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Abstract
In a standard analysis, pleiotropic variants are identified by running sep-
arate genome-wide association studies (GWAS) and combining results
across traits. But such two-stage statistical approach may lead to
spurious results. We propose a new statistical approach, Debiased-
regularized Factor Analysis Regression Model (DrFARM), through a
joint regression model for simultaneous analysis of high-dimensional
genetic variants and multilevel dependencies. This joint modeling strat-
egy controls overall error to permit universal false discovery rate (FDR)
control. DrFARM uses the strengths of the debiasing technique and the
Cauchy combination test, both being theoretically justified, to estab-
lish a valid post selection inference on pleiotropic variants. Through
extensive simulations, we show that DrFARM appropriately controls
overall FDR. Applying DrFARM to data on 1,031 metabolites mea-
sured on 6,135 men from the Metabolic Syndrome in Men (METSIM)
study, we identify 288 new metabolite associations at loci that did
not reach statistical significance in prior METSIM metabolite GWAS.
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Part I
Main Text
1 Introduction
Genetic studies can help identify the contributions of different variants and
genes to various processes and pathways. Identifying pleiotropic genes can help
us better understand the mechanism of metabolism pathways [1, 2]. Given
that technological advances have significantly accelerated the availability of
various multi-omics data types (e.g. genomics, epigenomics, transcriptomics,
proteomics, metabolomics, glycomics) [3], an unprecedented opportunity arises
in the characterization and quantification of pleiotropic genes and genetic vari-
ants that regulate multiple phenotypes. However, data analytic techniques to
detect pleiotropic genes now lag behind the requirements for increasing high-
dimensional data; there are few adequate data analytic methods and software
tools available to address the complexity and multimodality of biological data
in the detection of pleiotropic genes. Valid statistical methods are essential to
explore and understand the underlying biology, generate new hypotheses, and
design new experiments to deliver potentially better therapeutics as part of
the effort to turn data to knowledge that ultimately improves human quality
of life.

Our methods development is largely motivated by the objective of iden-
tifying pleiotropic genes for various metabolic traits associated with Type 2
diabetes (T2D) in the Metabolic Syndrome in Men (METSIM) cohort [4],
a longitudinal study of 10,197 middle-aged and older Finnish men that seeks
to identify genetic variants that contribute to the risk of metabolic and car-
diovascular disease. T2D is a complex trait that largely involves the interplay
between multiple genes [5, 6]. Discovering pleiotropic genetic variants is one
of the key tasks to understand how multiple genetic variants interact in bio-
chemical pathways influencing the risk of developing T2D. Currently, most
genome-wide association studies (GWAS) do not formally test for pleiotropy.
If testing of pleiotropy is performed, they are based on a single-trait, single-
variant analysis approach, which tests for the association of each trait with each
variant [7, 8], followed by a second stage of detecting pleiotropic variants using
certain GWAS summary statistics [9–12]. However, the linkage disequilibrium
(LD) between single nucleotide polymorphisms (SNPs) or variants presents a
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major challenge in identifying pleiotropic variants. We show that these two-
stage approaches that identify genetic pleiotropy based on pairwise marginal
association testing cannot control the false discovery rate (FDR) and hence
are susceptible to spurious findings.

We introduce DrFARM as a method to identify pleiotropic variants in
which confounding by other genetic variants can be adjusted. DrFARM
provides a high-dimensional estimation of the coefficients and inference of
pleiotropic variants as it is developed to handle data with the number of vari-
ants exceeding the sample size. Zhou et al. [13] proposed a sparse multivariate
factor analysis regression model (FARM), a high-dimensional joint modeling
approach, to detect the so-called “master regulators” (a.k.a. pleiotropic vari-
ants), in which they used sparse group lasso regularization [14] to enforce
sparsity at both individual-level (entry-level) and group-level (variant-level)
[13, 15]. The group sparsity led to the identification of variants being simultane-
ously associated with multiple traits. The limitation of the sparse multivariate
FARM includes that it does not quantify uncertainty and it does not yield FDR
control in the discovery of pleiotropic variants. In addition, sparse multivariate
FARM ignores relatedness and population structure [16–20].

DrFARM is built upon a post selection debiasing technique to address
these limitations, where valid p-values are obtained for statistical inference
on pleiotropic variants. The debiasing-based post selection (DPS) inference
has been studied extensively in the fields of high-dimensional statistics and
machine learning [21–24]. This method has seen only limited previous appli-
cation in genetic data analyses, an area that naturally demands valid DPS
inferences [25]. The critical technical challenge in the utility of DPS inferences
lies in the estimation of the precision matrix of the predictors, which is the
inverse of the covariance matrix of the predictors. This matrix plays a cen-
tral role in DPS inference as it is used in desparsifying regularized estimates,
which are then known to follow asymptotic distributions, and consequently
allows for high-dimensional statistical inference, including valid p-values gen-
eration. Although several methods for precision matrix estimation exist, such
as graphical lasso (Glasso) [26], nodewise lasso [21], and quadratic optimiza-
tion [23], there is no consensus on which method has the best FDR control,
sensitivity of parameter tuning, robustness of numerical performance, and com-
putational efficiency. To the best of our knowledge, this paper is the first to
conduct a comprehensive comparison of existing precision matrix estimation
methods in DPS inference using large-scale simulations, leading to practical
guidelines on the use of DPS inference in the analysis of pleiotropic variants.
Such knowledge may be applied to many empirical studies with limited sample
sizes encountered by other high-dimensional genetic and omics data analyses.

DrFARM: 1) performs a rigorous, valid statistical test via debiasing, to
identify potential pleiotropic variants with a proper overall FDR control; 2)
accounts for the relatedness and population structure of genetic data in DPS
inference; and 3) allows users to choose a precision matrix estimation method
in DPS inference. We demonstrate the performance of DrFARM through
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extensive simulations and make recommendations useful to the application of
DrFARM in practical studies. We also reanalyze metabolomics data from the
METSIM study to discover new pleiotropic variants and genes.

2 Results

2.1 Motivating example
We begin with a simple but representative simulation example to motivate the
proposed method. We illustrate how pleiotropy may lead to complications in
statistical inference. Under the setting of two simulated correlated traits, we
illustrate the empirical type I error given by three approaches to identifying
pleiotropic variants under the case P < N : I) the two-stage approach: p-values
are first obtained using a single-trait, single variant analysis (i.e., univariate
Yj , j = 1, 2 regressed on single Xi, i = 1, . . . , P , respectively) and combined
for each variant using the Fisher combination test which takes into account
the correlation of Y = (Y1, Y2) [9, 10]; II) MANOVA on multivariate marginal
model (i.e., multivariate Y regressed on single Xi, i = 1, . . . , P , respectively);
and III) MANOVA on multivariate joint model of P variables (i.e., Y regressed
on X = (X1, . . . , XP )). Figure 1 shows the average empirical type I error of the
three methods. The two methods based on pairwise association testing suffer
severely inflated empirical type I error. In particular, the Fisher combination
test gets ∼ 82% average empirical type I error even when the LD between the
SNPs was minimal (average r2 = 0.005 over 1000 replicates). On the other
hand, the empirical type I error of the joint MANOVA model is virtually
unaffected by the subgroup heterogeneity with a constant 5% type I error.
This desirable error control is attributed to the fact that the test statistics in
the joint modeling adjust for the correlation in traits and SNPs. In contrast,
without accounting for the correlation in SNPs, the same MANOVA modeling,
when applied to pairwise marginal models, fails to control the overall type
I error (∼ 43.5% on average). This simple example implies the need for a
joint modeling approach to identifying pleiotropic variants. For illustration, we
limited the number of variants equal to that of a set of genomewide significant
index variants in the original METSIM marginal analysis as they were the most
likely candidates for pleiotropic variants. In practice, it is almost always the
case P > N (e.g., using 10−6 cutoff instead of 5×10−8). Thus, our development
of DrFARM further extends the joint MANOVA modeling approach for the
high-dimensional case with P > N , which are commonly encountered in the
study of pleiotropic variants.

