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Curvature-inducing peripheral proteins have been observed to spontaneously remodel bilayer mem-
branes, resulting in membrane invaginations and formation of membrane tubules. In case of proteins
such as cholera and Shiga toxins that bend the membrane with locally isotropic curvatures, the result-
ing membrane-mediated interactions are rather small. Thus, the process in which these proteins form
dense clusters on the membrane and collectively induce invaginations is extremely slow, progressing
over several minutes. This makes it virtually impossible to directly simulate the pathway leading to
membrane tubulation even with highly coarse-grained models. Here, we present a steered molecular
dynamics protocol through which the peripheral proteins are forced to gather on a membrane patch
and form a tubular invagination. Using thermodynamic integration, we obtain the free energy profile of
this process and discuss its different stages. We show how protein stiffness, which also determines
local membrane curvatures, affects the free energy landscape and the organization of proteins in the
invaginated region. Furthermore, we estimate the kinetics of the described pathway modeled as a
Markovian stochastic process, and compare the implied timescales with their experimental counter-
parts.

I. INTRODUCTION

Transport of material between living cells and their
environment involves their passage through the cell
membrane. While small molecules and ions can ei-
ther directly permeate the membrane or be trans-
ported through designated channels, larger molecules,
biomolecular assemblies, and particulate substances
usually rely on endo/exocytosis, for which the membrane
undergoes significant remodeling [1]. This can be medi-
ated by scaffolding proteins such as clathrin and cave-
olin [2–5], or be accomplished by the active cellular ma-
chinery capable of directly exerting force on the mem-
brane, e.g. actin and dynamin assemblies [6]. On the
other hand, toxins such as Shiga, cholera and ricin can
internalize in the absence of both mechanisms [7–10].
These toxins usually comprise of distinct pathogenic
and membrane-bending subunits. The latter, through
a collaborative effort by several protein copies gath-
ered in a dense cluster, can bend the membrane into
long tubules necessary for the internalization of the for-
mer (the glycolipid-lectin (GL-Lect) hypothesis) [11, 12].
Apart from its toxicological importance, this pathway can
potentially be manipulated to deliver drugs or antigens to
the living cells [12].

Spontaneous formation of tubular membrane invagi-
nations can in general occur due to different physical
mechanisms. For example, adsorption of molecules that
change the spontaneous curvature of the membrane
due to asymmetric tension can result in spontaneous
tubulation [13]. Protein-protein crowding is also a sig-
nificant driver of membrane tubulation [14]. Osmotic
pressure resulting in volume reduction, or a growth in
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membrane area can also lead to the formation of sta-
ble membrane tubules [15]. We direct the interested
reader for more examples to see [16] and references
within. To understand how membrane budding and tubu-
lation can progress under the influence of membrane-
bending peripheral proteins, the most reliable approach
is to estimate the free energy landscape of this process.
Several studies have previously addressed this problem.
Ewers et al. offered a theoretical model that included
the local curvature induced (and preferred) by each pro-
tein and its corresponding energy in an interplay with
the large energy barrier due to neck formation; to in-
vestigate the tubulation free energy profile and the pos-
sibility of spontaneous tubule nucleation [17]. Tourdot
et al. used a continuum membrane model with curva-
ture fields and monitored the change in excess chemi-
cal potential of membrane-bending proteins to mark the
tubulation threshold [18]. Mathijs et al. considered a
Ginzburg-Landau-type free energy for the protein coat
and discussed the stability of the cylindrical tubes cov-
ered with proteins [19]. Mahapatra and Rangamani de-
veloped a theoretical model to estimate the free energy
of membrane tubulation due to bound BAR-domain pro-
teins with anisotropic curvature, and showed the snap-
through characteristics in the dome-to-cylinder transi-
tions [20]

Here we offer a fresh take on this problem, using a
mesoscopic dynamical membrane model [21]. We had
previously shown this model to reproduce realistic ki-
netics attributed to membrane fluctuations [22, 23] as
well as lateral diffusion of membrane-bound peripheral
proteins [24]. While the dynamical nature of this model
allows for the kinetics of the proposed pathway to be
studied, it also limits the timescales available to unbi-
ased simulations. To remedy the latter, while benefit-
ing from the former, we lay out a scheme for steered
simulations, in which peripheral proteins are artificially
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directed along the tubulation pathway. We show how
the free energy profile of all stages of this process can
be recovered, and kinetics of its different steps approx-
imated. We discover that the difference in protein stiff-
ness (which affects how it imprints its curvature on the
membrane) plays a deciding role in the spontaneous for-
mation of membrane invaginations.

