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Abstract

The availability of various single-cell sequencing technologies allows one to jointly study multiple genomic fea-
tures and understand how they interact to regulate cells. Although there are experimental challenges to simultane-
ously profile multiple features on the same single cell, recent computational methods can align the cells from unpaired
multi-omic datasets. However, studying regulation also requires us to map the genomic features across different mea-
surements. Unfortunately, most single-cell multi-omic alignment tools cannot perform these alignments or need prior
knowledge. We introduce SCOOTR, a co-optimal transport-based method, which jointly aligns both cells and genomic
features of unpaired single-cell multi-omic datasets. We apply SCOOTR to various single-cell multi-omic datasets with
different types of measurements. Our results show that SCOOTR provides quality alignments for unsupervised cell-
level and feature-level integration of datasets with sparse feature correspondences (e.g., one-to-one mappings). For
datasets with dense feature correspondences (e.g., many-to-many mappings), our joint framework allows us to pro-
vide supervision on one level (e.g., cell types), thus improving alignment performance on the other (e.g., genomic
features) or vice-versa. The unique joint alignment framework makes SCOOTR a helpful hypothesis-generation tool
for the integrative study of unpaired single-cell multi-omic datasets.
Available at: https://github.com/rsinghlab/SCOOTR.
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1 Introduction
Recent experimental developments have enabled us to measure various aspects of the genome, such as gene expression,
chromatin accessibility, and methylation, at the single-cell resolution [1–4]. Jointly studying multiple genomic views
can allow biologists to learn the rules of cell regulation by combining information about different genomic events.
Although single-cell co-assay experiments can profile multiple measurement types on the same cell, they are only
available for a few combinations of genomic signals [4], and can yield noisier data than single-omic experiments [5].
As a result, various computational methods [6–12] have been developed to successfully align single-cell datasets from
non-co-assay (i.e. unpaired) experiments.

Among the existing unsupervised single-cell multi-omic alignment methods, optimal transport-based approaches
[9–11] have shown state-of-the-art performance for aligning separately profiled (i.e. unpaired, non-co-assay) multi-
omic datasets. Optimal transport solves for a probabilistic correspondence matrix between the data points of two input
domains in order to match them in the most cost effective way possible [13]. A popular view of the problem is to
imagine moving a pile of sand to fill in a hole through the least amount of work. One challenge in matching cells
from multi-omic datasets is that this requires matching data points from different metric spaces. Existing methods
[9–11] use Gromov-Wasserstein (GW) optimal transport [14, 15] for single-cell multi-omic alignment. GW optimal
transport allows for relating data points from different metric spaces by comparing their intra-domain pairwise dis-
tances. Unfortunately, by computing intra-domain distances, it solely focuses on cell-cell mappings and shrouds the
feature-feature mapping information of the input data. While obtaining cell-cell alignment is important, we also need
to study the relationships between the features of different genomic measurements to understand how the input space
of one measurement is optimally transformed into another. This study of regulatory relationships, therefore, requires
the alignment of features. Such an alignment can also provide interpretations that guide researchers in learning about
regulation at both cell and genomic feature level. Since, performing feature alignments is difficult using the GW opti-
mal transport formulation, new computational approaches are needed to infer these alignments due to the high number
of features and the complexity of their relationships.

Out of all existing single-cell alignment methods, only one method, bindSC [12], can perform feature-feature
alignments. However, it requires some prior knowledge of their relationships using a gene activity matrix. This
matrix is computed between gene expression features and the chromatin accessibility or methylation signals in the
neighborhood of these genes. Therefore, the usability of bindSC is limited to measurement modalities with known
relationships (usually with gene expression). Additionally, the default way of computing input gene activity matrices
ignores most intergenic features in the chromatin accessibility and methylation modalities.

We introduce SCOOTR (Figure 1), a co-optimal transport-based method [16] that simultaneously aligns both the
cells and the features of unpaired single-cell multi-omic datasets in a measurement-agnostic manner. We apply
SCOOTR to diverse simulated and real-world single-cell datasets like – (1) a CITE-seq dataset with gene expres-
sion and epitope abundance measurements from single-cells, (2) a SNARE-seq dataset with chromatin accessibility
and gene expression profiles, and (3) a multi-species single-cell RNA-seq dataset with gene expression measurements
from bearded lizard pallium and mouse prefrontal cortex. The multi-species dataset is constructed from independent
sequencing experiments, while the first two are co-assays with paired measurements. We use the ground-truth in-
formation on cell matches from these paired measurements to benchmark our cell-level alignments, and show that
SCOOTR is competitive with the current unsupervised cell-cell alignment methods. For feature-level alignments, we
demonstrate with both simulated and real-world datasets that – (1) when feature correspondences are sparse (e.g.,
one-to-one mappings), such as in CITE-seq dataset, SCOOTR yields high quality alignments without supervision, with
72% of the epitopes matching most strongly with the genes encoding them, and (2) when feature correspondences are
dense (e.g., many-to-many mappings), such as in SNARE-seq, supervision on one level (e.g. cell-type alignments)
improves the alignment on the other (e.g. features), or vice-versa, and yields up to ∼ 80− 100% accuracy on feature
and cell-type matching tasks, respectively. This supervision at both cell and feature-level is uniquely possible due to
our joint formulation.
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Figure 1: Overview of SCOOTR on the SNARE-seq dataset. SCOOTR takes in two count matrices, each from a
different single-cell sequencing experiment. Given these unpaired single-cell datasets, SCOOTR simultaneously solves
for two probabilistic correspondence matrices: one between features, and one between cells across the two datasets.
It returns the feature-feature coupling matrix for the user to investigate the correspondence probabilities. It uses the
cell-cell coupling matrix to align the samples in the same space via barycentric projection or co-embedding via tSNE.
Here, we visualize the alignment of the cells from SNARE-seq dataset via barycentric projection of the chromatin
accessibility domain onto the gene expression domain, with data points colored by cell-type labels.

2 Method
Our method relies on optimal transport framework to align single-cell multi-omic datasets. We give a brief overview
of optimal transport in Supplementary Section 5. Here, we first review the existing optimal transport-based methods
to highlight our differences, then we introduce our framework.

Notations In what follows, we denote by ∆n = {w ∈ (R+)
n :

∑n
i=1 wi = 1} the simplex histogram with n bins.

