific 

Symbol Description Symbol Description 

u Iteration index 𝐶! Equivalence classes for cell n 

i Gene index 𝑑" Read counts in equivalence class j 

j Equivalence class index 𝑤#
" Weight of gene i for equivalence class j 

k Cluster of the cell 𝜇#,% Cluster signature of gene i for cluster k 

n Cell index 𝜆! Intensity of the subpopulation constraint of cell n 

𝛼#,	!'  Abundance of gene i in cell n for the u’th iteration   

Table 1. Parameters explanation of Equation 4. 

𝐶𝑒𝑛𝑡𝑒𝑟	1. =1 𝑀𝑒𝑎𝑛_𝐸𝑥𝑝	+	. 	 ∗ 	𝑃𝐶𝐴_𝑊𝑒𝑖𝑔ℎ𝑡	1
	+ 	

+	∈	2-
	 (5) 
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variable gene for principal components (𝑃𝐶𝐴_𝑤𝑒𝑖𝑔ℎ𝑡	1	+ ). The cluster assigning 
scores (𝑆%.) for each cell n to each cluster k were then calculated:  

𝑆%.	 =	 	
( $
%#,'

)(

( $
%#,$

)('( $
%#,(

)('	…'( $
%#,'

)(
	 , 𝑤ℎ𝑒𝑟𝑒	𝐷%,. = ∑ N	(𝑃𝐶𝐴_𝑐𝑜𝑜𝑟𝑑	1	% − 𝐶𝑒𝑛𝑡𝑒𝑟	1.)61	∈7 	

It is worth noticing that the design for the score calculation guarantees the 
scores of each cluster (k) for a cell (n) add up to 1 and are inversely proportional 
to the square distance between the cell and the cluster’s center (𝐷%,.).  
 Based on the cluster assigning scores, we finally set 𝜆, = 	𝛾	 ∗ 	𝑆,, where 
𝑆, represents the scores for cell n to its assigned cluster labeled according to 
the former clustering algorithm, and 𝛾 represents the global intensity of the 
subpopulation constraint set by users. 
 
Building of cluster signatures 

Generally, the cluster signature for each (𝜇',%) was the mean of gene (i) expression 
for the cells in the same cluster (k). However, in order to avoid cells that were mis-
clustered or low-confidence clustered affecting the correctness of the signatures, we 
only used the “confidence cells” to calculate the signature. The cell was considered 
confident if the cluster of maximum clusters assigning scores for this cell was consistent 
with the cluster that the clustering algorithm labeled, otherwise the cell was considered 
as an unconfident cell. In conclusion, the cluster signatures are calculated as: 

𝜇',% =
∑ 𝑔𝑒𝑛𝑒	𝑖	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-.,/'0,1-1	-1223	∈	-243(15	%

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒	𝑐𝑒𝑙𝑙𝑠	𝑖𝑛	𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑘  

Low-quality cells and rare gene exclusion 
During updating the optimization equation (Equation 4), some cells and 

genes were excluded from the subpopulation-aware quantification. In terms of 
cells, cells filtered before the clustering due to their low quality were not 
included in the subpopulation-aware quantification because they were 
unlabeled for clustering. Moreover, to avoid amplifying the expression of 
unimportant genes and make the subpopulation constraint more specific for 
each cluster, genes which are considered as the “rare genes” (defined as the 
genes expressed in less than 20% of cells for a cluster) were excluded from the 
subpopulation-aware quantification.  
 
Initial quantification 

In our framework, we use the methods implemented in Alevin23 to 
perform the preprocessing steps, which includes such as barcodes correction, 

(6) 

(7) 
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transcriptome alignment, UMI correction and deduplication. Moreover, we 
also perform the quantification algorithm of Alevin to estimate the gene 
expression preliminary before the subpopulation-aware quantification in order 
to determine the cluster labels for the cells at the first iteration of our framework. 
All the experiments in the study performed these preprocessing steps and the 
initial quantification with the default parameters of Alevin. 
 
Cell Clustering of PBMC, doublet simulation dataset, and MCF7 

To calculate the cluster label for each cell (which would be used in 
subpopulation-aware quantification), the clustering algorithm is included in 
our framework. However, since scRNA-seq data often contain low-quality cells 
or numerous univariable genes, multiple preprocessing steps need to be done 
before clustering. First, cells with detected genes < 20 or mitochondria genes 
proportion > 10% were excluded for the clustering, and the log normalization 
is performed and multiplied with a scale factor of 1000. The top 2000 most 
variable genes are then selected by Seurat20 and use for computing the PCs. PCs 
that accumulated explanation > 90% are further used for clustering and 
visualization. 
 In our framework, we use the Louvain algorithm8 to perform clustering. 
Louvain is currently the most popular method for scRNA seq clustering, and is 
capable of obtaining satisfactory results in most cases with PCA dimension 
reduction24. In our experiments, the parameter in Louvain called “resolution” 
were set at 0.2 for both PBMC and MCF7 datasets, while was set at 0.1 for 
doublet simulation dataset. 
 
Imputation of gene expression profiles by SAVER 
 SAVER10 was downloaded from https://github.com/mohuangx/SAVER. The 
imputation was executed on the output gene expression profiles of quantification tools 
directly with default parameters. The gene expression profiles after running SAVER 
would be further used for PCA dimension reduction and downstream analyses. 
 
Gene set enrichment analysis 

GSEA11 software was downloaded from https://www.gsea-
msigdb.org/gsea/index.jsp. To analyze of real human PBMC, we first averaged 
the gene expression level for each cluster and input the target cell type as the 
phenotype label for GSEA analysis. The permutation type was set to gene set, 
and the metrics of the ranking gene were set to “log2_Ratio_of_Classes”. 
 For the MCF-7 dataset, we performed the GSEA pre-ranked analysis. The 
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given PA cells’ barcodes were first labeled as a PA cluster, and the marker genes 
of this cluster were further obtained by function “Findmarkers” in Seurat22 with 
default parameters. All the upregulated and downregulated genes were used 
in the GSEA pre-ranked analysis, and their average log fold change calculated 
during the marker gene finding was used as the ranking score for the 
corresponding genes.  
 
GO terms visualization by NaviGO 

NaviGO12 (https://kiharalab.org/web/navigo/views/goset.php) is a 
visualization tool used for examining the relationship between GO terms. To 
perform NaviGO, we first changed the target GO term names, which was the 
output of GSEA, to corresponding GO term IDs through the Molecular 
Signatures Database (https://www.gsea-msigdb.org/gsea/msigdb). The “GO 
Term Similarity and Association Scores” function on the NaviGO website was 
then performed, and the bubble charts which visualized the relationship of GO 
terms would be generated. 
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