II. THEORY

Free energy estimation from steered simulations: In
the most general sense, the free energy difference be-
tween two thermodynamic states A and B is defined as
the external work done on the system as it evolves be-
tween the two states in a slow transition. The transition
should be slow enough that thermodynamic equilibrium
can be reasonably assumed for the intermediate states.
Considering WA→B to represent this external work,

FB − FA = WA→B =

λB∫
λA

f (λ) dλ (1)

where λ denotes a specific (macroscopic) parametriza-
tion of the path taken from A to B, and f (λ) repre-
sents the external force exerted on the system at each
step along the transition path. We assume that the mi-
croscopic state of the system can be fully described
by the phase vector z = (q,p), where components of
q are positions of particles, plus any other degrees of
freedom necessary to the system’s configuration (e.g.
box size), and components of p are the conjugate mo-
menta. We can thus connect the macroscopic and mi-
croscopic descriptions of the transition by substituting
f (λ) = 〈f (z)〉λ, where 〈· · · 〉λ is an ensemble average
over the generally time-dependent distribution of micro-
scopic states constrained with an instantaneous value of
λ.

On the other hand, with the assumption of slow transi-
tion, we can consider any macrostate tagged by a value
of λ to follow the Boltzmann distribution with the partition
function Q ∝

∫
exp (−βuλ (z)) dz and β = 1/kT . To sim-

plify the formulation, we have used the notion of general-
ized potential uλ, which, for example, in the isothermal-
isobaric ensemble would be uλ = H+ pV , with H being
the system’s Hamiltonian, p the surrounding pressure,
and V the volume [25, 26]. In general, in the presence
of an external force J, the generalized potential has the
form uλ = H−J·x, where x are configurational variables
conjugates to the external force J [27]. Equilibrium free
energy of each state is simply βF = − lnQ, resulting in,

FB − FA =

λB∫
λA

∂F

∂λ
dλ =

−1

β

λB∫
λA

1

Q

∂Q

∂λ
dλ =

λB∫
λA

〈∂uλ
∂λ

〉
λ
dλ

(2)

hence reiterating the relationship f (z) = ∂uλ (z)/∂λ,
which can be easily understood as the microscopic bal-
ancing between (external) force and the gradient of the
generalized potential energy of the system.

Reaction coordinate and the external force: In this
study, we have performed steered simulations in which
peripheral proteins on the surface of the membrane
are drawn towards the center of the membrane patch
(figure 1A). This happens under the influence of two-
dimensional centrifugal forces of constant magnitude f̃ .
For the macroscopic parameter λ that describes the
transition of the system (i.e. the reaction coordinate),
we have chosen the mean in-plane radial distance of
protein particles from the center of simulation box,

λ = rc =
1

Np

Np∑
i=1

rc,i (3)

where rc,i is the two-dimensional radial distance of par-
ticle i from the center and Np is the total number of pro-
teins on the membrane surface. Simulations are done
in a box with dimensions Lx, Ly, and Lz and the mem-
brane initially lies in the xy plane, coupled to a barostat
controlling xy in-plane pressure.

For the generalized potential, we use the expression
uλ = H−

∑
j f̃ rc,j + 1

2 (px + py)ALz, with the A = Lx×
Ly being the projected area of the membrane patch that
may fluctuate due to the action of the barostat. Using
chain-rule of differentiation, we have,

∂uλ
∂λ

=
∂

∂λ

(
Npλf̃

)
A

+
∂uλ
∂A

∂A

∂λ
= Npf̃+

1

λ
(px + py)ALz

(4)
Thus, by keeping the radial external forces constant, and
monitoring the pressure tensor during the simulation, we
can use eq. 2 to obtain free energies.