We use ⊗ for tensor-matrix multiplication, i.e., for a tensor L = (Li,j,k,l), the tensor-matrix multiplication L ⊗B is
the matrix (

∑
k,l Li,j,k,lBk,l)i,j . We use ⟨·, ·⟩ for the matrix scalar product associated with the Frobenius norm ∥ · ∥F .

Finally, we write 1d ∈ Rd for a d-dimensional vector of ones and denote all matrices by upper-case bold letters (i.e.,
X) or lower-case Greek letters (i.e., π); all vectors are written in lower-case bold (i.e., x). We use the terms “coupling
matrix” and “correspondence matrix” interchangeably.

Related Previous Work Previously, three optimal transport-based methods have been developed to integrate single-
cell multi-omic datasets: SCOT [9], Pamona [10], and SCOTv2 [11]. All three methods rely on Gromov-Wasserstein
optimal transport to align cells from single-cell datasets that measure different genomic features. Optimal transport
formulation solves for a matrix of correspondence probabilities that will transform and align the datasets in a way
that leads to minimal cost. However, defining a cost metric over samples from different metric spaces (i.e. from
different measurement modalities) is challenging. Gromov-Wasserstein (GW) distance allows for the comparison of
distributions in different metric spaces by comparing pairwise distances between the samples across these domains.
This also preserves the local neighborhood geometry when moving data points between domains.

Given two datasets (or single-cell measurements) represented by matrices X = [x1, . . . ,xn]
T ∈ Rn×d and X′ =

[x′
1, . . . ,x

′
n′ ]T ∈ Rn′×d′

, we let µ =
∑n

i=1 wiδxi
and µ′ =

∑n′

i=1 w
′
iδx′

i
be two empirical distributions related

to samples, where xi ∈ Rd and x′
i ∈ Rd′

. Here, δxi
is the Dirac measure. We refer in the following to w =

[w1, . . . , wn]
⊤ ∈ ∆n and w′ = [w′

1, . . . , w
′
n′ ]⊤ ∈ ∆n′ as sample weights vectors that both lie in the simplex. For the

Gromov-Wasserstein formulation, one first computes pairwise distance matrices Dx and Dx′
with Dx

ij = dx(xi,xj)

and Dx′

ij = dx′(x′
i,x

′
j) for some distances dx and dx′ [14].Then, for a given cost function L : R × R → R, defined

over the distance matrices, the discrete GW distance solves the following optimization problem:

GW (Dx,Dx′
,w,w′) = min

π∈Π(w,w′)

∑
i,j,k,l

Lijklπijπkl, (1)
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where L ∈ Rnx×nx×n′
x′×n′

x′ is the fourth-order tensor defined by Lijkl = L(Dx
ik, D

x′

jl ) and Π(·, ·) is the set of linear
transport constraints defined as:

Π(w,w′) = {π|π ≥ 0,π1n′ = w,π⊤1n = w′}.

Intuitively, L(Dx
ik, D

x′

jl ) captures how transporting xi onto x′
j and xk onto x′

l would distort the original distances
between xi and xk and between x′

j and x′
l. The major difference between SCOT, SCOTv2, and Pamona are the

regularization terms they use in the Gromov-Wasserstein formulation. All three alignment methods use L(x, y) =
(x− y)2 and use the cell-cell coupling matrix to align cells in a joint space.

Co-Optimal transport While the intra-domain distances used in the GW-based methods often provides richer rep-
resentations of datasets, it also comes with several important drawbacks. First, GW requires finding the right similarity
measure for a given dataset, which may be hard and computationally costly in practice when no expert knowledge is
available. Second, GW exhibits invariances which, as shown before [16], may lead to less precise sample matchings in
some applications. Most importantly, GW-based optimal transport drops the features of the datasets after computing
intra-domain distances, with no opportunity for their alignment.

In order to address these drawbacks, Redko et al. [16] proposed a new OT problem termed Co-Optimal transport
(COOT) that aligns samples and features of the two datasets in the original space. We define COOT formulation using
the same notation as before. In addition, we now also define weights for the features that are stored in vectors v ∈ ∆d

and v′ ∈ ∆d′ .
Co-Optimal Transport then reads as follows:

min
πs∈Π(w,w′),πv∈Π(v,v′)

∑
i,j,k,l

L(Xi,k, X
′
j,l)π

s
i,jπ

v
k,l

= min
πs∈Π(w,w′),πv∈Π(v,v′)

⟨L(X,X′)⊗ πs,πv⟩
(2)

where L is the tensor of all pairwise divergences between the elements of the matrices X and X′. Intuitively, in case
of images, for instance, this tensor will consists of all differences between individual pixels of the two images, while
for GW those will be the differences between the similarities of all pixels within the image.

As explained above, (2) optimizes over a coupling πs between samples and a coupling πv between features of
the two datasets. The intuition behind optimizing over two couplings is as follows: while the samples coupling πs

has the same meaning and acts in the same way as the coupling returned by GW, the feature coupling πv returned by
COOT aims to align the distributions over the features that describe the two datasets. In the simplest case, this may
correspond to finding a permutation of the features that leads to the sample alignment of the smallest cost. In more
complex settings, such as, for instance, when aligning images of different size, this may correspond to finding a spatial
transformation that up/downscales the image following the least effort principle. We write COOT(X,X′) to denote
the objective value of the optimization problem (2) when uniform weight vectors are used (as done for GW before).

COOT can be extended to include entropic regularization [17] term, that is popular in OT community, as follows:

min
πs ∈ Π(w,w′),
πv ∈ Π(v,v′)

⟨L(X,X′)⊗ πs,πv⟩+Ω(πs,πv)
(3)

where for ϵ1, ϵ2 > 0, the regularization term writes as Ω(πs,πv) = ϵ1H(πs|ww′T )+ϵ2H(πv|vv′T ) with H(πs|ww′T ) =∑
i,j log(

πs
i,j

wiw′
j
)πs

i,j being the relative entropy. Note that similarly to OT [17] and GW [15], adding the regularization
term can lead to a more robust and fast estimation of couplings but prevents them from being sparse.