2.2 Overview
We consider a penalized multivariate regression framework that extends the
sparse multivariate FARM [13] (see Section 2 in Methods for more details)
to establish valid post selection statistical inference. Compared to traditional
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linear mixed models in GWAS, DrFARM enables the adjustment for other vari-
ants via the high-dimensional joint modeling between P variants and Q traits
and embraces a factor analysis model (FAM) with K latent factors to char-
acterize the between-trait dependence. Additionally, since FAM in DrFARM
allows implicitly for missing heritability in GWAS [27, 28], it is appealing in
the analysis of pleiotropic variants. Moreover, a joint analysis of P variants and
Q traits can better estimate the loading coefficients in FAM and subsequently
improves both estimation and power. DrFARM also extends the sparse multi-
variate FARM by allowing a certain kinship structure to correlate latent factors
in FAM, as opposed to independent latent factors assumed in sparse multivari-
ate FARM. We show that FAM in DrFARM is equivalent to the specification
of genetic random effects in the linear mixed model [16–20], but the former
has parsimonious model constructs and thus is potentially advantageous for
model interpretability.

A schematic workflow of DrFARM is given in Figure 2. To handle simulta-
neously many variants and traits, in Step 1, DrFARM uses the regularization
technique under a sparse group lasso penalty, resulting in both individual
(entry-level, i.e., all variant-trait coefficients) level and group (variant-level)
level sparsity. Since the sparse estimation does not have the capacity to inten-
tionally control any error rate (e.g. FDR) in the analysis, this method is limited
for its use in GWAS when the quantification of sampling uncertainty and dis-
covery rate control are of primary interest. Step 2 of DrFARM implements a
rigorous statistical inference through the debiasing technique, leading to valid
asymptotic distributions to generate desirable inferential quantities such as p-
values and confidence intervals for individual association parameters. Step 3 of
DrFARM uses the standard FDR control techniques (e.g. Benjamini-Hochberg
procedure [29]) along with the Cauchy combination test (CCT) to calculate
combined p-values for the detection of pleiotropic variants.

2.3 Simulation
We conduct extensive simulation experiments to evaluate the performance of
the proposed DrFARM, two of which are reported in detail in this paper.
The first compares the standard sparse multivariate FARM with no debiasing
and three modified sparse multivariate FARM procedures with (i) only inner
debiasing, (ii) only outer debiasing, and (iii) with double debiasing (i.e. both
inner and outer debiasing) under various choices of precision matrix estimation
methods, including Glasso, nodewise lasso, quadratic optimization and naïve
(no use of the precision matrix in inner debiasing). Inner debiasing refers to a
debiasing step taken in the M-step of the EM algorithm (see Algorithm 1 in
Methods); outer debiasing operates a desparsifying step to ensure the asymp-
totic normality for individual sparse estimates. The remMap approach [15],
which does not involve FAM, is also included in the comparison as the most
parsimonious joint model. The second simulation investigates the influence of
kinship to be or not to be included in the latent factors of FAM when data
are sampled from genetically related subjects. In each simulation setting, we
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vary the sample size, number of SNPs, number of traits, and number of latent
factors. See Table 1 for a more detailed description of simulation settings.

In simulation I, we generated data from a standard sparse multivariate
FARM assuming independent individuals. As seen in Scenario I in Figure 3,
all methods that do not use outer debiasing appear to have high FDRs at
both individual and group-levels. Similarly, Scenario II in Table 2 suggests
that both remMap and the naïve method perform poorly in the FDR control
without using outer debiasing. The naïve method inflates individual-level and
group-level FDRs as high as 27.2% and 65.9%, respectively.

In regard to the choice of precision matrix estimation, the strategy of the
inner debiasing appears to be very conservative; despite achieving accurate
FDR control at 5% for the group-level signals, the FDRs for individual-level
signals range from 0.6 − 0.7%. This shows that there is a conservative FDR
control by the regularized method. In contrast, for the strategies involving the
use of the outer debiasing, four methods (remMap, naïve, Glasso and node-
wise lasso) are all able to control their FDRs at levels close to 5% for both
individual-level and group-level signals, except the strategy using the quadratic
optimization method the precision matrix estimation yields on average 8.9%
FDR for individual signals and 6.8% FDR for group-level signals. In addi-
tion to FDR, we compare their performances by MCC (Matthews correlation
coefficient), a composite metric of sensitivity and specificity. From Table 3 in
Appendix D, we see that the naïve, Glasso and nodewise lasso with the outer
debiasing show very similar MCCs for the detection of both individual-level
and group-level signals. In Scenario I, the MCC values in Table 3 indicates
that the naïve method with the outer debiasing is slightly more powerful than
Glasso and nodewise lasso for the detection of both individual-level and group-
level signals. In summary, outer-debiasing seems to be essential in controlling
FDR while not being too conservative.

In simulation II, we simulate data by mimicking GWAS of common variants
(≥ 5% minor allele frequency) in genetically related individuals of on average
the third-degree relatedness. Based on our experiences from simulation I that
no use of the outer debiasing leads to an unsatisfactory FDR control, we here
only focus on the results from the methods with the utility of the outer debi-
asing. As shown in Figure 4. (Scenario I), the FDR for individual-level signal
for the quadratic optimization method appeared constantly above 5% regard-
less of accounting for kinship or not whereas the FDR for group-level signals
is controlled under 5%. All the other methods of precision matrix estimation
exhibit satisfactory FDR control at levels close to or below 5%. In particular,
the FDR for the individual-level signal was uniformly very close to 5%. Fur-
thermore, from the performance results in terms of MCC in Tables 4 (Scenario
I) and 5 (Scenario II) in Appendix D, we again observe that the naïve method,
with or without kinship, is slightly more powerful than both Glasso and node-
wise lasso methods for the detection of both individual-level and group-level
signals. Incorporating kinship in the analysis does not lead to gains in MCC
due largely to the fact that MCC is not a metric of statistical power (or one
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minus type II error) but a metric of detection accuracy composed by sensitivity
and specificity.

In conclusion, incorporating kinship does not seem to improve FDR signif-
icantly and we recommend not using it to improve computational efficiency.
In addition, among the 3 precision estimation approaches (Glasso, naïve and
nodewise lasso) with FDR control, we recommend Glasso as it utilizes the
inner-debiasing step and the computational complexity (or CPU time) is the
lowest.

2.4 Real data application
Given the high correlation of metabolite abundance for many sets of metabo-
lite across METSIM study participants, we expect to see that many loci exhibit
pleiotropy across those metabolite sets. In the original single metabolite GWAS
[30], we found at least one significant (p < 7.2× 10−11) association for 803 of
the 1,031 tested metabolites. Of the 322, 003 =

(
803
2

)
possible combinations of

these metabolites, 334 have a a high phenotypic correlation (i.e., ρ ≥ 50%).
And of the 334 highly correlated metabolite pairs, 257 (77%) exhibit pleiotropy
in at least one locus, where we define pleiotropy as having significant hits for
each metabolite within 10kb of each other (Supplementary Table 3, [30]). For
example, the two medium chain acylcarnitines hexanoylcarnitine and octanoyl-
carnitine both have significant lead SNPs at the ACADM locus (encoding
the medium-chain acyl-CoA dehydrogenase), which was unsurprising consid-
ering this enzyme acts on both metabolites [31], and both the metabolites are
strongly correlated, ρ = 63.6%.

Similarly, 257 (4.5%) of the 5,176 unique metabolite pairs sharing a locus
(at least one significant hit for each metabolite within 10kb of each other)
in [30], have a high phenotype correlation. Thus at least some of observed
pleiotropy can be explained by the phenotypic correlation of the metabolite
concentrations. However, a single locus can also be significantly associated
with traits that are not highly correlated at the phenotypic level. For example,
hexanoylglycine has a significant association at the ACADM locus even though
the phenotypic correlation ρ with hexanoylcarnitine is only 18.5%.

