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Abstract 1

The neural mechanisms of motor planning have been extensively studied in rodents. 2

Frontal cortical areas seem to encode upcoming choice, but limitations of typical 3

tasks make it challenging to determine whether activity represents a planned 4

movement direction in a self-centered reference frame or a goal position in a 5

world-centered reference frame. Here, we trained rats to make delayed 6

visually-guided orienting movements to six different directions, with four different 7

target positions for each direction, which allowed us to disentangle position versus 8

direction tuning in neural activity. We recorded single unit activity from the rat 9

frontal orienting field (FOF) in secondary motor cortex, a region involved in 10

planning orienting movements. We found neurons in the FOF that were tuned for 11

specific directions of movement and also neurons that fired while animals were at 12

specific port positions. Interestingly, after the visual cue onset, movement direction 13

tuning emerged earlier than target position tuning. At the level of individual 14

neurons, the current head position modulated the planned movement direction as a 15

gain field. These results suggest the FOF participates not only in the motoric 16

processes of sensorimotor behavior, which could happen strictly in egocentric 17

coordinates, but in more complex aspects like reference frame transformation or 18

maintaining a stable model of the world during movements. 19

Introduction 20

We use multiple reference frames to represent the world. For example, as you plan a 21

movement to reach for you morning coffee, the arm region of motor cortex may 22

represent the goal in an arm-centered reference frame and your frontal eye field 23
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represents the goal in an eye-centered reference frame. Other areas of your brain 24

may represent the cup relative to the room or table or the milk or sugar. During 25

these kinds of sensorimotor behaviors, sensory information initially is represented in 26

sensor reference frames and motor commands are finally represented in muscle 27

reference frames. Since those sensors and effectors are embodied, we can think of 28

these representations as being in egocentric (or ‘self-centered’) reference frames, i.e. 29

they are reference frames that move around with the subject as they move through 30

the world. However, our lived experience is in a allocentric (or ‘world-centered’) 31

reference frame: We feel as if we move around and make decisions in a stable world. 32

Moreover, allocentric representations are found all over the brain (Hafting et al., 33

2005, O’Keefe and Nadel, 1978, Taube et al., 1990, Wilber et al., 2014). Thus, a full 34

understanding of the neurobiology of motor-planning needs to address the question 35

of where and how these reference frame transformations take place (Andersen et al., 36

1990, 1985, Andersen and Mountcastle, 1983, Cohen and Andersen, 2002). 37

The neural mechanisms of motor planning in rodents have been extensively 38

studied in two-alternative forced choice (2AFC) and go-nogo tasks (Chen et al., 39

2017, Erlich et al., 2011, Sul et al., 2011). Using these tasks, detailed circuit 40

mechanisms have been mapped (Guo et al., 2017, 2014, Li et al., 2015) and models 41

of neural computation have been developed (Inagaki et al., 2019, Kopec et al., 2015, 42

Li et al., 2016) to explain neural mechanisms underlying the preparation and 43

execution of movements in the time scale of seconds. Converging evidence has 44

implicated the frontal orienting field (FOF), a subregion of the secondary motor 45

cortex (M2), as a cortical substrate for planning orienting movements (Erlich et al., 46

2011, Hanks et al., 2015, Olson et al., 2020), especially when those plans require 47

flexible sensorimotor processes (Erlich et al., 2015, Siniscalchi et al., 2016, Zhu 48

et al., 2021). FOF receives inputs from numerous cortical and thalamic sources, 49

including the posterior parietal cortex (Reep et al., 1994) and the retrosplenial 50

cortex (Yamawaki et al., 2016), both of which exhibit egocentric as well as 51

allocentric spatial representations (Wang et al., 2020). One would naturally ask: 52

does FOF represent the action goals in an egocentric or allocentric reference frame? 53

Given the limitations of typical behavioral paradigms for investigating motor 54

planning, the answer is largely unknown. If FOF is closer in the motor-planning 55

circuit to the effector, we would expect its representations to be egocentric. If FOF 56

is further upstream in the circuit, we would expect its representations to be 57

allocentric or see a mixture of representations. We previously speculated that FOF 58

might be a rodent analogue of the primate frontal eye field (FEF; Erlich et al., 59

2011). Since the FEF is generally believed to encode space in retinal or gaze 60

centered coordinates (Schall, 2009), our main hypothesis was that the rat FOF 61

would encode movement in an egocentric frame. 62

To test the reference frame of action plan representation in the FOF, we designed 63

a multi-directional, multi-positional orienting task that could distinguish allocentric 64

versus egocentric reference frames. Consistent with our hypothesis, we found 65

egocentric movement direction related activity during the delay. In contrast with 66
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our expectations, allocentric target positions were also encoded in the FOF. 67