Single-cell CO-Optimal TRansport (SCOOTR) Our proposed method, SCOOTR (Figure 1), directly takes the
normalized count matrices of the single-cell measurements (X and X′) as inputs. Unlike previous OT-based methods,
we do not require to calculate the pairwise similarities, thus reducing the dependence on the choice of similarity
function and its associated hyperparameters. We set the marginal distributions over samples, w,w′ and features v,v′

as uniform distributions assuming no prior knowledge about the datasets, however, we allow the users to customize
the weights in these distributions if they have any prior information (e.g. scaling up the weight of features with
regulatory significance that are expected to match with many other features). Given the input datasets and the marginal

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2022. ; https://doi.org/10.1101/2022.11.09.515883doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.09.515883
http://creativecommons.org/licenses/by-nc-nd/4.0/


distributions, SCOOTR solves for cell-cell and feature-feature correspondence matrices using the co-optimal transport
formulation:

πs,πv ∈ argmin
πs ∈ Π(w,w′),
πv ∈ Π(v,v′)

⟨L(X,X′)⊗ πs,πv⟩.

where L(X,X′) =
∑

ijkl ||Xi,k −X′
j,l||2 for cells i, j and features k, l.

The optimization is carried out with a block coordinate descent procedure proposed by Redko et al [16], which is
detailed in the Supplementary Algorithm 1. This procedure alternates between optimizing the two matrices in each
optimization iteration.

After computing the coupling matrices, SCOOTR aligns the cells of the two datasets in a common space using the
cell-cell alignment probabilities given in (πs) either by barycentric projection X̂ = nsπ

sX′, or by co-embedding
them using t-SNE (described in Supplementary Algorithm 1). SCOOTR returns the feature-feature coupling matrix
for the user to further investigate the feature relationships. However, we provide an interface with ReMap Atlas
of Regulatory Regions API. The probabilities in the coupling matrix can allow users to rank correspondences and
prioritize downstream analyses.

A useful property of the co-optimal transport formulation is that one can provide a weak supervision when solving
for πs and πv by scaling the costs of matching samples/features that should not be matched together. We do this by
multiplying the cost matrix L with a supervision matrix D that user provides in inputs. This matrix can be provided
for either the sample or the feature alignments. If it’s provided for the feature-level alignments, for example, it is only
used in the optimization step for the feature-feature coupling matrix in the block coordinate descent (Supplementary
Algorithm 1). The entries of the supervision matrix are expected to range between 0 and 1. For example, an entry
for 0 for the row i and column j in the feature-level supervision matrix removes the cost associated with aligning the
feature i and feature j of the two input datasets, respectively. This is particularly useful when the underlying feature
relationships are expected to be less sparse and more complex than 1-1 matches. We will show that this unique feature
of SCOOTR is valuable when dealing with single-cell measurements.

3 Experimental Setup
We first show that SCOOTR can yield cell-cell alignment results on par with the existing single-cell multi-omic align-
ment methods. Then, we demonstrate its ability to also simultaneously align the features from different genomic
modalities, using simulated and real-world single-cell sequencing datasets.

3.1 Datasets
When choosing datasets, we follow our main baselines – the existing optimal transport-based single-cell alignment
methods [9–11] and bindSC [12] – and curate a similar set of simulated and real-world datasets for a comparable
benchmarking. We use the datasets with ground-truth information on 1-1 cell pairings for evaluating cell-level align-
ment performance. Similarly, we use the datasets with some prior information on feature correspondences for evalu-
ating feature-level alignment performance.

Datasets for cell-cell alignment benchmarking We use four simulated datasets and three real-world single-cell
multi-omic datasets to benchmark our cell alignment performance. Three of the simulated datasets have been generated
by Liu et al. [6] by non-linearly projecting 600 samples from a common 2-dimensional space onto different 1000-
and 2000- dimensional spaces with 300 samples in each. In the first simulation, the data points in each domain form a
bifurcating tree structure that is commonly seen in cell populations undergoing differentiation. The second simulation
forms a three dimensional Swiss roll. Lastly, the third simulation forms a circular frustum that resembles what is
commonly observed when investigating cell cycle. These datasets have been previously used for benchmarking by
other cell-cell alignment methods [6–10]. We refer to these datasets as “Sim 1”, “Sim 2”, and “Sim 3”, respectively.
We include a fourth simulated dataset that has been generated by [9] using a single-cell RNA-seq data simulation
package in R, called Splatter [18]. We refer to this dataset as “Synthetic RNA”. This dataset includes a simulated
gene expression domain with 50 genes and 5000 cells divided across three cell-types, and another domain created by
non-linearly projecting these cells onto a 500-dimensional space. As a result of their generation schemes, all simulated
datasets have ground-truth 1-1 cell correspondence information.
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Additionally, we include three real-world sequencing datasets. To have ground-truth information on cell corre-
spondences for evaluation, we choose three co-assay datasets which have paired measurements on the same individual
cells: an scGEM dataset [19], a SNARE-seq dataset [1], and a CITE-seq dataset [2]. These first two datasets have been
used by existing single-cell alignment methods, including the ones employing optimal transport [6–11], while the last
one was included in the evaluations of bindSC [12]. The scGEM dataset contains measurements on gene expression
and DNA methylation states of 177 individual cells from human somatic cell population undergoing conversion to
induced pluripotent stem cells (iPSCs) [19]. We accessed the pre-processed count matrices for this dataset through
the MATCHER repository 1. The SNARE-seq dataset contains gene expression and chromatin accessibility profiles of
1047 individual cells from a mixed population of four cell lines: H1(human embryonic stem cells), BJ (a fibroblast cell
line), K562 (a lymphoblast cell line), and GM12878 (lymphoblastoid cells derived from blood) [1]. We access their
count matrices on Gene Expression Omnibus, with the accession code GSE126074. Finally, the CITE-seq dataset has
gene expression profiles and epitope abundance measurements on 25 antibodies from 30,672 cells from human bone
marrow tissue [2]. The count matrices for this dataset were downloaded from the Seurat website 2.