Kinetics: Given that the free energy profile as a func-
tion of the reaction coordinate is available via the de-
scribed approach, one simple approach to estimating
the kinetics of spontaneous processes is to consider a
diffusion process on this one-dimensional energy land-
scape [28]. To estimate the timescales of slow pro-
cesses, we took two different approaches. The first ap-
proach, which is less accurate, but more interpretable,
is based on the approximate model of a double-well po-
tential. Partial transition times between a pair of con-
nected harmonic potential wells, with energy minima
EA = E (xA) and EC = E (xC), separated by a bar-
rier of maximum energy EB = E (xB), can be estimated
by the Kramers equation [29–31],

〈τA→C〉 =
2πkT

D
√
|E′′ (xA)E′′ (xB)|

exp

(
EB − EA

kT

)
(5)

where E′′ (x) is the second spatial derivatives of the en-
ergy function, and D is the appropriate diffusion coeffi-
cient for the random walk on the energy landscape. The
assumption in Kramers model is that there exist a sep-
aration of timescales between the fast local dynamics in
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each potential well, and the slow dynamics of barrier-
crossing. In our case, we case identify several double-
well-like regions in the free energy landscape and apply
eq. 5 sequentially between them. This would be an ap-
proximation, as for each double-well, we would ignore
all transitions other than the intermediate barrier cross-
ing. While there exist models in which transitions be-
tween multiple energy wells have been considered [32],
they also come with other sets of simplifying assump-
tions that do not hold in our case.

The second approach is to use the transfer oper-
ator that describes the evolution of probability densi-
ties resulting from the diffusion on the whole energy
landscape. Considering the time-dependent probabil-
ity density pt (x), and its weighted counterpart ut (x) =
pt (x) /µ (x) with µ (x) being the equilibrium (stationary)
probability density, the transfer operator Tτ with the lag-
time τ is defined as [33, 34],

ut+τ (y) = Tτ ◦ ut (y) =
1

µ (y)

∫
p (x, y; τ)µ (x) dx (6)

where p (x, y; τ) is the transition probability density be-
tween states x and y (i.e. p (x, y; τ) dxdy is the prob-
ability of transitioning between states in [x, x+ dx] to
states in [y, y + dy]). Eigenvalues of the transfer oper-
ator (ωi’s) are related to the timescales of transitions as
ti = −τ/ lnωi [34, 35]. Making the assumption of over-
damped diffusion in the reaction-coordinate space, we
can estimate the transition probabilities from Brownian
dynamics,

p (x, y; τ) ∝ exp


(

(y − x) +
Drcτ
kT E′ (x)

)2
4Drcτ

 (7)

where Drc is the diffusion coefficient associated with
random walks in the rc space and −E′ (x) is the force
at position x.

III. MODELING AND SIMULATION

All simulations have been performed using the mem-
brane model developed by the author [21–24, 36]. In
this model, the membrane comprises of a series of par-
ticle dimers, with each particle representing a patch of
lipids on one leaflet. Particle dimers interact with their
nearest neighbors via Morse-type bond-stretching and
harmonic angle-bending potentials, and in-plane bond-
flipping moves are implemented to mimic the fluidity of
the bilayer [21]. More recently, we showed how periph-
eral proteins can be incorporated in the model via force
field masking [24, 36]. Here we have used the same set
of parameters as presented in [24, 36].

We have modeled two types of proteins with the
stiffness values of Yp = 100 MPa and Yp = 200 MPa.
Both proteins are considered to have a geometry of the

membrane-binding subunit similar to Shiga toxin sub-
unit B (STxB). We have used this geometric represen-
tation to connect the stiffness values of a solid model of
the protein to their elastic contribution to the membrane-
protein energy landscape (see [24] and its supplemen-
tary information). Protein stiffness has a distinct ef-
fect on the distributions of local membrane curvature.
This is reflected in the data we obtained from unbiased
simulations with the two protein types (figure 1A). The
range of curvatures obtained here can be compared
with previously reported values, (i) membrane curva-
ture of 0.055± 0.012 nm−1 measured in curvature sort-
ing study of Cholera toxin subunit B (CTxB) [37], (ii)
curvature of 0.02 nm−1 extrapolated from the change
in area per molecule when STxB binds to gel-phase
monolayers [38], and (iii) molecular dynamics simulation
of STxB binding to membranes containing the receptor
Gb3, which predicts curvatures of 0.034± 0.004 nm−1 or
0.035± 0.003 nm−1, depending on acyl chain saturation
[39].