Because DrFARM uses the correlation structure across the metabolites to
enhance the power to detect genetic associations for individual metabolites,
we explored the extent to which the associations identified by DrFARM reflect
these phenotypic correlations. Of the 77 = 334−257 highly correlated metabo-
lite pairs with no pleiotropic loci in the original study, DrFARM detected a
significant association for an additional 16 of the 77. For example, the caffeine
metabolites 1-methylurate and paraxanthine share a phenotypic correlation
ρ = 57.8%, and yet while paraxanthine was significantly associated with the
CYP2A6 locus (p = 2.2×10−19 at rs56113850) in the single metabolite GWAS,
1-methylurate has a p-value of only 0.0013 at this same variant in the single
metabolite analysis. In contrast, DrFARM assigns a p-value of 3.9× 10−13 to
1-methylurate at rs56113850. This association is highly plausible given that
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the CYP2A6 enzyme is responsible for acting on paraxanthine on its way to
being converted to 1-methylurate.

In all, DrFARM assigned a p-value < 7.2 × 10−11 to 288 metabolite-locus
pairs where the prior metabolite GWAS analysis had no significant associa-
tion for that specific metabolite within 100,000 bps. While the new metabolite
associations are skewed toward metabolites that are highly correlated with
the previously identified metabolites, 70% of the new metabolite associations
does not have high correlation to any of the previous metabolites at the locus.
For example, at the GLS2 locus (encoding a glutaminase enzyme) the sin-
gle metabolite GWAS identified significant associations for both glutamine
and a glutamine derivative, gamma-glutamylglutamine. DrFARM found an
additional association for another glutamine derivative, hexanoylglutamine,
despite the fact that hexanoylglutamine and glutamine share a phenotypic
correlation (ρ) of only 0.06%. Despite the low phenotypic correlation of most
of the new metabolite associations from DrFARM compared to the previ-
ous single metabolite results, the vast majority of the new results represent
highly plausible biological results. For example, where the previous analysis
identified tyrosine as a significant association at the TAT locus (encoding
tyrosine aminotransferase), the new analysis identified a significant association
for the tyrosine derivative, N-acetyltyrosine. The new analysis also identi-
fied a significant association for kynurenine at the KMO locus (encoding
kynurenine 3-monooxygenase), for the caffeine derivatives 1-methylurate, 3,7-
dimethylurate, 1,7-dimethylurate at the CYP2A6 locus (encoding a caffeine
metabolizing enzyme), for the pyrimidine metabolite uracil at the CDA locus
(encoding the pyrimidine metabolizing enzyme, cytidine deaminase) and the
very long acyl carnitine 5-dodecenoylcarnitine at the ACADVL locus (encoding
the very long-chain specific acyl-CoA dehydrogenase). Cross-referencing the
DrFARM detected significant associations with biological knowledge gleaned
from the rich history of biochemistry provides independent validation of these
results. Expanding the current analysis to identifying pleiotropic genes for
multiple metabolites is a future research direction.

3 Discussion
We developed a new method, DrFARM, to identify potential pleiotropic vari-
ants in GWAS. Our methodological contribution centers on one-stage post
selection hypothesis testing, adjusting for other genetic variants and confound-
ing factors. DrFARM provides satisfactory FDR control in the detection of
both individual-level (entry-level) and group-level (variant-level) signals. In
addition, DrFARM incorporates population structure in the latent factors as
part of the modeling of between-trait correlations. Being a nontrivial extension
from low-dimensional joint modeling approach, DrFARM overcomes a difficult
problem of proper FDR control in the large-P -small-N setting, which has trou-
bled existing pairwise single-variant marginal association testing in the GWAS
literature.
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DrFARM provides a principled approach to perform a refined downstream
analysis, such as colocalization. Even though we used the set of index vari-
ants as the input genetic markers for the METSIM data analysis, following the
identification of potential pleiotropic variants, we could further identify the
corresponding putative causal gene of the variant and construct a respective
gene region corresponding to the putative causal gene. Instead of construct-
ing gene regions from potentially spurious variants (due to LD), DrFARM
enables us to identify a more reliable and promising candidate gene regions for
downstream analysis using potential pleiotropic variants.

A proven advantage of DrFARM is that it can increase power by taking
into account the correlation between related traits, enabling identification of
association not identified in single trait analyses. We identified 16 new can-
didate genes with DrFARM in the METSIM data analysis. DrFARM is not
limited to the association study of metabolites-genetic variants but is applica-
ble to other high-dimensional omics data types such as proteins and glycans.
Thus, DrFARM presents an ample opportunity to discover pleiotropic vari-
ants in the integrative analysis of multi-trait and multimodal omics data in
the modern biology era.

DrFARM has some limitations that deserve further exploration in future
research. First, DrFARM is built upon L1 penalty regularization which is
known to suffer from overfitting when predictors are highly correlated. We have
seen the sensitivity of FDR on modest or highly correlated SNPs (e.g., corre-
lation ≥ 0.7), indicating a need to invoke a better regularization method to
improve DrFARM with correlated SNPs. Second, DrFARM requires the use of
an estimated precision matrix in the outer debiasing step to calculate p-values
for inference. Taking our recommended method Glasso (balancing computa-
tional efficiency and statistical performance) as an example, the computational
complexity is O(P 3) to O(P 4), depending on the actual sparsity of the preci-
sion matrix [32]. Thus, DrFARM is computationally expensive to handle tens
of thousands of variants, which might be improved by feature screening meth-
ods [33] to reduce dimensionality prior to the application of DrFARM, or by
a fast precision matrix estimation method.

As for future work, one direction is to investigate the latent factors used
by DrFARM. Similar to traditional factor analysis, the interpretation of latent
factors is a challenging issue. Potentially, geneticists could mine the latent fac-
tors to understand the missing heritability in GWAS, similar to how principal
component analysis (PCA) has helped to understand population stratification
[34]. Related tasks would include associating these latent factors with different
gene regions and elucidating what kind of factor rotation provides a mean-
ingful interpretation for the latent factors. With the ever-increasing size of
GWAS cohorts and whole genome sequencing platforms, another important
work is to develop scalable algorithms for estimating ultra high-dimensional
precision matrices as they play a crucial role in statistical inference with
high-dimensional genomics data.



10

4 Tables

Table 1 Simulation scenarios used in experiments 1 and 2. Number of signals is defined
as the number of nonzero elements in Θ. In each scenario, the number of pleiotropic
variants (m) is fixed at 15% of the number of SNPs.

Scenario Sample Size Predictors Traits Latent Factors Signal
I 1000 2000 500 5 3000
II 2000 5000 1000 10 7500
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Table 2 Averaged performance metrics across 100 replicates for remMap (r) and
DrFARM (d) under different type of debiasing in Scenario II for simulation 1. The true
negative rate (TNR) and true positive rate (TPR) were not shown for the individual-level
and group-level results, respectively, as all methods achieve close to 100%.