Datasets for feature-feature alignment benchmarking We assess feature-level alignment performance on real-
world single-cell multi-omic datasets with some ground-truth correspondence information between the features. Among
the three real-world datasets described above, we have ground-truth information on the CITE-seq dataset, where we
know which genes from the gene expression domain encode the 25 antibodies from the antibody abundance domain.
We use these 1-1 correspondences to evaluate our feature alignments. Since we do not have such reliable ground-truth
feature correspondence information for SNARE-seq and scGEM datasets, we use a novel computational tool called
CellOracle [20]. This tool has been developed to infer regulatory networks jointly from single-cell chromatin accessi-
bility and gene expression data. For the SNARE-seq dataset, we use CellOracle to construct gene regulatory networks.
We take the chromosomal region of transcription factors and genomic elements that a gene is connected to in this
network as its probable feature correspondences, and compare our alignments against these (more detail in Section
3.2). We are unaware of the existence of such tools for single-cell methylation data. As a result, we do not include
scGEM dataset in our feature-level alignment performance benchmarking. Instead, we add a new real-world dataset
with a need for single-cell alignment. This dataset contains unpaired single-cell gene expression profiles from mouse
prefrontal cortex[21], and the bearded lizard pallium [22]. It has been curated with data from separately conducted
experiments. Here, we have information on paralogous genes across the two species, as well as relevant cell types.

In addition to these three real-world sequencing datasets, we simulate a new set of multi-omic data with varying
levels of sparsity in underlying feature-level correspondences. Our goal for including these simulations is to investigate
the effect of correspondence sparsity on alignment performance. We follow the simulation set-up by Zhang et al
[23], which modifies a single-cell RNA-seq simulation method, SymSim [24], to also simulate scATAC-seq count
data based on a gene-chromosomal region relationship matrix 3. We simulate 500 cells with 50 genes in the gene
expression modality, and 1000 chromosomal regions in the chromatin accessibility modality. We randomly generate
five gene-to-chromosomal region correspondence matrices with uniform 1-2 (sparse), 1-4, 1-6, 1-8, and 1-10 (dense)
matches. We generate five multi-omic datasets using these ground-truth correspondence matrices.

3.2 Evaluation Criteria
Cell-cell alignment evaluation When evaluating cell-cell alignments, we use a metric previously used by other
single-cell multi-omic integration tools [6–12] called “fraction of samples closer than the true match” (FOSCTTM).
For this metric, we compute the Euclidean distances between a fixed sample point and all the data points in the other
domain. Then, we use these distances to compute the fraction of samples that are closer to the fixed sample than its
true match, and then average these values for all the samples in both domains. This metric measures alignment error,
so the lower values correspond to higher quality alignments.

Feature-feature alignment evaluation To assess feature-feature alignment performance, we investigate the accu-
racy of feature correspondences recovered. We mainly use three real-world datasets for this task - CITE-seq, SNARE-
seq, and the cross-species scRNA-seq datasets. Due to the versatility of the genomic measurements in these datasets,
we follow a different procedure for each to define “ground-truth” feature correspondences to compute the accuracy.

1https://github.com/jw156605/MATCHER
2https://satijalab.org/seurat/v4.0/weighted_nearest_neighbor_analysis.html
3https://github.com/PeterZZQ/Symsim2
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For the CITE-seq dataset, we expect the feature correspondences to recover the relationship between the 25 an-
tibodies and the genes that encode them. To investigate this, we simultaneously align the cells and features of the
two modalities using the 25 antibodies and 25 genes in an unsupervised manner. We compute the percentage of 25
antibodies whose strongest correspondence is their encoding gene.

For SNARE-seq dataset, we start by pre-processing the dataset to prune features. The original dataset contains
18,666 genes and 1,136,771 chromosomal regions in their respective modalities. We select the top 1000 most variable
genes using the FindVariableFeatures function of Seurat with its default parameters. We also select the top
2500 chromosomal regions in the chromatin accessibility domain using the FindTopFeatures function of Signac
[25]. With these, we construct a gene regulatory network with CellOracle [20] using both domains. Then, for each
gene, we identify the chromosomal regions of its regulators from the regulatory network, using the human reference
genome GRCh38/hg38. We expect the genes in the gene expression modality to be matched with at least one of the
chromosomal regions overlapping with each regulator’s genomic coordinates, and compute the accuracy over all genes
accordingly.

For the cross-species RNA-seq dataset, we expect alignments between the cell-type annotations common to the
mouse and lizard datasets, namely: excitatory neurons, inhibitory neurons, microglia, OPC (Oligodendrocyte precur-
sor cells), oligodendrocytes, and endothelial cells. For this dataset, we generate cell-label matches by averaging the
rows and columns of the cell-cell alignment matrix yielded by SCOOTR based on these cell annotation labels. We
compute the percentage of these six cell-type groups that match as their strongest correspondence.

3.3 Baselines
For the cell-cell alignment evaluation, we consider the following unsupervised single-cell multi-omic integration meth-
ods, MMD-MA [6], UnionCom [7], SCOT [9, 11], Pamona [10], and bindSC [12]. Among these, SCOT and Pamona
are optimal transport-based methods; they both use GW optimal transport with different relaxations. We note that un-
like other baselines, bindSC could be considered a weakly supervised method since it requires a gene activity matrix
as an input. For feature-feature alignment benchmarking, bindSC remains our only baseline since the other integration
methods only perform alignment on the cell level. Although bindSC does not return the final feature-level correspon-
dence matrix to the user, it does return the relationship between each feature and the computer intermediary factors. By
multiplying these matrices, we are able to obtain a feature-level correspondence matrix. For all methods, we set a grid
of hyperparameter combinations and choose the best performing combination for each dataset. For SCOOTR, we con-
sider the EMD (for ϵ1,2 = 0) and Sinkhorn algorithms for each OT subproblem, and entropic regularization strength
for Sinkhorn taking values in {10−5, . . . , 104}. The hyperparameter combinations considered for the baselines are
described in Supplementary Section 5.

4 Results

4.1 SCOOTR gives comparable performance to existing cell-cell alignment methods

S1 S2 S3 Synthetic RNA sc-GEM SNAREseq CITE-seq
SCOT 0.0866 0.0216 0.0084 0.000071 0.198 0.15 0.098
UnionCom 0.083 0.0157 0.152 0.038 0.2096 0.265 0.169
MMD-MA 0.1244 0.0327 0.01246 0.112 0.2014 0.15 0.113
Pamona 0.078 0.011 0.0082 0.00041 0.204 0.2217 0.116
bindSC N/A* N/A* N/A* N/A* 0.2151 0.273 0.130

SCOOTR 0.07 0.004 0.0088 0 0.206 0.153 0.132

Table 1: Benchmarking SCOOTR against existing single-cell multi-omic alignment methods on sample-level
(cell) alignment. The numbers indicate the average fraction of samples a sample is aligned closer to than its true
match (FOSCTTM). This metric measures alignment error and lower values indicate higher quality alignments. Here,
we highlight the best results in bold and underline the second best ones.