Interestingly, the position encoding only represented the current position of the 68

animals, rather than participate in planning. These two reference frames were 69

multiplexed at the single-neuron level: task-related activity was best described as a 70

gain-field modulation of movement direction tuning by position. The presence of 71

both ego and allocentric representations suggests that FOF participates in reference 72

frame shifts (Caruso et al., 2018, Cassanello and Ferrera, 2007, Pouget and 73

Sejnowski, 1997) or contributes to error monitoring (Sommer and Wurtz, 2008). 74

Our results are largely consistent with the neurophysiological observations made 75

during motor planning in primates, suggesting shared circuit mechanism for spatial 76

cognition and sensorimotor computation across species, despite the substantial 77

differences in anatomical structures (Wise, 2008), sensory systems (i.e. differences in 78

visual acuity) and behavioral output (saccades vs. orienting) (Ebbesen et al., 2018). 79

Results 80

We trained rats to perform visually-guided orienting movements to 6 directions, 81

with each direction starting from 4 different start positions (Figure 1, Figure 82

S1). This design allowed us to dissociate neural activity associated with movement 83

direction from the potential influence of start and target position. In other words, 84

by having multiple start positions for each direction and vice-versa, we could 85

distinguish between self-centered and world-centered movement plans. 86

Each trial in the task began with illuminating a ‘start port’, randomly chosen 87

from one of the 7 operant ports, with both yellow and blue LEDs. Rats fixated in 88

the start port until a go sound. The start port LEDs extinguished at the start of 89

fixation, and the target port was illuminated with blue LEDs shortly after fixation 90

onset (0 - 0.29 s delay). For trials that started in the center, one of the six remaining 91

operant ports was chosen at random as the target. For the other start positions, one 92

of three adjacent ports was chosen as the target (Figure S1). Throughout the 93

paper we indicate directions (and direction tuning) with a blue-red colormap where 94

leftward directions are blue and rightward are red. Downward directions are darker 95

and upward directions are lighter (Figure 1C). For positions we use a green-orange 96

colormap with green associated with left-side ports and orange with right-side ports. 97

Lower ports are darker and higher port are lighter (Figure 1D). 98

After the go sound, rats left the start port and moved to the target port. The 99

target port LEDs extinguished once the animal arrived at the target port (or poked 100

in another port in error). If the rat poked in the correct port, the water delivery 101

port LED illuminated, a “correct” sound was played, and reward could be collected 102

at the reward port. If the rat poked into the wrong port, an “error” sound was 103

played and there was no reward (Figure 1A&B). Animals kept still during the 104

fixation period (Figure 1E; for more rigorous treatment for video analysis, see 105

later sections). A trial was considered incomplete if the animal did not poke into 106

any port after the start port within 15 seconds. Unless otherwise specified, fixation 107
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violations or incomplete trials were not included in analyses. Rats performed 318.89 108

± 7.76 (mean ± s.e.) trials in each 1.5 hour recording session (n = 104 sessions). As 109

expected from a visually-guided task, performance was good (% Correct = 94.05 ± 110

0.53%, mean ± s.e., n=104 sessions; Figure S2A). 111
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Figure 1. A visually-guided multi-directional orienting task in rats. A. Schematic of the
task. Each trial began with the onset of a pair of blue and yellow LED, cuing the rat to
nose poke into the start port. The start LED turned off upon arrival in the start port, and
after a short delay, a blue LED illuminated, indicating the target port. After a go sound,
the rat left the start port and poked into the target port. Water reward was delivered for
correctly performed trials. B. Timeline of a trial in a typical session. C. The color scheme
of the 6 movement directions. D. The color scheme of the 7 port positions. E. An example
of head position tracking data extracted from video using DeepLabCut. Each line is the
horizontal head coordinate during a trial, in unit of pixels from video frames. Only trials
starting from the central port are shown. During the fixation period the head position does
not predict their upcoming movement.

FOF neurons encode both egocentric movement directions 112

and allocentric head positions. 113

Consistent with previous findings, there were neurons selective to movement 114

direction during the planning phase (Figure 2A) and the execution phase 115

(Figure 2D). When firing rates were conditioned on both direction and target 116

position, direction tuning of the three example neurons in the left column seemed to 117

be modulated by target position (Figure 2A-I). Surprisingly, we also found 118

neurons that were tuned to the position of the animal (Figure 2J-L) as well as 119

neurons that seems to code the conjunction of position and direction (Figure 120

2M-R). To quantify the relative strength of tuning, we compared generalized linear 121

models (GLMs) of each neurons activity fit to each of the task variables. We fit 122