Flat membrane patches of 300 nm lateral size with a
number of bound peripheral proteins randomly scattered
are used as initial configuration of each simulation. For
each two protein type, 10 different realizations of the
steered simulations that start from different initial config-
uration are performed (figure 1B). External forces with
the magnitude of 0.5 pN, and the direction continually
passing through the central axis of the simulation box,
are applied on each protein (figure 1A). The centrifu-
gal forces cause a drift in the stochastic motion of the
proteins, guiding them toward clustering in the center of
the box within the time limit of each realization. Simula-
tions are allowed to run until no further development in
the membrane remodeling is observed. In some cases,
the simulations were terminated prematurely due to in-
stabilities caused in the coarse-grained model under the
influence of the external force. In the end, all the stable
parts of trajectories were cropped and used together.

During each simulation, particle positions have been
propagated using anisotropic over-damped Langevin
dynamics that includes hydrodynamic interactions be-
tween nearest neighbors [22, 23]. Water, with the dy-
namic viscosity of 0.7 mPa s, has been used as the sur-
rounding fluid environment. Simulation box is later-
ally coupled to a zero-pressure bath via a stochastic
Langevin-piston barostat [40, 41]. All simulations have
been performed at constant 310 K temperature.

IV. RESULTS AND DISCUSSION

Under the influence of the centrifugal external forces,
proteins cluster in the center of the membrane patch
and eventually induce a pit that further develops into
an invagination (figures 1B and 1C and supplementary
movies). Before moving forward with the free energy es-
timation procedure, we need to verify that the steered
simulations are indeed performed slow enough for the
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membrane system to be considered at quasi-equilibrium
throughout. As a first step, we can check simulation
times against the physical timescales of the system.
Fluctuations of the membrane, with the wave vector q,
have a hydrodynamic dissipation timescale of 4η/κq3,
where η is the viscosity of the solvent and κ ≈ 20 kT
is the bending rigidity of the membrane. This gives the
hydrodynamic dissipation timescale to be in the 0.01 ms
range. The proteins in the present model have a lateral
diffusion constant of Dp ≈ 0.3 µm2 s−1 [24]. The average
time for proteins to diffuse the mean distance ∆r be-
tween nearest neighbors can be estimated as ∆r2/4Dp.
With the surface density of proteins used in these sim-
ulations, we arrive at an upper limit of 0.1 ms for the
protein diffusion. As the next step, and to get a more
reliable estimate of the timescale of slow diffusive pro-
cesses, we consider unbiased simulations of proteins
diffusing on the membrane in the absence of external
forces. We used a similar collective variable rc, mea-
sured with respect to the center of mass of proteins scat-
tered on the membrane patch. By looking at the initial
decay in the time-correlation function of rc, we estimated
timescales between 0.05 ms and 0.12 ms, depending on
the protein stiffness and surface concentration of pro-
teins (figure 1B). Thus, in comparison, our steered simu-
lations progress on timescales at least one order of mag-
nitude slower than the slowest process involved in our
system. This justifies the quasi-equilibrium picture used
in the thermodynamic integration scheme. Finally, from
a different perspective, we can compare the magnitude
of the external forces on the proteins in our simulations
with more relatable biological examples. Using optical
traps, the unidirectional force that the molecular motor
kinesin produces to move cargo along microtubules has
been measured to be as large as 6.5 pN [42]. Another
example is the forces generated by the growth of a sin-
gle actin filament, which has been estimated to be 0.8 pN
[43]. Thus, the forces used in our steered simulation are
one order of magnitude smaller than the force exerted
by the motor protein, and comparable with the action of
the cytoskeleton (figure 1B).