We integrate four simulated and three real-world co-assayed datasets to compare SCOOTR’s cell-cell alignment
performance with the existing unsupervised alignment methods. Table 1 shows the cell alignment errors yielded by
SCOOTR and each of our baselines, as measured by the average FOSCTTM metric. Among the baselines considered
on this table, we draw special attention to SCOT and Pamona, which are GW optimal transport-based methods. These
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methods align cells by comparing pairwise distances between cells, discarding their features. By benchmarking against
them, we show that aligning cells based on raw features can lead to competitive results. We observe that while
SCOT tends to outperform SCOOTR on co-assay datasets, SCOOTR yields alignments of similar quality for scGEM and
SNARE-seq datasets and outperforms SCOT on simulation datasets. SCOOTR also outperforms Pamona on aligning
cells from the SNARE-seq dataset while yielding a very similar alignments for the scGEM and CITE-seq dataset. Cell
alignments yielded by SCOOTR for the CITE-seq and SNARE-seq datasets are visualized in Figure 2B and Figure 3B
(original domains before alignment visualized in A) and the alignment for scGEM dataset is visualized in Figure S1.
We obtain these alignments by projecting one domain (gene expression for CITE-seq, chromatin accessibility for
SNARE-seq, and DNA methylation for scGEM) onto the other domain using barycentric projection. Overall, they
show that the cell-type clusters are preserved upon alignment by SCOOTR.

Among our baselines, SCOT has a heuristic for self-tuning hyperparameters by tracking the Gromov-Wasserstein
distance between aligned datasets. We demonstrate in Figure S2 that SCOOTR can also perform hyperparameter tuning
in a similar way. We observe that lowe values of co-optimal transport distances tend to correspond to lower average
FOSCTTM values (alignment error). Therefore, despite replacing the Gromov-Wasserstein formulation, we are able
to retain the approximate self-tuning procedure of the other optimal transport-based methods.

Figure 2: Cell-cell and feature-feature alignment results on CITE-seq dataset. A visualizes the original domains
– antibody abundance, and gene expression, respectively –, following dimensionality reduction with 2D principal
component analysis (PCA). B visualizes the aligned domains, after the gene expression domain has been projected
onto the antibody abundance domain via barycentric projection. C Feature alignment probabilities recovered by
SCOOTR. The green boxes along the diagonal indicate the “ground-truth” correspondences we expect to see between
the antibodies and their encoding genes. D. The feature alignment probabilities recovered by bindSC.

4.2 SCOOTR can simultaneously align features across single-cell multi-omic datasets
Next, we investigate the feature alignments yielded by SCOOTR. We demonstrate that while SCOOTR can recover both
cell-level and feature-level correspondences in an unsupervised manner for datasets with highly sparse correspon-
dences (CITE-seq), for others with dense feature relationships (e.g. SNARE-seq), it greatly benefits from receiving
some supervision. In what follows, we first present our results on unsupervised alignment of the CITE-seq dataset,
and then demonstrate that providing supervision on cell-level alignments can improve feature-level alignment perfor-
mance and vice versa. For the feature alignment task, bindSC remains our only baseline because the other single-cell
alignment methods only perform cell-cell alignment.
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4.2.1 Unsupervised alignment

Among the real-world datasets we use, CITE-seq has underlying 1-1 correspondences between the antibodies and
their encoding genes. We expect SCOOTR to recover them when we align 25 antibodies with the corresponding
25 genes (while simultaneously aligning cells) in its unsupervised setting. We present the feature correspondence
matrix SCOOTR yields in 2C. The rows and columns of this matrix are ordered such that the expected ground-truth
correspondences are along the diagonal (marked by green squares). Note that the row and column probabilities add
up to the weights from marginal distributions initialized in the beginning of the optimization. We observe that all
antibodies are matched to their corresponding genes with a non-zero probability of correspondence and 18 of them (∼
70%) have the strongest correspondence probability with their encoding gene. Compared to the feature correspondence
matrix we receive from bindSC (Figure 2D), we yield a sparser correspondence matrix while still correctly aligning a
similar number of antibodies with their encoding genes. Figure 2B shows the cell-level alignments we receive from
this run, which demonstrates that SCOOTR simultaneously recovers quality cell and feature alignments for CITE-seq
dataset.

Figure 3: Cell and feature alignment results on SNARE-seq dataset. A visualizes the original domains – chromatin
accessibility, and gene expression, respectively, following dimensionality reduction with 2D principal component
analysis (PCA). B visualizes the aligned domains, after the chromatin accessibility domain has been projected onto the
gene expression domain domain via barycentric projection. C Sankey plot visualizing the top chromatin accessibility
feature correspondences recovered for the cell-type marker genes. These correspondences include the chromosomal
regions of the marker genes and regions with predicted cell-type specific transcriptional factor (TF) binding.

Table 2: Feature alignment performance on SNARE-seq with increasing supervision on cell-type alignments.

Supervision level (%) on cell-type alignments 0% 20% 40% 60% 80% 100% bindSC
Accuracy (%) of feature correspondences 31.22 42.91 54.82 63.48 71.84 79.67 40.26