spike counts in a 500 ms window to 3 GLMs, where the independent variable was 123
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Figure 2. Example neurons with egocentric and allocentric spatial representation. A-C
An example neuron more modulated by the direction than by the target position. A. Raster
plots and PETHs aligned to the go sound and sorted by movement directions. The top 6
panels show spike rasters grouped by the 6 movement direction, indicated by arrows on the
left side of the panels. Circles in each raster panel indicate the time of the visual cue onset
on each trial. The bottom panel shows the PETHs of the spikes generated by a causal
half-Gaussian kernel with an SD of 200 ms. The shaded areas of the PETHs indicate ±
s.e.. The grey bar at the bottom of the panel indicates the time window to compute the
firing rate in each trial type in C. B. Raster plots and PETHs of the same cell and same
alignment as in A, but sorted by target position. Target positions are color coded as in
Figure 1D. Circles in each raster panel indicate the time of visual cue onset on each trial.
C. The maximum a posteriori estimated firing rate for each trial type, where the prior was
a Poisson distribution whose mean was estimated from all trials. D-F and G-I, two more
example cells as in A-C. J-L, M-N and P-R, example neurons more modulated by the
target position than direction. Neural activity was aligned to the target poke. Circles in
each raster panel indicated the time of the go sound.
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the start position, the direction or the target position. The three example neurons 124

in the right column were more tuned to target position than movement direction 125

(Figure 2J-R). 126

Egocentric direction was encoded earlier than the allocentric 127

target position. 128

From visual examination of neural activity, it is apparent that there is considerable 129

heterogeneity in both the tuning to different task variables and also in the dynamics 130

of the tuning across the trial. In order to get a holistic view of the tuning across the 131

trial at the single neuron level, we used Poisson generalized linear models (GLMs) 132

to fit the spike counts of each neuron using either start position, direction or target 133

position, in four 300 ms time windows as follows: “pre-cue”, -300 ms to 0 ms 134

aligned to the visual cue onset; “post-cue”, 0 ms to 300 ms aligned to the visual cue 135

onset; “go”, 0 ms to 300 ms aligned to the go sound; “arrival”, -150 ms to 150 ms 136

aligned to the target poke. The spatial variables (start, direction, target) were 137

coded as factors to avoid assuming any specific functional form of tuning. Of the 138

1224 neurons (from 132 sessions in 4 rats), 541 (44%) were selective to one or more 139

task variable in at least one time window. In our task, the three variables (start, 140

direction and target) are correlated. For example, if the animal starts from a port 141

on the left, it will be likely to move to the right. In other words, the start position 142

conveys information about the set of possible targets and directions before the onset 143

of the visual cue. As such, a neuron purely tuned for direction could be spuriously 144

found to be tuned for start or target position. Our first approach in addressing this 145

issue was to estimate which of the three variables best explained the neural activity. 146

We found most neurons best tuned to the start position early in the trials. After the 147

visual cue onset, direction tuning increased. Target position tuning emerged later 148

than movement direction, and peaked at target poke (Figure 3A). This result is 149

striking, given that the appearance of a visual target cue provides information about 150

the direction required to move to it, as well as the position of the target. To 151

validate that this method was effective, we generated surrogate spike counts 152

(matched to the tuning and firing rates of real neurons) and found that the false 153

positive rate (e.g. incorrectly labeling a ‘start’ neuron as a ‘direction’ or ‘target’ 154

neuron) to be less than 10% (Figure S6C). However, this ‘best variable’ approach 155

fails to accurately describe neurons that have mixed selectivity, an oversight that 156

will be redressed later in the paper. We then extended the GLM analysis by sliding 157

time windows aligned to task events, and the same temporal trend was captured by 158

the R2s of the corresponding GLMs across time (Figure S6A). 159

We further examined the geometry of spatial representation on a continuous scale 160

using pseudopopulation decoding. We pooled all the neurons across sessions where 161

there were at least 8 trials for each start position, direction or target position (1197 162

neurons, 99 sessions, 3 rats) to construct the pseudopopulation. A substantial 163

portion of the variance in the FOF population activity was related to the spatial 164
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Figure 3. Temporal profile of start position, direction and target position encoding in the
FOF population. A. The fraction of neurons best selective to the start position (red), the
direction (green) or the target position (blue) in 4 time windows (see main text or Methods
for definition). Shaded areas indicate the 95% binomial confidence intervals. “Pre-cue”, -
300 to 0 ms to visual cue onset. “Post-cue”, 0 to 300 ms to visual cue onset. “Go”, 0 to 300
ms to go sound. “Arrival”, -150 to 150 ms to target poke. B. Predicted coordinates of start
position, movement vector and target position in an example pseudopopulation decoding
using all neurons with enough trials for each type (n = 1194). Each small circle indicates
the predicted coordinates in a pseudo trial, where the color indicates the pseudo trial class.
Each large circle indicates the coordinates and the diameter of a port on the port wall. C.
Decoding errors for each pseudopopulation across time aligned to the go sound for the 3
spatial variables. Decoding error is defined as the Euclidean distance between the predicted
and the actual coordinates. Each row is a different pseudopopulation where neurons were
resampled with replacement. Red lines indicate the mean Euclidean distance across the 100
pseudopopulations. D. Mean ± s.d. of the difference of decoding errors between two spatial
variables across the 100 peudopopulations. Positive difference indicates the better decoding
of the second variable, and vice versa. E. Decoding errors with cross-window decoding.
Colors of the heat-maps indicate the mean Euclidean distance between the decoded and
true spatial coordinates, averaged across 100 pseudopopulations. The decoders were trained
at one time window and tested at another. In the last panel the multivariate linear model
was trained for start position and decoded for target position. Contours, p < 0.01 (extreme
pixel-based test).
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variables: The projection of the population activity onto its first 4 principle 165

components represented the horizontal and vertical spatial coordinates (Figure 166