Being assured of the soundness of the protocol de-
veloped for steered simulation, we have used eqs. 2
and 4 to estimate the free energy profile of the formation
of membrane invaginations. Figure 2A shows the es-
timated ensemble averages 〈∂uλ/∂λ〉λ for the two pro-
teins, obtained by binning trajectories from all realiza-
tions along rc. The free energy values are obtained form
eq. 2 via numerical integration of 〈∂uλ/∂λ〉λ using the
trapezoid rule. The uncertainty in 〈∂uλ/∂λ〉λ ensemble
averages have been estimated via bootstrapping, and
they have been propagated through the thermodynamic
integration. For that, we have resampled each discrete
value along the integration path from its corresponding
distribution. For a better estimate, numerical integra-
tions are repeated from both directions (λA to λB and
vice versa) and a mean of two values with the accompa-
nying error have been used (figure 2B).

Overall, free energy profiles reveal that the formation
of a membrane invagination is energetically favorable for
both proteins (figure 2B). To put the range of free en-
ergies into perspective, we can use the Helfrich Hamil-
tonian H =

∫
[2κ (H −H0)

2
+ κ̄K]dA, where H, H0

and K are the mean, spontaneous and Gaussian cur-
vatures and κ and κ̄ are the corresponding elastic con-
stants [44, 45], to estimate the free energies of idealized
membrane geometries relevant to the invagination pro-
cess. For a hemispherical cap, we obtain an energy of
2π (2κ+ κ̄), which for κ = 20 kT and κ̄ ≈ −0.8κ [46, 47],
gives a value of 150 kT . Also, a cylindrical membrane
tubule of length L and radius R would have an energy of
4πκL/R, which for the approximate maximum length of
150 nm and mean tube radius of 50 nm observed in our
simulations, results in a value as high as 750 kT . This
demonstrates the significant contribution of the elastic
energy of proteins. The dip in free energy occurs when
the proteins successfully coat the pits, and thus com-
pensate the rather large energies needed to deform the
membrane.

We observe significant free energy barriers at the on-
set of pit formation (3 → 4 → 5 transitions for the
100 MPa and 4→ 5→ 6 transitions for the 200 MPa pro-
teins in figure 2B). Heights of these barriers are compa-
rable to the 30− 90 kT range of excess chemical poten-
tials estimated by Tourdot et al. for the onset of mem-
brane tubule formation [18]. While the curved region of
the pit complies with the preferred curvature of periph-
eral proteins, and reduces the overall elastic energy, the
connecting neck region is energetically unfavorable and
poses the barrier [9]. The organization of proteins in
dense clusters on the membrane would also affect the
barriers. We observe the 200 MPa proteins to experi-
ence a significantly smaller barrier at the onset of pit
formation compared to their less stiff counterpart (fig-
ure 2B). Comparing snapshots along the reaction coor-
dinate (figure 2B), as well as observing the trajectories
of steered simulations (supplementary movies) reveals
that stiffer 200 MPa proteins have a higher tendency for
forming clusters as they are pushed together. We had
previously observed the same trend in unbiased simula-
tions [24]. We also measured larger pairwise attractions
between these proteins [48]. We can therefore argue
that the stiffer proteins can be organized in a pit with less
energy expenditure, and experience an overall smaller
barrier at the onset of pit formation.

While simulations with 100 MPa proteins progress to
smaller rc values, this progression corresponds to the
formation of a pit densely covered by proteins (figure
2B and supplementary movie 1). With the 200 MPa pro-
teins, on the other hand, a deep invagination at larger
rc values is fully formed (figure 2B and supplementary
movie 2. Notice the 1/rc scaling on the x-axis of figure
2B). Then 200 MPa proteins also disperse over the in-
vaginated area less densely. This may be attributed to
the repulsive curvature-mediated interactions between
these proteins at close range, due to large local curva-
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tures induced by each (figure 1A) [49]. Considering the
free energy differences between the invaginated and flat
states, it can be stated that while formation of tubular in-
vaginations is a slow process governed by large energy
barriers, it is essentially irreversible in the current setup,
unless other parameters such as the membrane tension
are changed.