Individual Group

Method Precision Debiasing TPR FDR MCC TNR FDR MCC
d None None 99.7% 27.2% 85.0% 61.6% 65.9% 45.8%
d Glasso Outer 99.3% 5.6% 96.8% 99.0% 5.4% 96.8%
d Glasso Inner 95.2% 0.7% 97.2% 99.0% 5.3% 96.8%
d Glasso Double 98.2% 4.6% 96.8% 99.2% 4.1% 97.5%
d NL Inner 95.2% 0.7% 97.2% 99.0% 5.3% 96.8%
d NL Double 98.0% 4.6% 96.7% 99.3% 4.0% 97.6%
d QO Inner 95.4% 0.6% 97.4% 99.2% 4.4% 97.3%
d QO Double 96.4% 8.9% 93.7% 98.7% 6.8% 95.9%
r None None 94.2% 15.6% 89.1% 86.7% 41.6% 71.0%
r Glasso Outer 90.8% 5.3% 92.7% 98.9% 5.9% 96.4%
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Fig. 1 Violin plot of average empirical Type I error for three methods across 1000 replicates:
Two stage approach (Two_Stage), marginal MANOVA model (MANOVA_Marginal) and
joint MANOVA model (MANOVA_Joint).
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Fig. 2 Schematic workflow of the DrFARM method with three major steps.
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Fig. 3 Individual-level and group-level false discovery rates for 10 different approaches
(A) across 100 replicates: A1: remMap.none; A2: remMap.outer; A3: Naïve.none; A4:
Naïve.outer; A5: Glasso.inner; A6: Glasso.double; A7: NL.inner; A8: NL.double; A9:
QO.inner; A10: QO.double.
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Fig. 4 Individual-level and group-level false discovery rates obtained under 2 kinship set-
tings by 4 precision matrix estimation approaches dealing with the outer debiasing.
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Part II
Methods
1 Setup in motivating example
Consider two correlated traits, Y1 and Y2, constituting a bivariate trait by
Y = (Y1, Y2). Suppose that Y is generated from the true model

Y = X
[
β11 β12

]
+ ϵ,

where X = (X1, · · · , XP ) is a set of P predictors (e.g., SNPs), β11 and β12 are
P -dimensional vector of true coefficients associating X with Y1 and Y2, respec-
tively (notice that some of the coefficients of β11 and β12 can be zero). Since
the traits are correlated, we assume a phenotypic correlation ρ, for Var(ϵ),
where ρ ̸= 0.
In practice, it is often assumed that the P SNPs are independent and con-
tribute to the traits independently. However, this assumption may be violated
for genetics data due to factors including linkage disequilibrium and population
structure [35].

We set N = 6135, P = 2072 (same as our real data analysis setting) and
suppose there are 250 true SNPs that contribute to the two traits. The effect
sizes of true SNPs are generated by sampling 500 = 250 × 2 effect sizes from
the set of 3443 genomewide significant associations from prior METSIM single
metabolite GWAS. [30]. We also set a weak phenotypic correlation ρ = 0.3.
SNPs are generated by sampling 2072 SNPs from a set of 6334 LD-pruned
SNPs from chromosome 22 using METSIM data with r2 = 0.01 threshold. The
empirical type I error is given by the number of significant discoveries (i.e.,
p-value < 0.05) in the null set divided by 1822 = 2072 − 250 (the number of
null), which is evaluated from 1000 replicates.

2 Review of remMap and sparse multivariate
FARM

Both remMap and sparse multivariate FARM are regularized multivariate
regression models that exploit sparse group lasso penalty to identify “master”
predictors (i.e., pleiotropic variants in GWAS). In particular, sparse multivari-
ate FARM extends remMap by modeling residual correlations of traits via a
latent factor model [13]. More specifically, assume P SNPs and Q traits are
collected in each individual. Let xi = (xi1, · · · , xiP )T and yi = (yi1, · · · , yiQ)T
(i = 1, . . . , N) be normalized SNPs and normalized traits with mean 0 and
variance 1, respectively. The multivariate FARM takes the form:

yi = Θxi +Bzi + ϵi, i = 1, · · · , N (1)



15

where Θ = {θqp} is a Q × P coefficient matrix, B is a Q × K matrix of
factor loadings (K being the number of latent factor). Multivariate FARM
assumes the latent factors zi = (zi1, · · · , ziK)T ∼ MVNK(0K , IK). Moreover,
ϵi = (ϵi1, · · · , ϵiQ)T ’s are independent and identically distributed (i.i.d.)
errors from MVNQ(0Q,Ψ) with 0Q being a Q-element zero vector and
Ψ = diag(ψ1, · · · , ψQ) being a Q × Q diagonal matrix. The multivariate
FARM further assume ϵi is independent of the latent factors zi.

The multivariate FARM has the following equivalent form:

Y = XΘT + ZBT +E, (2)

where YN×Q = (y1, · · · ,yN )T ,XN×P = (x1, · · · ,xN )T ,ZN×K =
(z1, · · · , zN )T ∼ MNN×K(ON×K , IN , IK) and EN×Q = (ϵ1, · · · , ϵN )T ∼
MNN×Q(ON×Q, IN ,Ψ). Here MNn×m(M,Vr,Vc) denotes the n×m matrix
normal distribution with mean matrix M (n×m), row (inter-sample) covari-
ance matrix Vr (n × n) and column (between component) covariance Vc

(m ×m). The conditional covariance of the response variables given the pre-
dictors is Var(yi|xi) = Σ = BBT +Ψ.

The objective function of sparse multivariate FARM is given by

L1(Θ,B,Ψ) =
1

2N

N∑
i=1

(yi −Θxi)
T (BBT +Ψ)−1(yi −Θxi) + λ1∥Θ∥1 + λ2∥ΘT ∥2,1,

(3)

where Θ∥1 =
∑Q

q=1

∑P
p=1|θqp| and ∥ΘT ∥2,1 =

∑P
p=1

√
θ21p + · · ·+ θ2Qp, and

λ1, λ2 > 0 are tuning parameters controlling the entrywise sparsity and
column-wise sparsity in Θ, respectively.

We estimate the parameters (Θ,B,Ψ) in sparse multivariate FARM using
the EM-GCD algorithm [13], which uses a group-wise coordinate descent
(GCD) algorithm for estimating Θ and expectation-maximization (EM) algo-
rithm for estimating both B and Ψ. When there are no latent factors (i.e.,
K = 0), Model (1) reduces to the remMap model. The objective function of
remMap is given by

L2(Θ) =
1

2
∥Y −XΘ∥2F + λ1∥Θ∥1 + λ2∥ΘT ∥2,1. (4)

Notice that (4) implicitly assumes the variance of the Q trait residuals
are equal. The parameter Θ is estimated using a modified version of the
active shooting algorithm [15, 36, 37]. More details of remMap and sparse
multivariate FARM may be found in [15] and [13], respectively.
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3 Generalized multivariate FARM
We consider a generalization of the multivariate FARM in DrFARM where
the latent factors are allowed to be correlated when study participants are
related. That is, we specify Z ∼ MNN×K(ON×K ,K, IK), where K (N × N)
is a prespecified kinship matrix that is scaled to have diagonal 1 analogous
to a correlation matrix. In GWAS, K is typically estimated separately from
available genotype data, e.g., using KING [38]. To decorrelate samples, we
perform an eigendecomposition of K = UDUT [17, 20, 39, 40], where U is
an N × N orthogonal matrix of eigenvectors and D = diag(δ1, · · · , δN ) is an
N ×N diagonal matrix of eigenvalues. Correspondingly, an equivalent form of
the generalized multivariate FARM is

Ỹ = X̃ΘT + Z̃BT + Ẽ, (5)

where Ỹ = UTY, X̃ = UTX, Z̃ = UTZ ∼ MNN×K(ON×K ,D, IK) and Ẽ =
UTE ∼ MNN×Q(ON×Q, IN ,Ψ). That is, for each individual i,

ỹi = Θx̃i +Bz̃i + ϵ̃i, z̃i ∼ MVNK(0K , δiIN ) and ϵ̃i ∼ MVNQ(0Q,Ψ) (6)

where ỹi, x̃i, z̃i and ϵ̃i are the ith row of Ỹ, X̃, Z̃ and Ẽ respectively. Note that
there is an extra δi term in the variance of z̃i compared to zi in (1) due to the
presence of kinship dependence among subjects. With the transformation, the
likelihood can be obtained as a product of N individual likelihoods, which can
be easily evaluated. To deal with latency of z̃i’s, we invoke the EM algorithm
by treating the z̃i’s as missing data in the estimation of the model parameters
(Θ,B).