S7). We decoded the coordinates of each spatial variable with a multivariate linear 167

decoder, using only the first 4 principle components of the pseudopopulation 168

activity patterns in 300 ms time windows with two-fold cross validation (Figure 169

3C-E, Figure S7D). We defined the decoding error as the Euclidean distance 170

between the predicted and the actual spatial coordinates. The decoding was 171

faithful: The errors were as small as the radius of the port (around 11 mm) at the 172

best time window for each spatial variable. Put in other words, the geometry of the 173

port wall was embedded in a linear subspace of the FOF activity (Figure 3C&D). 174

On the population level, the mean errors across pseudo-trials decreased 175

sequentially for start position, direction and target position decoding (Figure 176

3C&D). The quality of decoding varied across different pseudopopulations, which 177

can obscure the relative latency of decoding of different task variables. To better 178

assess the latency, we took the difference in decoding between variables for each 179

pseudopopulation, and then examined the average of these differences across the 180

pseudopopulations (Figure 3D). This analyses demonstrates that at the time of 181

the go cue, direction decoding from the population is significantly better than target 182

decoding, consistent with results from single neuron analysis. 183

To investigate the stability of representation across the trial, we decoded 184

pseudopopulation activity at one time window with decoders trained at a different 185

time window (Figure 3E). We found that start position tuning was stable across 186

much of the trial. Interestingly, decoders trained with start positions during 187

fixation could accurately decode target positions around target poke, suggesting a 188

consistent coding for the current head position throughout the trial (Figure 3E). 189

Single FOF neurons tracked the allocentric current head 190

position. 191

We reasoned that single neurons that had consistent tuning for start position and 192

target position should underlie the “current position” coding observed in the 193

pseudopoulation analysis. In fact, many neurons tuned to the target position 194

around target poke were also tuned to the start position early in the trials, and the 195

tuning was consistent (Figure 4A-B). We quantified this consistency using the 196

Pearson correlation between start position tuning in the “pre-cue” window and 197

target position tuning in the “arrival” window, denoted as the “start-target tuning 198

correlation” (Figure 4C). Among neurons selective to both the start and the 199

target position (p < 0.05 for both the start and the target GLMs, n = 174), the 200

mean start-target tuning correlation was 0.656, [0.607,0.703] (mean, [95% CI], 201

p < 10−3, permutation test) (Figure 4D). 202

To investigate the temporal dynamics of the correlation across the trial, we split 203

the trials into two halves and computed the correlation between start tuning in one 204

half of the trials and target tuning in the other half (Figure 4E). Then we 205
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computed the cross-temporal correlation of start position tuning and target position 206

tuning respectively in a similar fashion (Figure 4F&G). Among neurons selective 207

to both the start and the target position (p < 0.05 for both the start and the target 208

GLMs, n = 174), start position tuning early in the trial and target position tuning 209

around target poke were positively correlated (Figure 4E). The peak of mean 210

start-target tuning correlation among these neurons was 0.555, on the same scale as 211

the target-target tuning correlation, which was 0.579. The consistency of start 212

position and target position tuning were not limited to this selected group of 213

‘significant’ neurons. Among all the neurons with spatial selectivity (p < 0.05 for 214

any one of the GLMs, n = 808; note, we used a less strict threshold here than we 215

did for Figure 3), the start tuning correlation, the target tuning correlation, and 216

the start-target tuning correlation were all positively correlated (Figure S8). In 217

other words, neurons tuned to the start position were also likely to be tuned to the 218

target position, and the start and target tuning were likely to be consistent. These 219

observations collectively indicates a place-cell like encoding of current head position 220

in the FOF. One would be surprised about a significant correlation between start 221

position tuning late in the trial with target position tuning early in the trial. This 222

seemed strange, since target information was not available before the visual cue 223

onset. This was due to the correlation between start position and target position in 224

our task, actually mirroring the strong correlation between early start tuning and 225

late target tuning. 226

To identify the time when start position encoding transit into target position 227

encoding, we fit the neural spike counts across time to the start and the target 228