To estimate the kinetics of the stages of the invagi-
nation process, as highlighted with the free energy land-
scape, we used the two approaches described in section
II. For both approaches, we needed an estimate of Drc .
This value is generally not constant and depends on
rc. Also, as was shown in figure 1B, the assumption of
Markovian dynamics in rc space (equivalent to the over-
damped dynamics described in eq. 7) only holds over
a large lag-time of ≈ 0.1 ms. Thus, we approached this
by binning the trajectories along rc and using asymp-
totic fits to the mean squared displacements in each bin
to obtain long-time estimates to the diffusion coefficient.
The result is an estimate of Drc accompanied by the un-
certainties resulting from limited sample sizes in each
bin (figure 3A).

The local double-well approximation of the free en-
ergy profile yields transition times that depict a path
severely hindered by the intermediate high barriers (fig-
ure 3B). While the maximum estimated barrier height for
the 200 MPa proteins in transition from flat membrane
and dispersed protein to the pit formation is ≈ 25 kT , for
100 MPa proteins, this value can reach ≈ 45 kT . Such
a high energy barrier in effect renders it impossible for
these proteins to spontaneously form an invagination.

The more accurate analysis is possible using the
transfer operator framework (eq. 6). We have used
the same lag-time of 0.1 ms to build discretized transition
matrices (figure 3C). Comparing the spectrum of eigen-
values of the transfer operator for the two cases shows
how for the 100 MPa proteins, the eigenvalues persist in
the vicinity of 1 for several transition modes, while for
200 MPa proteins they soon start to drop to lower val-
ues (figure 3C). Noteworthy is that the timescales im-
plied by these transition modes also include the reverse
process of going from invaginated states to the flat con-
figuration, and hence the number of eigenvalues close
to one. We can distinguish which transition is repre-
sented by an eigenvalue by looking at the correspond-
ing eigenvector [34]. For the two protein types stud-
ied here, we have selected the two eigenvectors that
best match the dynamics of final barrier crossing be-
fore a pit is successfully formed (figure 3C). The implied
timescales for these transitions for the 100 MPa proteins
are prohibitively large, while for 200 MPa proteins we ar-
rive at an upper limit of 50 min (figure 3C). We may com-
pare this timescale with the time it takes STxB proteins
to induce tubules when incubated with giant unilamel-
lar vesicles (GUV’s). In these experiments, tubulation
had been observed after 5 min [8]. While our estimated
timescale might seem large in comparison, considering
the uncertainties in the free energy estimate, and the

fact that the exponential dependence causes each kT
of barrier energy to almost triple the timescale, we have
indeed achieved remarkably comparable estimates.

V. CONCLUSION

We have used a particle-based membrane model in-
cluding particles representing curvature-inducing pro-
teins to study the formation of membrane tubular invagi-
nations using steered simulations. We obtained the free
energy profile of this process from thermodynamic in-
tegration (figure 2). Formation of similar invaginations
have been observed with dynamically triangulated mem-
brane models in Monte Carlo simulations [18, 39]. Com-
pared to that, our work has two distinctive features: (i)
our model reproduces the long-range effects of the cur-
vatures induced by peripheral proteins and the resulting
static and dynamic membrane-mediated interactions in-
trinsically and without the need for explicit enforcement
[24, 48], and (ii) using steered molecular dynamics, we
get a glimpse of the actual process of proteins clustering
on the membrane, followed by a pit being formed and
developed into a membrane invagination. Our steered
simulations not only highlighted the rather rough free en-
ergy landscape stretching between the flat to the invagi-
nated configurations, but also made it possible to con-
sider the kinetics of this process in details. We went to
great lengths to validate the kinetics of this model [22–
24]. We also took great care in establishing the protocol
for the steered simulations in this work. Because of that
we are able to trust the kinetic predictions of the model
and compare the resulting timescales with the experi-
mental observations.