The generalized multivariate FARM connects to the multivariate linear
mixed model GEMMA given in [40]:

Y = XΘT +G+E,

where GN×Q ∼ MNN×Q(ON×Q,K,Vg) is genetic random effects, E ∼
MNN×Q(ON×Q, IN ,Ve), Vg is the Q × Q symmetric matrix of genetic
variance component and Ve is the Q × Q symmetric matrix of environmen-
tal variance components. In comparison, generalized multivariate FARM is
more parsimonious by modeling the random effects G with FAM ZBT ∼
MNN×Q(ON×Q,K,BBT ) (or equivalently, Vg = BBT ). FAM presents
simpler covariance structures to both genetic and environmental variance com-
ponent matrices, and the latent factors may be used to investigate the missing
heritability in GWAS (see Discussion).
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4 Regularized estimation
The complete data log-likelihood is

l(Θ,B,Ψ) :=

N∑
i=1

log

(
f(ỹi | z̃i)f(z̃i)

)

= −1

2

N∑
i=1

(ỹi −Θx̃i −Bz̃i)
TΨ−1(ỹi −Θx̃i −Bz̃i)−

n

2
log |Ψ| − C,

where C is a constant.

To identify pleiotropic variants, we employ a regularized estimation method
via the sparse group lasso penalty (by predictor/column) λ1∥Θ∥1+λ2∥ΘT ∥2,1
to achieve sparse estimation of Θ, where λ1, λ2 are tuning parameters con-
trolling the entrywise sparsity and column-wise sparsity in Θ, respectively.
This penalized estimation is integrated with the EM algorithm that deals
with the augmented data log-likelihood with latent factors Z̃. The penalized
log-likelihood function for complete data is given by

L(Θ,B,Ψ) = −l(Θ,B,Ψ) + gλ1,λ2(Θ)

=
1

2

N∑
i=1

(ỹi −Θx̃i −Bz̃i)
TΨ−1(ỹi −Θx̃i −Bz̃i) +

n

2
log |Ψ|

+ λ1

Q∑
q=1

P∑
p=1

|θqp|+ λ2

P∑
p=1

√
θ21p + · · ·+ θ2Qp + C

(7)

where gλ1,λ2
(Θ) := λ1∥Θ∥1 + λ2∥ΘT ∥2,1 and C is a suitable constant with

respect to the parameters (Θ,B,Ψ).

Let t be the iteration number. In the E-step we calculate the first two
conditional moments

E(z̃(t+1)
i | ỹi) = δiB

(t)T (δiB
(t)B(t)T +Ψ(t))−1(ỹi −Θ(t)x̃i) = W

(t)
i ϵ̃∗i

(t),
(8)

E(z̃(t+1)
i z̃

(t+1)
i

T | ỹi) = δi(IK −W
(t)
i B(t)) +W

(t)
i ϵ̃∗i

(t)ϵ̃∗i
(t)TW

(t)
i

T , (9)

where Wi = δiB
T (δiBBT +Ψ)−1 and ϵ̃∗i = ỹi −Θx̃i.
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In the M-step, we compute θ(t+1)
ij (see expression (15)),

B(t+1) =

( N∑
i=1

ϵ̃∗i
(t+1)E(z̃(t+1)

i
T | ỹi)

)( N∑
i=1

E(z̃(t+1)
i z̃

(t+1)
i

T | ỹi)

)−1

, (10)

Ψ(t+1) =
1

N
diag

( N∑
i=1

ϵ̃∗i
(t+1)ϵ̃∗i

(t+1)T −
N∑
i=1

B(t+1)E(z̃(t+1)
i z̃

(t+1)
i

T | ỹi)B
(t+1)T

)
,

(11)

For the detailed derivation, please refer to Appendix A. Let Θ̂, B̂, Ψ̂ be
the regularized estimator for Θ, EM estimator for B and Ψ, respectively.
Also, let E(Z̃|Ỹ) = (E(z̃1|ỹ1), · · · ,E(z̃N |ỹN ))T . Then, we denote the con-
ditional moment based on estimators Θ̂, B̂, Ψ̂ by Ê(Z̃|Ỹ). Define L(t) =

L(Θ̂
(t)
,B(t),Ψ(t)), Ỹ∗(t) = Ỹ − E(Z̃(t)|Ỹ)B(t−1)T and Ẽ∗(t) = Ỹ − X̃Θ

(t)
db .

The pseudocode of the EM algorithm for parameter estimation is given in
Algorithm 1. We highlight two major differences compared to the algorithm
implemented in sparse multivariate FARM [13]: (i) Instead of obtaining an
exact minimizer of Θ̂ in M-step 1, we use a one-step update [41] to reduce
the computational cost. Our numerical studies show that the one-step approx-
imation does not change the final estimate much but greatly improves the
overall computational efficiency. (ii) We add a second M-step 2 to calculate
a debiased estimate Θ

(t)
db . This debiasing step helps us to get a more stable

estimate of the residual matrix Ẽ∗, which subsequently enhances the estima-
tion of the quantities in the FAM (B,Ψ) in M-step 3. We refer to M-step
2 as inner debiasing. The initial value determination and tuning parameter
selection are detailed in the Appendix C.

5 Estimation of variance parameters
The estimates of the trait residual variance (or uniqueness) ψi (for i =
1, . . . , Q) are part of the parameters output from the EM algorithm. The true
ψi’s are typically underestimated in numerical studies. As a remedy, we propose
an alternative estimator adjusting for the degrees of freedom given by

ψ̂∗
i =

1

N − ŝi
Sii

where

S = (Ỹ − X̃Θ̂
T
− Ê(Z̃ | Ỹ)BT )T (Ỹ − X̃Θ̂

T
− Ê(Z̃ | Ỹ)BT )
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and ŝi is the number of nonzero in the ith row of Θ̂ (i.e., all the coefficients
associated with trait i). Likewise, estimator of variance σ2 is given by

σ̂2 =
1

n− ŝ
∥Y −Xβ̂∥22,

which is suggested by [42] (Section 2.2), ŝ is the number of nonzero in the lasso
estimator β̂.

6 Inference

6.1 Single parameter inference
In the univariate regression analysis Y = Xβ + ϵ (ϵ ∼ N(0, σ2)), a lasso
estimator β̂ [43] can be desparsified (termed in [21]) or debiased (termed in
[23]) by

β̂db = β̂ +
1

n
Ω̂XT (Y −Xβ̂),

where √
n(β̂db,j − βj)

σ̂

√
Φ̂jj

d−→ N(0, 1), as n −→ ∞

under some regularity conditions, σ̂2 is an estimator for σ2 when n < p

(see Section 5). In particular, β̂db = (β̂db,1, . . . , β̂db,p)
T , Φ̂ = Ω̂ĈΩ̂

T
, Ĉ =

(XTX)/n, and Ω̂ is the estimated precision matrix which approximates
n(XTX)−1 when n < p.

In the same spirit, we propose to debias the regularized estimator Θ̂ in
DrFARM by

Θ̂db = Θ̂+
1

N
(ỸT − Θ̂X̃T − B̂Ê(Z̃ | Ỹ)T )X̃Ω̂, (12)

where B̂ and Ê(Z̃|Ỹ) are estimators of B and E(Z̃|Ỹ) obtained from the
EM algorithm (see Appendix A). Correspondingly, similar asymptotic prop-
erties can be derived for Θ̂db = {θ̂db,ij} (see Appendix B). We refer to this
as an outer debiasing step. The outer-debiasing step is different from the
inner-debiasing step, which is used inside the EM algorithm. The outer-
debiasing step is used outside of the EM algorithm (once the estimation is
completed) for statistical inference. Despite the difference in purpose, the outer
and inner debiasing steps share a common debiasing expression. It follows that
the p-value for testing H0 : θij = 0 involving the ith trait and jth predictor
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pij can be calculated by the above estimator with

pij = 2

(
1− Φ

(∣∣∣∣
√
Nθ̂db,ij√
ψ̂∗
i Φ̂jj

∣∣∣∣)
)
, (13)

where ψ̂∗
i is an estimator for uniqueness (see Section 5) and Φ is the cdf of the

standard normal distribution.