GLMs, and defined the time of transition as the time when the R2 of the start 229

position GLM first became smaller than the target position GLM (see Methods for 230

details). For most of these neurons, the switch time lied between the go sound and 231

the target poke time, although a few neurons switched before the go sound or after 232

target poke (Figure 4H). 233

Spatial preference of FOF neurons. 234

The numbers of neurons preferring each start position and target position spanned 235

across all the ports (Figure 4I-J). The preferred positions were not uniformly 236

distributed (χ2(6, N = 202) = 17.35, p = 0.009 for start position, 237

χ2(6, N = 209) = 48.39, p = 9.86× 10−9 for target position). Consistent with the 238

current head position coding, the distribution of the preferred start position among 239

start position selective neurons were similar to the distribution of preferred target 240

position among target position selective neurons (χ2(6, N = 411) = 9.67, p = 0.139, 241

Figure 4I&J). 242

To our surprise, the number of neurons with preferred directions on the left-right 243

axis was significantly larger than those with preferred directions on the up-down 244

directions (χ2(1, N = 274) = 76.91, p < 10−5, Figure 5A&B). Interestingly, rats 245

mostly made errors into the same left/right side as instructed (Figure S2B). For 246

9/43

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2022. ; https://doi.org/10.1101/2022.11.10.515968doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.10.515968
http://creativecommons.org/licenses/by-nc-nd/4.0/


A B C D

E F G

      Mean r, n=174

H

0 0.25 0.5
-1 0 1

Go aligned (s)

50

10
0

15
0

# 
ne

ur
on

s

R²Start - R²target 

-0.2

0

0.2

-0.5 0 0.5
Start-target

tuning correlation

0

50

100

# 
ne

ur
on

s

n=174, both selective
n=289, only 1 selective

start-target
switch time

arrival time

Start position

n=202/1224
Pre-cue window

0

50

# 
ne

ur
on

s

Target position

n=209/1224
Arrival window

0

50

I

J

Position preference

# 
ne

ur
on

s

CueGo Arrive

C
ue

G
o

Ar
riv

e

S vs T S1 vs S2

Target

St
ar

t

Start

St
ar

t

Target

Ta
rg

et

T1 vs T2

0 5 10
Spks/s 

 Start position

0

5

10

Sp
ks

/s
 

 T
ar

ge
t p

os
iti

on

Figure 4. FOF neurons encoded the current head position. A. Raster plots and PETHs
of an example neuron aligned to the cue, grouped by start position. The shaded grey area
indicates the time window to calculate the x-axis firing rate in C. B. The same neuron
aligned to target poke, grouped by target position. The shaded grey area indicates the time
window to calculate the y-axis firing rate in C. C. The correlation between start position
tuning and y position tuning in the example neuron, where r denotes start-target tuning
correlation of this neuron as in D. Purple line denotes the total least square fit. D. The
distribution of the start-target tuning correlation. Black bars are for neurons selective to
both start position and target position, and white bars are for neurons selective to only
one of the two variables (black, 0.66, [0.61, 0.70]; white, 0.29, [0.25, 0.34], 95% CI of the
mean). Triangles indicate the means. E. The start-target tuning correlation in warped
time windows aligned to the visual cue, the go sound and the arrival, averaged across
neurons with both start and target selectivity (n = 174). The white contours indicate the
areas where correlation is significantly larger than 0 (p < 0.05 with Bonferonni correction).
Different from C and D, these correlations were calculated between start tuning in half of
the trials and target tuning in the other half of trials, and vice versa, then took the average.
F. Similar to E, but for the mean Pearson correlation between pairs of time windows for
start position tuning in one half of trials versus the other half. G. Similar to F, but for
target position tuning. H. Time of transition from start position coding to target position
coding in single neurons. The color of the heat-map indicate the difference between R2s
of the start position GLM and the target position GLM, calculated at each 300 ms time
window aligned to the go sound. Each row was a neuron (n = 174). The red dots indicate
the time of switching from R2

start higher to R2
target higher (see Methods for details). The

white crosses indicate the averaged time of target poke for that session. I. The number of
neurons preferring each start position in the “pre-cue” time window, among cells that had
significant start position selectivity in the “pre-cue” window (p < 0.01, permutation test
for the start position GLM). J. The number of cells preferring each target position in the
“arrival” time window, among cells that have significant target position selectivity in that
window (p < 0.01, permutation test for the target position GLM).
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example, when instructed to top-left, errors were usually to the middle-left or 247

bottom-left ports but rarely to the right. The coincidence between neural tuning 248

bias and behavior bias tempts us to speculate that rats may relatively 249

under-represent vertical directions compared to horizontal directions. Consistent 250

with previous findings, there was no significant difference between the numbers of 251

neurons preferring the ipsilateral and the contralateral side (χ2(1, N = 274) = 0.88, 252

p = 0.34, Erlich et al., 2011). 253
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Figure 5. Direction preference of FOF neurons. A. The preferred direction of 274 cells
that had significant direction selectivity in either the “post-cue” or “go” time windows
(p < 0.01, permutation test for the GLM), in sliding windows aligned to the go sound (50
ms per bin, 300 ms bin size). The alignment was causal, i.e. time 0 indicated -300 to 0 ms.
The saturation of the colors indicate the relative amplitude of the R2 of the direction GLM,
and the neurons were sorted by the preferred direction in the “go” time window. B. The
distribution of preferred direction in the “go” time window (0 to 300 ms after the go sound).
C. Pearson correlation of direction tuning curves at one time versus another, among same
neurons as in A and B. Color indicate the mean correlation across these neurons. White
contour indicates the area with where correlation was significantly larger than zero with
Bonferroni correction.