4.2.2 Cell-level supervision for improved feature alignment

Despite the success of unsupervised alignment on CITE-seq dataset, we observe that when the underlying corre-
spondences are dense with many-to-many matches, recovering them in an unsupervised fashion proves to be more
challenging. We demonstrate this on simulated multi-omic datasets (scRNA-seq and scATAC-seq), which have been
generated with varying levels of feature correspondence sparsity (1-2, 1-4,.. 1-10) between 50 simulated genes (in
the scRNA-seq domain) and 100 chromosomal regions (in the scATAC-seq domain). Figure 4B demonstrates that
SCOOTR’s feature correspondence recovery performance decreases with lower levels of correspondence sparsity. Sim-
ilarly, the dense feature correspondences in SNARE-seq dataset make it more difficult to recover them without any
guidance. However, in real-world applications, we can reasonably expect some level of prior information to be avail-
able on the samples, namely, cell-type annotations, for at least a subset of the cells. In most cases, upon obtaining
sequencing measurements, biologists use marker genes to find different cell-type groups. Although it is expected to
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observe some mismatch in cell type annotations between different genomic views, we demonstrate in Table 2 that the
performance of SCOOTR improves even with weak supervision. Our unique joint alignment formulation provides the
ability to perform this weak supervision at both sample and feature level. In this table, we use varying proportions
(0, 20, ...100%) of the cell-type annotations to provide supervision on the cell-level to assist with the feature-level
alignments. As described in Section 2, we create a supervision matrix, which removes the cost of aligning two cells if
they belong to the same cell type. In the 100% supervised setting, we use all of the cell type annotations to create this
supervision matrix; whereas in the 20% supervised setting, we only use 20% of the cell type annotations. To obtain a
ground-truth on correspondences, we use CellOracle [20] to infer a regulatory network using both the gene expression
and the chromatin accessibility data. We expect to recover the correspondences between genes and at least one seg-
ment of the chromosomal regions corresponding to each of their regulators (described in Section 3.2). We visualize
examples of chromatin accessibility to gene expression correspondences yielded by SCOOTR for the cell-type marker
genes in Figure 3(C).

Furthermore, we look into biological annotations of the matching chromatin accessibility regions on UCSC Genome
Browser [26] with annotations from JASPAR Transcription Factor Binding Site Database [27] and ReMap Atlas of
Regulatory Regions [28]. We observe that the marker genes are matched with their chromosomal region or the regions
associated with relevant transcription factor binding sites. For example, the strongest correspondence of COL1A2, the
marker gene of BJ cell-line, is in the chromosomal region of JUN, which is a transcription factor identified to be differ-
entially expressed in BJ cells, and to a lesser level, K562 cells [1]. Its second strongest match is a region within its own
chromosomal region. Similarly, the marker gene for the GM12878 cell line, HLA-DRB1, is most strongly matched
with a region upstream of its own genomic region, along with predicted GM12878-specific transcriptional binding
sites. We detail these correspondences in Supplementary Materials Section 5. Overall, we see that SCOOTR can re-
cover biologically meaningful feature correspondences with supervision on the cell-type alignments. This can allow
biologists to generate hypotheses on regulatory relationships between genomic features from different measurements,
and prioritize further investigations based on the ranking of correspondence probabilities.

Figure 4: Cell and feature alignment results on SNARE-seq dataset. A visualizes the cell-type alignment probabil-
ities across the mouse prefrontal cortex and bearded lizard pallium. The larger and darker the points are, the higher the
alignment probability. Green boxes indicate the common cell-type annotations. B plots the feature-feature alignment
accuracy across varying levels of sparsity in ground-truth correspondences in SCOOTR’s unsupervised setting (black)
and supervised setting with full supervision provided on the sample-sample alignments (red).

Table 3: Cell-type alignment performance on cross-species RNA-seq dataset with increasing supervision on
paralogous gene alignments.

Supervision level (%) on cell-type alignments 0% 20% 40% 60% 80% 100% bindSC
Accuracy (%) of feature correspondences 50.00 50.00 66.67 66.67 83.34 100.00 66.67

4.2.3 Feature-level supervision for improved cell alignment

Here, we demonstrate that supervision on the feature-level alignments improves cell-level alignment quality. For
this, we align the gene expression data obtained from the brain tissue of two different species, namely, mouse pre-
frontal cortex and bearded dragon lizard pallium. Since these are separately profiled datasets, we do not expect to
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find 1-1 correspondences between the cells; however, we have prior information on relatedness of cell-type labels
(Section 3.2). Here, we provide feature-level supervision to guide SCOOTR to recover these cell-type relationships.
Coming from different species, these datasets do not have the exact same set of features, however, they share 10,816
paralogous genes. We create a supervision matrix, similar to the case in SNARE-seq, to guide the alignments between
paralogous genes across the two datasets and investigate the alignments yielded for the cells. We average the cell-
cell alignment probabilities across cell types to get the cell-type alignments. Figure 4A demonstrates the cell-type
alignments we receive from fully supervised case, and the Table 3 presents the cell-type alignment accuracy with
varying levels (0%, 20%, ..., 100%) of feature alignment supervision. Here, accuracy is calculated as a percentage
of correspondences recovered among all the expected correspondences (marked by the green boxes in Figure 4A).
Similarly to cell alignment, we see that supervision on feature alignments increases cell-level alignment accuracy. So,
when validation data is present on feature relationships, they can be used to obtain higher quality cell-cell alignments
using SCOOTR. Additionally, this application demonstrates that SCOOTR can also be used to relate cell clusters from
different datasets.

5 Discussion
The majority of the existing single-cell multi-omic alignment methods solely align cells. Our proposed method
SCOOTR jointly aligns both the cells and the features of single-cell multi-omic datasets, allowing researchers to study
potential regulatory relationships between different views of the genome. We intend SCOOTR to be a hypothesis-
generation tool for biological scientists. The correspondence probabilities that SCOOTR yields can be used to rank
the predicted cross-measurement relationships, allowing scientists to prioritize downstream investigations accordingly
when studying regulatory interactions.

One limitation of SCOOTR is that it looks for linear combinations of correspondences between the cells and the
features to align datasets. We observe in our cell alignment results that this leads to a slight decrease in performance
compared to the existing GW optimal transport-based approaches, which compare pairwise-distance kernels for align-
ment. However, this trade-off in SCOOTR comes with the gain of jointly aligning features and also supporting the
alignment of one level (e.g., cells) with supervision on the other (e.g., features). This formulation is beneficial for
various multi-omics studies.

Single-cell alignment methods require validation data on cell-cell correspondence to tune the hyperparameters.
However, such information is unlikely to be present in real-world cases when datasets are separately sequenced. Al-
though both SCOT and SCOOTR perform self-tuning by tracing optimal transport cost, the lowest cost does not always
correspond to the best alignment, and the quality of self-tuning can vary between datasets. If prior information other
than cell-cell alignment validations is present – such as the paralogous genes in the case of cross-species alignment
experiments or the cell-type annotations in SNARE-seq experiments –, using these could lead to better alignments in
some datasets compared to self-tuning. Our experiments demonstrate that even partial supervision leads to improve-
ment in alignment performance.