6.2 Hypothesis test for pleiotropy
Let Θj be the jth column of Θ. Testing for pleiotropy (also known as testing
the group-level significant association) is equivalent to testing Θj = 0. Of
note, the classical MANOVA test statistics, such as Wilk’s Lambda [44], Pillai’s
Trace [45], Hoteling-Lawley Trace [46] and Roy’s Greatest Root [47] cannot
be used when P > N . To use the asymptotic result in [48], we consider the
Cauchy combination test (CCT) [48] for the joint test of Θj = 0. The CCT
takes the form

Tj =

Q∑
i=1

ωij tan {(0.5− pij)π}, (14)

where ωij are nonnegative weights and
∑d

j=1 ωij = 1. The test statistic follows
a Cauchy distribution under the null with an arbitrary dependence structure
between pij ’s. Liu and Xie demonstrated that CCT can be used for single
trait discovery in GWAS [48]. For our purpose, we extend the CCT to multi-
trait discovery and adjust for multiple testings using the Benjamini-Hochberg
procedure [29]. More specifically, we obtain individual p-value pij using (14)
and plug it in the CCT test statistic formula. The corresponding p-value pj is
then given by

pj = 2Ψ(−|Tj |).

where Ψ is the cdf of the standard Cauchy distribution.

7 Choice of precision matrix estimation
The precision matrix plays a critical role in the debiasing steps. There is a
large body of literature on precision matrix estimation. However, to the best
of our knowledge, the influence of different estimation methods on the statisti-
cal performance of the debiased estimator [21–23] has not been studied. Here
we compare three precision matrix estimation methods: 1) Graphical Lasso
(Glasso) maximizes the penalized log-likelihood [26] but with unknown theo-
retical guarantees [21]; 2) Nodewise lasso (NL), performs row-wise lasso and
proved theoretical guarantees in estimation consistency [21] and 3) Quadratic
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optimization (QO) performs a row-wise convex optimization with theoretical
guarantees in estimation consistency [23].

In our numerical studies, we exploited the precision matrix estimated
from Glasso and NL where tuning parameters were selected by the extended
Bayesian information criterion (EBIC) with γ = 0.5 [49, 50]. For Glasso, we
used 10 tuning parameters (default setting) using glassopath() of the R
package glasso. In the same spirit, for NL, we fitted P regression models
Xi regressed on X−i for all i = 1, . . . , P (where Xi denotes the ith col-
umn of X and X−i denotes the matrix after omitting ith column from X)
and used 100 tuning parameters (default setting) using R package glmnet.
For QO, we used the R code provided on the first authors’ website: https:
//web.stanford.edu/~montanar/sslasso/code.html with the default setting.

8 Simulation
In each setting, sample size (N), number of predictors (P ), number of traits
(Q), number of latent factors (K), and number of signals are all varied. We
implement the proposed method and use EBIC (γ = 1) for tuning parameter
selection. We use 100 replicates for all the methods compared. Details for the
implementation of the methods can be found in Appendix C.

8.1 Simulation I
Suppose X = {xnp},Z = {znk} and E = {ϵnq}. Their entries xnp, znk and ϵnq
are independently generated from N(0, 1) for n = 1, . . . , N, p = 1, . . . , P, k =
1, . . . ,K and q = 1, . . . , Q. To generate the Q×P coefficient matrix Θ = {θqp}
between the Q traits and P predictors, we specify a sparse indicator matrix
∆ = {δqp}. If δqp = 1, then θqp ∼ Unif([−1.5,−1]∪[1, 1.5]). Otherwise, θqp = 0.
Notice that

∑Q
q=1

∑P
p=1 δqp is the number of signals fixed in a given scenario.

Given a fixed number of pleiotropic variant m (set to be 15% of the number of
predictors), the set of pleiotropic variants is randomly drawn from the indices
{1, . . . , P} without replacement. Let M = {q : θpq = 1, for q = 1, . . . , Q},
i.e., the set of indices corresponding to the pleiotropic variants. The num-
ber of trait associated with each j ∈ M follows Multinomial( 1

m (1, . . . , 1)). To
specify the factor loading matrix B, we adopt an approach similar to [13].
First, we start with an initial matrix B∗ = {b∗qk} where b∗qk are indepen-
dently generated from Unif(0, τ) where τ > 0 is determined empirically and
fulfills the signal-to-signal-to-noise ratio (SSNR) = mean(diag(Cov(XΘT ))) :
mean(diag(Cov(ZBT ))) : mean(diag(Cov(E))) = 1 : 3 : 5. This SSNR
is used to mimic the missing heritability scenario of GWAS and gives the
necessity for modeling the latent factors. We perform an eigendecomposition
B∗B∗T = U∗Σ∗U∗T where the column vectors of U∗ are orthonormal eigen-
vectors of B∗B∗T and Σ∗ is a diagonal matrix with diagonal entries being the
eigenvalues of B∗B∗T . Then we can let V∗ = sqrt(Σ) and form B = U∗V∗.
Finally, the data are generated using the equation Y = XΘT + ZBT +E.

https://web.stanford.edu/~montanar/sslasso/code.html
https://web.stanford.edu/~montanar/sslasso/code.html
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8.2 Simulation II
For this simulation, all settings are kept the same as Simulation I except
xni ∼ Bin(2, pi) independently for all n = 1, . . . , N and Zk ∼ MVNN (0,K)
independently for k = 1, . . . ,K, where Z = [Z1, . . . , ZK ]. To mimic common
variants in GWAS, pi ∼ Unif(0.05, 0.95) independently for all i = 1, . . . , P .
We generated kinship K using the standardized X∗X∗T (i.e., cov2cor() in
R) where X∗ = {x∗ni} has its entries x∗ni ∼ Ber(0.25) for n = 1, . . . , N and
i = 1, . . . , P so that the off-diagonal entries of K has a mean of 0.25 to simulate
a third-degree relationship (2× 0.125) between individuals on average [38].

9 Performance metrics
We used true positive rate (TPR), true negative rate (TNR), false discover
rate (FDR) and Matthew’s correlation coefficient (MCC) [51]

TPR =
TP

TP + FN

TNR =
TN

TN + FP

FDR =
FP

FP + TP

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

to compare the performance of different approaches in simulations I and II,
at both the individual level and group (SNP) level. In particular, for methods
that do not provide p-values (i.e., without debiasing or with inner debiasing
only), the number of true positive (TP) is the number of nonzero elements
in the selected Θ̂ in the signal set for signal-level result and the number of
pleiotropic variants with at least one nonzero association for the group (SNP)
level result. The number of true negatives (TN) is the number of zeros in the
selected Θ̂ in the non-signal set for signal-level result and the number of the
non-pleiotropic variant with no association for the group-level result. Then,
the number of false positives (FP) and the number of false negatives (FN)
simply given by the number of positive (nonzero coefficients) minus TP, and
the number of negatives (zero coefficients) minus TN, respectively. For methods
that provide p-values (i.e., outer debiasing or double debiasing), we applied
Benjamini Hochberg procedure [29] to both the signal-level and group-level
p-values at 5% level. To calculate TP, TN, FP and FN, instead of evaluating
whether the coefficients are nonzero, we consider whether the adjusted p-values
is smaller than 0.05.
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10 METSIM dataset
We use the same metabolomics GWAS data set as in [30] to demonstrate
the performance of the proposed methods. The sample size is N = 6135. We
focused on a subset of P = 2072 nearly-independent index variants identified
from univariate analysis after Bonferroni correction (p < 7.2× 10−11) [30]. We
chose the set of index variants because they were the most likely candidate for
pleiotropic variants. As shown in [30], 27.2% of the index variants were associ-
ated with more than 2 metabolites using a single-variants association testing
approach. Since multivariate regression requires a complete data matrix for
traits, we focused on Q = 1031 targeted metabolites that were either com-
plete or imputable using the K-nearest neighbors approach (with 5 neighbors).
Examples of non-imputable metabolites include those that were only present
≤ 3 out of 4 Metabolon panels (data collected at different times). As in [30],
we regressed the Metabolon-reported metabolite level on covariates (age at
sampling, Metabolon batch, and lipid-lowering medication use status for lipid
traits only). To obtain covariate-adjusted metabolites with mean 0 and vari-
ance 1, we inverse normalized the residuals from the regression model [30]. We
based the K-nearest neighbor imputation on the inverse-normalized scale. For
further details, such as data preprocessing, please refer to [30].