Mixed selectivity of movement direction and head position. 254

In previous analyses, we examined the encoding and decoding of one spatial variable 255

at a time. Nonlinear mixed selectivity supports flexible readout by allowing 256

high-dimensional representation of information from multiple sources (Rigotti et al., 257

2013). For example, a nonlinear transformation is required to compute the length of 258

a 2-D vector (
√
A2 +B2), and a linear readout of the distance is only feasible if A 259

and B are encoded in a space with 3 or more dimensions. In primates gaze shifts, 260

nonlinear interactions of the saccade direction and the initial eye-in-orbit position in 261

the frontal eye field has been observed (Andersen et al., 1990, 1985, Andersen and 262

Mountcastle, 1983). The nonlinear coding was specified as the gain field model, 263

where the initial position multiplicatively influenced the bell-shaped direction 264

tuning. The gain field model has been suggested as a mechanism for reference frame 265

transformation (Pouget and Sejnowski, 1997, Zipser and Andersen, 1988). Thus, to 266
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compare the FOF activity with previous results from FEF (and other regions) we 267

tested whether FOF neurons encoded spatial variables with pure, additive or 268

multiplicative tuning. 269

To determine which model best described single neuron activity in the FOF, we 270

fit spike counts of each neuron in the 0 to 500 ms time window aligned to the visual 271

cue onset to 4 functional forms: pure direction tuning (Eq. 1), pure position tuning 272

(Eq. 2), an additive model (Eq. 4), or a gain-field model (Eq. 3)(Figure 6A-C). 273

The fraction of neurons that had larger CV R2 for the gain field model than any 274

other model was the highest (Figure 6D). Pairwise model comparison revealed 275

that the cross-validated R2s (CV R2s) for the gain field model were significantly 276

larger than other models, among neurons whose average CV R2s for the 4 models 277

were larger than 0.05 (permutation test, Figure 6E, Table 1). The result was 278

qualitatively the same for spike counts in the -300 to 500 ms window aligned to the 279

go sound, and in the 500 ms window with maximum cross-trial-type variance 280

aligned to the visual cue onset. Thus the majority FOF neurons had nonlinear 281

mixed selectivity to the self-centered and the world-centered spatial variables. 282

M1 M2 p value atanh(M1)− atanh(M2) Mean, [95% CI]

Gain field Additive 2× 10−5 0.0129, [0.0073, 0.0229]
Gain field Direction 2× 10−5 0.0617, [0.0544, 0.0774]
Gain field Start 2× 10−5 0.0753, [0.0650, 0.0960]
Additive Direction 2× 10−5 0.0488, [0.0430, 0.0588]
Additive Start 2× 10−5 0.0624, [0.0529, 0.0775]
Direction Start 0.02 0.0136, [0.0025, 0.0259]

Table 1. Difference of the Fisher-transformed CV R2s between model pairs for
neurons whose mean CV R2 > 0.05 for all four models. p values were computed by
bootstrapping the atanh(M1)− atanh(M2) distribution using 105 bootstraps.

Head position explained FOF activity better than the body 283

posture. 284

Neurons in M2 have been reported to encode the body posture rather than the 285

upcoming movement in rats foraging in large arena (Mimica et al., 2018). We thus 286

tested whether the spatial encoding we observed were actually representing body 287

posture. We analysed video and extracted the coordinates of the animals’ head, ears 288

and the hip in 58 sessions, which had 638 single units. We used the angle of the 289

head-hip axis relative to the behavior box as a proxy for posture, denoted as the 290

body angle (Figure 7A). Unsurprisingly, we found that body angle was strongly 291

correlated with the current head position. When a rat’s head was in one of the 292

right-side ports, their body was also angled to the right, and likewise for the 293

left-side ports (Figure 7B, 0.616, [0.578, 0.648],mean, [95% CI] for the linear 294