For the feature-level alignments, neural-network-based formulations of co-optimal transport could allow one to ac-
count for non-linear relationships. However, maintaining feature-level interpretability in the coupling matrix becomes
more challenging in this case. Investigating such possible extensions will be part of our future work. Additionally,
it might be possible to set the marginal distributions over cells and features based on common biological knowledge.
For example, when aligning gene expression data and chromatin accessibility data, one might scale the weights of
chromosomal regions corresponding to common transcription binding sites based on existing databases, guiding the
algorithm to align these with more genes. Similarly, one could scale the weights of the cells based on prior clustering
without the need for cell-type annotations. Our future work will compare such approaches to the unsupervised and
supervised cases presented here. In the meantime, we allow users to customize marginal distributions when running
SCOOTR. Overall we demonstrate that SCOOTR is a competitive single-cell multi-omic data integration method that
can help generate hypotheses for genomic feature relationships when jointly studying multiple single-cell datasets.
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Supplementary Materials

Background on Optimal Transport
Optimal transport is a mathematical framework for relating probability distributions or discrete measures to one an-
other. Here, we focus on discrete measures because we work with sequencing datasets that contain empirical measure-
ments on a finite set of samples. Consider two datasets in Rd with n and n′ data points in each, represented by matrices
X = [x1, . . . ,xn]

⊤ ∈ Rn×d and X′ = [x′
1, . . . ,x

′
n′ ]⊤ ∈ Rn′×d. We let µ =

∑n
i=1 wiδxi

and µ′ =
∑n′

j=1 w
′
jδx′

j
be

two empirical distributions related to their samples. Here δxi
is the Dirac measure and we refer in the following to

w = [w1, . . . , wn]
⊤ ∈ ∆n and w′ = [w′

1, . . . , w
′
n′ ]⊤ ∈ ∆n′ as sample weights vectors that both lie in the simplex.

Given a cost function L(xi,x
′
j) that describes how “expensive” it is to match one data point (xi) with another

(x′
j) across the two datasets, Kantorovich formulation of optimal transport sets out to find an optimal coupling π that

attains:

min
π∈Π(w,w′)

∑
i,j

L(xi,x
′
j)πi,j (4)

Here, the coupling π holds the alignment probabilities between each pair of data points across the two datasets to
optimally transform one into the other. Most of the practical applications of optimal transport includes an entropic
regularization over the coupling matrix to split the alignment probabilities across multiple samples and also to make
the optimization computationally more efficient. For more detailed background on optimal transport, we refer readers
to Villani, 2008 [29] (for theory), and Peyré and Cuturi (2019) [13] (for computational aspects).

Methods: Algorithms

Algorithm 1: Pseudocode for SCOOTR
Input: X,X′, ϵ1, ϵ2,Ms(optional),Mv(optional), choice of barycentricProjection or embedding
Initialize:
w ←, Uniform(1/ns),w′ ←, Uniform(1/n′

s),
v ←, Uniform(1/nf ),v′ ← Uniform(1/n′

v),
πs
0 ← ww′T ,πv

0 ← vv′T , t← 0
while t < maxIter and err > 0, do:

Lv
t ←

∑
i,j ||Xi,·, X

′
j,·||2(πs

t−1)i,j // Calculating the new cost matrix for features
Lv

t ←Ms ⊙Lv
t // Scaling if providing supervision on feature alignments

πv
t ← Sinkhorn(v,v′,Lv

t , ε2) // Optimizing the coupling matrix for features
Ls

t ←
∑

k,l ||X·,k, X
′
·,l||2(πv

t )k,l // Calculating the new cost matrix for samples
Ls

t ←Mv ⊙Ls
t // Scaling if providing supervision on sample alignments

πs
t ← Sinkhorn(w,w′,Ls

t , ε1) // Optimizing the coupling matrix for samples
err← ||πs

t − πs
t−1||2

t← t+ 1
Align cells in the same space:
if Barycentric projection then

X̂ = nsπ
sX′

X̂′ = X′

else
// Find shared embedding
X̂, X̂← min

X̂,X̂′ KL(P ||Q′
) + β||X −X

′
(πs)T ||2F

Return: X̂, X̂,πv
t
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Algorithm 2: Pseudocode for Sinkhorn iterations
Input: w,w′,C, ε
Initialize: g0 ← 0, t← 0
while k < maxIter and err > 0, do:

ft = − log
∑

j exp
(
(gt−1)j + logw′

j −
C·,j
ε

)
// Updating the first dual vector

gt = − log
∑

i exp
(
(ft)i + logwi − Ci,·

ε

)
// Updating the second dual vector

err← ||gt − gt−1||
t← t+ 1

Return: π where πi,j = wiw
′
j exp

(
(ft)i + (gt)j − Ci,j

ε

)
.

Here, ⊙ denotes the element-wise multiplication between two matrices, ns and n
′

s refer to the number of samples
in the two input datasets, respectively, and nf and n

′

f refer to the number of features.
The embedding formulation in the SCOOTR algorithm (which is an alternative to barycentric projection) is based

on t-SNE and its details can be found in [30]. This has also been previously used in the other single-cell alignment
methods, UnionCom [8], Pamona [10], and SCOTv2 [11]. Briefly, Pj|i is the conditional probability that a data point
xi would pick x′

j as its neighbor when chosen according a Gaussian distribution centered at xi. Similarly, Pj|i is the
same conditional probability, but in the embedding space, and it is computed through a Student-t distribution:

Pj|i =
exp(−||xi − x′

j ||2/2σ2
i )∑

k ̸=i exp(−||xi − x′
k||2/2σ2

i )
. (5)

Qij =
(1 + ||x̂i

−x̂′
j ||)−1∑

k ̸=l 1 + (||x̂k − x̂′
l||)−1

. (6)

The bandwidth σi is chosen according to the density of the data points through a binary search for the value of σi

that achieves the fixed perplexity value (user can determine), which is computed by averaging Pi|j and Pj|i to give
more weight to outlier points:

Pij =
Pi|j + Pj|i

2(ns + n′
s)

(7)

Hyperparameter Combinations for Baselines
When methods share similar hyperparameters in their formulation (e.g. hyperparameters are dimensionality of the
latent space, p, for the algorithms that commonly embed datasets; entropic regularization constant, ϵ, for methods that
employ optimal transport; number of neighbors, k, for methods that model single-cell datasets with nearest neighbor
graphs). Otherwise, we refer to the publication and the code repository for each method to choose a hyperparameter
range.