11 METSIM data analysis
We first searched a 10×10 tuning parameter grid and picked the optimal tun-
ing parameters using EBIC (γ = 1) for remMap. Then, remMap estimates with
the selected tuning parameters were used as the initial value for DrFARM to
find the optimal tuning parameters from a refined 5× 5 grid. As suggested by
the simulation, we used DrFARM with double debiasing with Glasso for dis-
covery. We varied K = 1 to 100 (i.e., 5×5×100 = 2500 grids were searched in
total). For a fixed k ∈ {1, . . . , 100}, the tuning parameter was selected among
the 5×5 grid. Since we observed EBIC decreases almost monotonically with k,
to avoid overfitting, the residual matrix Ỹ− X̃Θ̂

T

db were calculated for each k
for the selected tuning parameter. The exploratory graph analysis (EGA) [52]
uses Glasso [26] to obtain the sparse inverse covariance matrix for the outcomes
of interest and identifies the number of clusters or communities in a graph
using a walktrap algorithm [53]. The number of dense subgraphs (communities
or clusters) is declared as the number of latent factors K. Since metabolites
are known to be clustered, we used EGA as opposed to common latent factors
determination methods such as parallel analysis [54, 55] or Kaiser-Guttman’s
eigenvalue-greater-than-one rule [56] for biological interpretability. We per-
formed EGA for each of the 100 residual matrices, and majority voting of the
EGA results yielded K = 16. The signal and SNP (group) level results were
subjected to p < 7.2 × 10−11 (same cutoff as the original study) for statis-
tical significance. Unlike simulation, in addition to p < 7.2 × 10−11 at the
group-level, we also required the significant SNP to have at least 2 associated
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metabolites with p < 7.2 × 10−11 to be considered a potential pleiotropic
variant.

12 Algorithm

Algorithm 1 EM Algorithm for a given pair of tuning parameters (λ1, λ2)

Data: X,Y,K
Result: Θ̂ = {θ̂ij}, B̂, Ψ̂, Ê(Z̃|Ỹ)
Obtain U and D from Eigendecomposition K = UDUT ;
Transform X̃ = UTX and Ỹ = UTY;
Fix tolerance ξ;
Initialize Θ(0) and B(0);
Estimate precision matrix Ω̂ from sample covariance matrix Ĉ = (XTX)/N
(except for the nodewise lasso approach);
Set t = 0;
while L(t+1) − L(t) > ξ and L(t+1) < L(t) do

Set t = t+ 1
E-step:
Obtain both first and second conditional moments of Z̃ using (8) and (9)
M-step:
M-Step 1: Update θ(t)ij using (15) for all i, j in a coordinate descent search
using the active shooting scheme proposed in [15]
M-Step 2: Obtain debiased estimate Θ

(t)
db = Θ(t) + 1

N (Ỹ∗(t)T −
Θ(t)X̃T )X̃Ω̂

M-Step 3: Update B(t) and Ψ(t) using (10) and (11) with the residual
matrix Ẽ∗(t)

end



References
[1] Kitano, H.: Perspectives on systems biology. New Generation Computing

18(3), 199–216 (2000)

[2] Kitano, H.: Systems biology: toward system-level understanding of bio-
logical systems. Foundations of systems biology, 1–36 (2001)

[3] van Karnebeek, C.D., Wortmann, S.B., Tarailo-Graovac, M., Langeveld,
M., Ferreira, C.R., van de Kamp, J.M., Hollak, C.E., Wasserman, W.W.,
Waterham, H.R., Wevers, R.A., et al.: The role of the clinician in the
multi-omics era: are you ready? Journal of Inherited Metabolic Disease
41(3), 571–582 (2018)

[4] Laakso, M., Kuusisto, J., Stančáková, A., Kuulasmaa, T., Pajukanta, P.,
Lusis, A.J., Collins, F.S., Mohlke, K.L., Boehnke, M.: The metabolic syn-
drome in men study: a resource for studies of metabolic and cardiovascular
diseases. Journal of lipid research 58(3), 481–493 (2017)

[5] Prasad, R.B., Groop, L.: Genetics of type 2 diabetes—pitfalls and
possibilities. Genes 6(1), 87–123 (2015)

[6] Flannick, J., Florez, J.C.: Type 2 diabetes: genetic data sharing to advance
complex disease research. Nature Reviews Genetics 17(9), 535–549 (2016)

[7] Urrutia, E., Lee, S., Maity, A., Zhao, N., Shen, J., Li, Y., Wu, M.C.:
Rare variant testing across methods and thresholds using the multi-kernel
sequence kernel association test (mk-skat). Statistics and its interface
8(4), 495 (2015)

[8] Sesia, M., Bates, S., Candès, E., Marchini, J., Sabatti, C.: False discovery
rate control in genome-wide association studies with population structure.
Proceedings of the National Academy of Sciences 118(40) (2021)

[9] Yang, J.J., Li, J., Williams, L., Buu, A.: An efficient genome-wide asso-
ciation test for multivariate phenotypes based on the fisher combination
function. BMC bioinformatics 17(1), 1–11 (2016)

[10] Yang, J.J., Williams, L.K., Buu, A.: Identifying pleiotropic genes in
genome-wide association studies for multivariate phenotypes with mixed
measurement scales. PLoS One 12(1), 0169893 (2017)

[11] Jordan, D.M., Verbanck, M., Do, R.: Hops: a quantitative score reveals
pervasive horizontal pleiotropy in human genetic variation is driven by
extreme polygenicity of human traits and diseases. Genome biology 20(1),
1–18 (2019)



[12] Foley, C.N., Staley, J.R., Breen, P.G., Sun, B.B., Kirk, P.D., Burgess, S.,
Howson, J.M.: A fast and efficient colocalization algorithm for identifying
shared genetic risk factors across multiple traits. Nature communications
12(1), 1–18 (2021)

[13] Zhou, Y., Wang, P., Wang, X., Zhu, J., Song, P.X.-K.: Sparse multivari-
ate factor analysis regression models and its applications to integrative
genomics analysis. Genetic epidemiology 41(1), 70–80 (2017)

[14] Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: A sparse-group lasso.
Journal of computational and graphical statistics 22(2), 231–245 (2013)

[15] Peng, J., Zhu, J., Bergamaschi, A., Han, W., Noh, D.-Y., Pollack, J.R.,
Wang, P.: Regularized multivariate regression for identifying master pre-
dictors with application to integrative genomics study of breast cancer.
The annals of applied statistics 4(1), 53 (2010)

[16] Yu, J., Pressoir, G., Briggs, W.H., Vroh Bi, I., Yamasaki, M., Doebley,
J.F., McMullen, M.D., Gaut, B.S., Nielsen, D.M., Holland, J.B., et al.:
A unified mixed-model method for association mapping that accounts for
multiple levels of relatedness. Nature genetics 38(2), 203–208 (2006)