model of θ ∼ port in 59 sessions). 295
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Figure 6. The spatial selectivity of FOF neurons were best explained by the gain field
model. A. Raster plots and PETHs of an example neuron. Trials were grouped by the start
position (left panel), the direction (middle panel) and the target position (right panel).
Spikes were aligned to the visual cue onset. PETHs were generated by a causal half-
Gaussian Kernel with an SD of 400 ms. The gray bar at the bottom indicates the 500 ms
time window after the visual cue onset, the time window used for other panels in this figure.
B. Estimated mean firing rate in each movement trajectory using a maximum a posterior
estimator, same as in Figure 2. C. Predicted firing rates of four fit models (lines) and the
mean and s.e.(circles and error bars) of firing rates in each trial condition. CV R2, cross-
validated R2. D. Left axis, fraction of neurons best fit by the model, among neurons whose
mean cross-validated R2s over the 4 models was larger than the x-axis indicated value. Best
fit was defined as having the largest cross-validated R2 among the 4 models. Error bars were
95% confidence intervals of the binomial distribution. Right axis, neurons that crossed the
mean CV R2 criteria for each x-axis value. **, p < 0.001. *, p < 0.05. E. Each panel plots
the cross-validated R2s of the x-axis model versus the y-axis model. Each circle indicates
a neuron. The red line indicates the total least square fit to the data. The dashed black
line marks the diagonal. All single units were included in the analysis (n = 1224), but each
panel only showed neurons whose mean of cross-validated R2s in the 4 models were larger
than 0.05 (n = 199). Statistical test and total least square fitting were also based on these
neurons. P values indicates the significance against the null hypothesis that the difference
between the Fisher-z transformed cross-validated R2s in the x-axis model and the y-axis
model was not significantly different from zero (permutation test of the mean). The mean
R2 in the x-axis model was larger than the y-axis model in all of these panels.
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Figure 7. The Head position explained FOF activities better than the body posture.
A. The body angle in video frames from the fixation period in 3 trials starting from the
central port in the same session. B. Distribution of body angles during fixation for each
start port in the same session as in A. The start ports are color coded. Black lines in
the violin plots indicate the group means. Dashed lines indicate the separations of the
3 groups of body angles with equal numbers of trials. C. Two possible models of the
causal relationship among the neural activity, the head position and the body posture. In
the position model (left), both neural activity and posture were causally modulated by the
experimentally manipulated head position. In the posture model (right), neural activity was
causally modulated by the head position only through the mediation of posture. The two
causal graphs were formulated as two generalized linear mixed effect models, where posture
was quantified with the body angle θ. D. The cross-validated R2s of the position model
versus the posture model. Each circle is one neuron that had significant start position
among sessions with video tracking. P-values were against the null hypothesis that the
mean (position R2- posture R2) across neurons was not significantly different from zero.
E. The body angle when moving from the central port towards different directions across
time aligned to the go sound. Each thin line was a trial (n = 76). Each thick line was the
average of trials into the 6 directions. Data was from the same example session as in A
and B. F. The distribution of body angles when the nose was in the central port (n = 76)
plotted against the movement directions (color coded). Data was from the same example
session as in A, B and F. G. The significance level of the movement direction modulating
the body angle across time aligned to the go sound, where the effect of start position was
captured in the random effect. Line and error bars, mean ± s.d. of the p values over the
58 sessions.
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To identify whether neural activity was tuned to the head position versus posture 296

we took a causal inference approach (Neal, 2020). Note that the head position is 297

under experimental control in our task (in contrast to Mimica et al., 2018). Also, we 298

have already established that there is a correlation between head position and 299

neural activity in the FOF. Thus, there are really only two relevant causal models to 300

consider. First, the ‘position model’, where neural activity is causally affected by 301

the head position, and correlation with posture is mediated by a ‘backdoor path’ 302

through head position (Figure 7C, left). In this model, conditioning on the body 303

posture will not alter the correlation between neural activity and the head position. 304

In the second ‘posture model’, the correlation of neural activity with position is 305

mediated by the influence of posture on neural activity (Figure 7C, right). In 306

this scenario, the effect of posture on neural firing does not depend on head position. 307

Conditioning on head position will not remove the correlation between posture and 308

neural activity, but conditioning on posture will remove the correlation between 309

head position and neural activity. We found that the position model was as good or 310

better than the posture for almost all neurons with position selectivity (Figure 311

7D, p = 2× 10−5, n=106, permutation test). In contrast to the correlation between 312

body angle and position, the body angle was not significantly correlated with the 313

movement direction until around 350 ms after the go sound (Figure 7E-G). Given 314

that the upcoming movements were encoded before the go sound (Figure 2A), 315

spatial encoding in the planning phase could not be explained by body posture. 316

Discussion 317

Motor planning in rodents has previously been studied with tasks where the action 318

space is either very high dimensional (such as navigating a maze or an open field) or 319

very low dimension (such as 2AFC or go-nogo tasks). We took an intermediate 320

approach: We studied planning in an orienting task that involved movements across 321