For SCOT, we tune four hyperparameters: k ∈ {20, 30, . . . , 150}, the number of neighbors in the cell neighbor-
hood graphs, ϵ ∈ {5e − 4, 3e − 4, 1e − 4, 7e − 3, 5e − 3, . . . , 1e − 2}, the entropic regularization coefficient for the
optimal transport formulation, ρ ∈ {1e−3, 5e−3, 1e−2, 5e−2, 0.1, 1, 10, 100}, p ∈ {3, 4, 5, 10, 30, 32}, the output
dimension for embedding (and compared it with barycentric projection).

For Pamona, we tune four hyperparameters: k ∈ {20, 30, . . . , 150}, the number of neighbors in the cell neighbor-
hood graphs, ϵ ∈ {5e − 4, 3e − 4, 1e − 4, 7e − 3, 5e − 3, . . . , 1e − 2}, the entropic regularization coefficient for the
optimal transport formulation, λ ∈ {0.1, 0.5, 1, 5, 10}, the coefficient for the trade-off between aligning corresponding
cells and preserving local geometries, and lastly, p ∈ {3, 4, 5, 10, 30, 32}, the output dimension for embedding. We
choose the ranges for ϵ and k to be consistent with the corresponding hyperparameters in SCOT and the ranges for the
embedding dimensions to be consistent with the recommended values in MMD-MA and UnionCom embeddings.

For UnionCom, we tune the trade-off parameter β ∈ {0.1, 1, 5, 10, 15, 20} and the regularization coefficient
ρ ∈ {0, 0.1, 1, 5, 10, 15, 20} based on the ranges reported by Cao et al. in the publication [8]. We additionally
tune the maximum neighborhood size permitted in the neighborhood graphs, kmax ∈ {40, 100, 150}, as well as the
embedding dimensionality p ∈ {3, 4, 5, 10, 30, 32}. The sweep range for hyperparameter kmax is smaller than the
other hyperparameters because UnionCom automatically starts from k = 2 and goes up to kmax to find the lowest k
that returns a connected graph to use in the algorithm. Therefore, more refined search is not needed.
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For MMD-MA, we choose the weights λ1 and λ2 ∈ {1e − 2, 5e − 3, 1e − 3, 5e − 4, . . . , 1e − 9}. This range
includes the hyperparameter range suggested by Singh et al (λ1, λ2 ∈ {1e − 3, 1e − 4, 1e − 5, 1e − 6, 1e − 7}) but
extends it further to increase the granularity for the sake of more fair comparison against methods that require a higher
number of hyperparameters to test, such as Pamona and UnionCom. Similarly to other methods, we also select the
embedding dimensionality from p ∈ {3, 4, 5, 10, 30, 32}.

For bindSC, we choose the couple coefficient that assigns weight to the initial gene activity matrix α ∈ {0, 0.1, 0.2, . . . 0.9}
and the couple coefficient that assigns weight factor to multi-objective function λ ∈ {0.1, 0.2, . . . , 0.9}. Additionally,
we choose the number of canonical vectors for the embedding space K ∈ {3, 4, 5, 10, 30, 32}.

Visualizing cell-level alignment of the scGEM dataset

Figure S1: Visualization of scGEM cell-cell alignments A. shows the original measurement domains before align-
ment, colored by cell type. B. plots the aligned datasets upon barycentric projection of the DNA methylation domain
onto the gene expression domain with respect to the cell-cell alignment probabilities SCOOTR recovers. On the left-
hand side, we color the aligned data points by domain identity, and on the right-hand side, we color them by cell-type
identity.

Approximately self-tuning hyperparameters

Figure S2: Co-Optimal transport optimization loss (log scale) vs alignment error as measured by average FOS-
CTTM Hyperparameter combinations with lower loss values in optimization tend to yield lower alignment error
although it is not a perfect relationship.

SNARE-seq feature alignments
Figure 3(C) visualizes the top chromatin accessibility feature correspondences for the cell-type marker genes from the
gene expression domain. Majority of these correspondences are biologically validated or computationally predicted
regulatory relationships, which we discuss here. Firstly, of the ten alignments visualized in this plot, three of them
are between marker genes and their chromatin regions. These are (1) PRAME and Chr22: 22.520-22.521 Mb region,
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which is a region upstream of the PRAME gene body that is rich with predicted transcriptional factor (TF) binding
sites according to the “RepMap Atlas of Regulatory Regions” [? ] annotations on UCSC Genome Browser (Human
hg38 annotations) [26]. Among the predicted TF bindings, many of them are K562-specific predictions, and some of
these are known regulators of PRAME, such as but not limited to E2F6, HDAC2, CTCF (based on GRNdb database
[31] of TF-gene relationships). Additionally, COL1A2 and HLA-DRB1 also have recovered correspondences with
their own chromosomal region, “Chr7:94.396-94.421 Mb” and “Chr6:32,578-32,579 Mb”, respectively. We observe
that COL1A2 and PRAME are also additionally aligned with “Chr1: 58,780 - 58,784 Mb” regions, which correspond
to the gene body of JUN transcriptional factor. Indeed, JUN has been identified as one of the transcriptional factors
differentially expressed in the K562 and BJ cells, but more strongly in the latter, according to the original publication
that released this dataset [1]. GRNdb also identified JUN to be one of the regulators of the COL1A2 gene. In addition
to the chromosomal region of JUN, PRAME has another region abundant in predicted TF binding sites among its top
correspondences: “Chr6: 7.974-7.978 Mb”. This region is annotated with an H3K27Ac mark on the UCSC Genome
Browser, and has multiple predicted binding sites of TFs GRNdb identifies as regulators of PRAME, such as IRF1,
HDAC2, HOXC6 and POU2AF1. The HLA-DRB1 gene is also aligned with a chromosomal region rich in GM12878-
specific predictions of TF bindings, such as IRF4, IRF8, ETV6, and CREM, which GRNdb lists as potential regulators
of HLA-DRB1. Lastly, even though we couldn’t find a biological relationship reported between the CLYBL gene and
EPCAM gene (marker gene for the H1 cell-line), the chromosomal region in CLYBL body where SCOOTR finds a
correspondence with EPCAM indeed appears to be differentially accessible in H1 cells (and in to a lesser degree,
K562) in our dataset.
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