We have modeled the invagination process as oc-
curring under the influence of proteins already bound
to the membrane and not being adsorbed on it during
the deformation. This follows the experimental obser-
vation of STxB’s binding to GUV’s and forming dense
clusters before any invaginations are observed [8]. The
recruitment and binding of toxins such as Shiga and
Cholera with pentameric membrane-binding subunits is
in itself a process worthy of detailed study [50], and
can be addressed in mesoscopic simulations with other
free energy methods [51]. It is imaginable that includ-
ing a reservoir of proteins ready to be recruited [52]
or performing grand canonical simulations can lead to
smoother energy landscapes and faster kinetics. This
might also explain the generally larger timescales that
we obtained with our simulations compared to experi-
mental values.

We can imagine the general approach laid out in this
work to be applicable to a variety of similar systems, es-
pecially including BAR-domain proteins with anisotropic
curvatures. Our approach to estimating the free energy
of these complex membrane and protein systems re-
sults in detailed landscapes across a very wide range of
protein aggregation and membrane deformation. Thus,
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it can help provide mechanistic understanding of pro-
cesses such as clathrin-independent endocytosis [53],
or endoplasmic reticulum reorganization [54] at their na-
tive scale. Besides using more realizations of steered
simulations and improving estimation accuracies, our
approach is amenable to further improvement in the fu-
ture via: (i) using more realistic models of peripheral pro-
teins interacting with the membrane, (ii) including mem-
brane tension as an important factor in the invagination
process, and (iii) including effects due to the presence of
cytoskeletal structures. We believe the tools developed
in our modeling framework and the introduced methods
for free energy estimation and kinetics analysis pave the
way toward investigating these scenarios and offer pow-
erful means of quantitatively understanding membrane-
protein interplay at biological spatiotemporal scales.
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Figure 1: Steered simulations for capturing membrane tubulation induced by membrane-bending peripheral
proteins. (A) (top) schematic of the simulation setup with peripheral proteins scattered on the membrane and pulled
toward the center of the patch under the influence of in-plane centrifugal external forces. (bottom left) schematic of

a curvature-inducing peripheral protein on the particle-based membrane model. (bottom right) distribution of the
local membrane curvatures induced by proteins with the given stiffness values, Yp. (B) (top and bottom left) mean

in-plane radial distance of proteins from the center point of the membrane patch, rc, as a function of time in steered
simulations. Results are given for different realizations of the simulation. (top and bottom right): time-correlation of

the mean in-plane radial distance from unbiased simulations without external forces. Top and bottom plots
correspond to the proteins with the stiffness values given in the plots on the left. Data is shown for simulations of the

same surface concentration as the steered simulation (Γ0) in addition to higher surface concentrations of 2Γ0 and
4Γ0. Time scales obtained from an exponential decay model are given in each case. (C) Consecutive snapshots of

one realization of the steered simulations (see supplementary movies).
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Figure 2: Free energy landscape of the formation of membrane invaginations by peripheral proteins. (A) ensemble
averages of the derivative of the generalized potential, u, with respect to the reaction coordinate, rc, found using eq.
4. Blue and red color plots respectively corresponds to proteins with the stiffness of Yp = 100 MPa and 200 MPa. (B)
Free energy landscapes along the reaction coordinate for invaginations caused by proteins with the given stiffness

values. Free energy values have been obtained via thermodynamic integration using eq. 2. On each curve,
selected states have been numbered for further kinetics analysis. Representative snapshots from one realization of

steered simulations are shown for some of the states.
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Figure 3: Kinetics of the spontaneous formation of membrane invaginations by the peripheral proteins. (A) diffusion
coefficient governing the random walk in the space of the reaction coordinate, rc. Similar to previous figures, blue
and red color plots respectively corresponds to the Yp = 100 MPa and 200 MPa proteins. (B) Barrier energies and

timescales of transition between the designated metastable states, based on eq. 5. Numbers are the same as
those given on the free energy plots. (C) (left) discretized transfer operator for over-damped diffusion of rc on the
free energy landscape. The transfer operator has been discretized by partitioning the range of rc into 100 bins.

(middle) sorted eigenvalues of the discretized transfer operator and the resulting implied timescales. (right) selected
eigenvectors of the discretized transfer operator and the corresponding timescales. Plots showing free energy

profiles have been reproduced for reference.
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