[17] Kang, H.M., Zaitlen, N.A., Wade, C.M., Kirby, A., Heckerman, D.,
Daly, M.J., Eskin, E.: Efficient control of population structure in model
organism association mapping. Genetics 178(3), 1709–1723 (2008)

[18] Kang, H.M., Sul, J.H., Service, S.K., Zaitlen, N.A., Kong, S.-y., Freimer,
N.B., Sabatti, C., Eskin, E.: Variance component model to account for
sample structure in genome-wide association studies. Nature genetics
42(4), 348–354 (2010)

[19] Price, A.L., Zaitlen, N.A., Reich, D., Patterson, N.: New approaches
to population stratification in genome-wide association studies. Nature
Reviews Genetics 11(7), 459–463 (2010)

[20] Zhou, X., Stephens, M.: Genome-wide efficient mixed-model analysis for
association studies. Nature genetics 44(7), 821–824 (2012)

[21] Van de Geer, S., Bühlmann, P., Ritov, Y., Dezeure, R.: On asymptotically
optimal confidence regions and tests for high-dimensional models. The
Annals of Statistics 42(3), 1166–1202 (2014)

[22] Zhang, C.-H., Zhang, S.S.: Confidence intervals for low dimensional
parameters in high dimensional linear models. Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 76(1), 217–242
(2014)



[23] Javanmard, A., Montanari, A.: Confidence intervals and hypothesis test-
ing for high-dimensional regression. The Journal of Machine Learning
Research 15(1), 2869–2909 (2014)

[24] Wang, F., Zhou, L., Tang, L., Song, P.X.: Method of contraction-
expansion (moce) for simultaneous inference in linear models. J. Mach.
Learn. Res. 22, 192–1 (2021)

[25] Bühlmann, P.: High-dimensional statistics, with applications to genome-
wide association studies. EMS Surveys in Mathematical Sciences 4(1),
45–75 (2017)

[26] Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance esti-
mation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)

[27] Manolio, T.A., Collins, F.S., Cox, N.J., Goldstein, D.B., Hindorff, L.A.,
Hunter, D.J., McCarthy, M.I., Ramos, E.M., Cardon, L.R., Chakravarti,
A., et al.: Finding the missing heritability of complex diseases. Nature
461(7265), 747–753 (2009)

[28] Young, A.I.: Solving the missing heritability problem. PLoS genetics
15(6), 1008222 (2019)

[29] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a prac-
tical and powerful approach to multiple testing. Journal of the Royal
statistical society: series B (Methodological) 57(1), 289–300 (1995)

[30] Yin, X., Chan, L.S., Bose, D., Jackson, A.U., VandeHaar, P., Locke, A.E.,
Fuchsberger, C., Stringham, H.M., Welch, R., Yu, K., et al.: Genome-wide
association studies of metabolites in finnish men identify disease-relevant
loci. Nature Communications 13(1), 1–14 (2022)

[31] Finocchiaro, G., Ito, M., Tanaka, K.: Purification and properties of short
chain acyl-coa, medium chain acyl-coa, and isovaleryl-coa dehydrogenases
from human liver. Journal of Biological Chemistry 262(17), 7982–7989
(1987)

[32] Mazumder, R., Hastie, T.: Exact covariance thresholding into connected
components for large-scale graphical lasso. The Journal of Machine
Learning Research 13(1), 781–794 (2012)

[33] Fan, J., Lv, J.: Sure independence screening for ultrahigh dimensional
feature space. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 70(5), 849–911 (2008)

[34] Novembre, J., Johnson, T., Bryc, K., Kutalik, Z., Boyko, A.R., Auton, A.,
Indap, A., King, K.S., Bergmann, S., Nelson, M.R., et al.: Genes mirror



geography within europe. Nature 456(7218), 98–101 (2008)

[35] Patterson, N., Price, A.L., Reich, D.: Population structure and eigenanal-
ysis. PLoS genetics 2(12), 190 (2006)

[36] Peng, J., Wang, P., Zhou, N., Zhu, J.: Partial correlation estimation
by joint sparse regression models. Journal of the American Statistical
Association 104(486), 735–746 (2009)

[37] Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for general-
ized linear models via coordinate descent. Journal of statistical software
33(1), 1 (2010)

[38] Manichaikul, A., Mychaleckyj, J.C., Rich, S.S., Daly, K., Sale, M., Chen,
W.-M.: Robust relationship inference in genome-wide association studies.
Bioinformatics 26(22), 2867–2873 (2010)

[39] Pirinen, M., Donnelly, P., Spencer, C.C.: Efficient computation with a
linear mixed model on large-scale data sets with applications to genetic
studies. The Annals of Applied Statistics, 369–390 (2013)

[40] Zhou, X., Stephens, M.: Efficient multivariate linear mixed model algo-
rithms for genome-wide association studies. Nature methods 11(4),
407–409 (2014)

[41] Bickel, P.J.: One-step huber estimates in the linear model. Journal of the
American Statistical Association 70(350), 428–434 (1975)

[42] Reid, S., Tibshirani, R., Friedman, J.: A study of error variance estimation
in lasso regression. Statistica Sinica, 35–67 (2016)

[43] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288
(1996)

[44] Wilks, S.S.: Certain generalizations in the analysis of variance.
Biometrika, 471–494 (1932)

[45] Pillai, K.S.: Some new test criteria in multivariate analysis. The Annals
of Mathematical Statistics, 117–121 (1955)

[46] Hotelling, H.: A generalized t test and measure of multivariate disper-
sion. In: Proceedings of the Second Berkeley Symposium on Mathematical
Statistics and Probability, pp. 23–41 (1951). University of California Press

[47] Roy, S.N.: On a heuristic method of test construction and its use in mul-
tivariate analysis. The Annals of Mathematical Statistics 24(2), 220–238
(1953)



[48] Liu, Y., Xie, J.: Cauchy combination test: a powerful test with analytic
p-value calculation under arbitrary dependency structures. Journal of the
American Statistical Association 115(529), 393–402 (2020)

[49] Foygel, R., Drton, M.: Extended bayesian information criteria for gaussian
graphical models. Advances in neural information processing systems 23
(2010)

[50] Epskamp, S., Fried, E.I.: A tutorial on regularized partial correlation
networks. Psychological methods 23(4), 617 (2018)

[51] Matthews, B.W.: Comparison of the predicted and observed secondary
structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-
Protein Structure 405(2), 442–451 (1975)

[52] Golino, H.F., Epskamp, S.: Exploratory graph analysis: A new approach
for estimating the number of dimensions in psychological research. PloS
one 12(6), 0174035 (2017)

[53] Pons, P., Latapy, M.: Computing communities in large networks using ran-
dom walks. In: International Symposium on Computer and Information
Sciences, pp. 284–293 (2005). Springer

[54] Guttman, L.: Some necessary conditions for common-factor analysis.
Psychometrika 19(2), 149–161 (1954)

[55] Kaiser, H.F.: The application of electronic computers to factor analysis.
Educational and psychological measurement 20(1), 141–151 (1960)

[56] Horn, J.L.: A rationale and test for the number of factors in factor
analysis. Psychometrika 30(2), 179–185 (1965)

[57] Chen, J., Chen, Z.: Extended bayesian information criteria for model
selection with large model spaces. Biometrika 95(3), 759–771 (2008)


	I Main Text
	Introduction
	Results
	Motivating example
	Overview
	Simulation
	Real data application

	Discussion
	Tables
	Figures

	II Methods
	Setup in motivating example
	Review of remMap and sparse multivariate FARM
	Generalized multivariate FARM
	Regularized estimation
	Estimation of variance parameters
	Inference
	Single parameter inference
	Hypothesis test for pleiotropy

	Choice of precision matrix estimation
	Simulation
	Simulation I
	Simulation II

	Performance metrics
	METSIM dataset
	METSIM data analysis
	Algorithm