6 directions and 7 head position, and also provided precise experimental control of 322

the timing of the task. We observed encoding of both egocentric and allocentric 323

spatial parameters at the single-neuron and population level in the FOF. The 324

encoding of allocentric start position, egocentric movement direction and allocentric 325

target position emerged sequentially over the trial. This is striking, given that the 326

visual target cue simultaneously conveys egocentric and allocentric information. In 327

single neurons, tuning to the start position during fixation was correlated with 328

target position tuning at the time of target poke, suggesting that those neurons 329

tracked the animals’ current head position. The activity of the majority of cells 330

were best explained by a gain field model, where Gaussian direction tuning was 331

modulated by position, compared to single-task-variable models and an additive 332

model. 333

Subjects made few errors in the task, but when they did, they mostly made 334

up/down errors (Figure S2B). We also observed an over-representation of left 335

versus right than up versus down direction coding in the FOF (Figure 5). 336
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Although we do not have evidence for a causal relationship between these two 337

observations, one might speculate that the left/right over-representation in the FOF 338

might be behaviorally relevant (Jovalekic et al., 2011). In contrast to our findings, 339

there were more pitch (up/down) tuned neurons than azimuth (left/right) tuned 340

neurons reported in the M2 in rats foraging in a large arena (Mimica et al., 2018). 341

There were two key differences between our experiment and theirs: they recorded 342

from a larger anterior-posterior range of M2; and our rats were under tight 343

experimenter control whereas their rats were foraging freely. Also, in our task, all 344

visually-guided movements had a horizontal component which might have biased 345

our results. It would be interesting to record the same neural populations in two 346

tasks: one like ours and one like theirs to see if neurons in M2 can dynamically shift 347

their tuning based on task demands. 348

Our task was inspired by paradigms widely used in non-human primates to study 349

the neural mechanism of saccadic eye movements (Bruce and Goldberg, 1985). 350

Rodent head orienting is functionally similar to the primate gaze orienting as a form 351

of overt attention in that it redirects the sensory fields of vision, audition, olfaction 352

and whiskers (Bush et al., 2016, McCluskey and Cullen, 2007, Monteon et al., 2010). 353

Based on similarities in connectivity and function, the rodent FOF is considered be 354

analogous to the primate FEF (Ebbesen et al., 2018, Erlich et al., 2011, Reep et al., 355

1987, 1990), but a strict correspondence between rodent and primate frontal regions 356

may not exist (Barthas and Kwan, 2017, Wise, 2008). That said, our finding of gain 357

field modulation of movement direction by initial head position is similar to the 358

observation that initial gaze direction gain modulates the planned saccade direction 359

in FEF (Cassanello and Ferrera, 2010, 2007). 360

Neurons in the primate FEF have mostly been reported to have egocentric 361

spatial representations (but see Bharmauria et al., 2020). However, the body 362

positions in primate experiments were typically restricted by a primate chair, 363

whereas our rats moved around in the box during the task, making the world 364

reference frame more stable than the body reference frame. Recent work in freely 365

moving monkeys found widespread world-centered coding across frontal and 366

prefrontal cortex (Maisson et al., 2022), including supplementary motor area and 367

dorsolateral prefrontal cortex. Although FEF was not one of the regions they 368

recorded from, the finding suggests that allocentric representations are common 369

across the brain, when animals’ movements are not restricted. 370

Our result builds on a recent interesting finding of allocentric modulation of 371

egocentric movement planning in rat M2 (overlapping anatomically with the region 372

we define as FOF; Olson et al., 2020). There are three main advances of our result, 373

compared to theirs. First, we use a vertically oriented port wall instead of maze. 374

This allowed us to demonstrate that the FOF contains 2-dimensional maps 375

(horizontal and vertical planes) for both position and directions (Figure 3B). 376

Second, their animals were goal directed, but were not explicitly cued on each trial 377

about the goal location or direction while they navigated along a triple T-maze. In 378

our task, the target was visually cued on each trial during a fixation period, which 379
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gives us good experimental control over planning versus execution phases. This 380

allowed us to demonstrate that planning is done preferentially in egocentric 381

coordinates (Figure 3). Finally, we determined that modulation of direction 382

tuning by position was via a multiplicative gain field (Figure 6). 383

Gain modulation is a nonlinear process in which neurons combine information 384

from two or more sources, evident in a plethora of primate cortical and subcortical 385

brain regions (for review, see Salinas and Sejnowski, 2001). It is a powerful 386

computational mechanism for coordinate transformation, such as vector summation 387

and subtraction (Pouget and Sejnowski, 1997, Salinas and Abbott, 1995, Zipser and 388

Andersen, 1988). In our task, summation of the start position coordinates and the 389

egocentric movement vector gives the target position coordinates. We observed all 390

these variables to be coded in the FOF. In some neurons, target position coding 391

emerged before the rat arrived at target, suggesting that it may have been internally 392

computed rather than being due to sensory feedback related to the target poke (i.e. 393

proprioceptive, visual and whisker inputs related to poking in the target). However, 394

whether the target position coding was locally computed in FOF from the start 395

position and movement vector coding is unknown. It could also be computed in 396

other brain areas, such as the posterior parietal cortex or retrosplenial cortex, which 397

contain mixtures of egocentric and allocentric encoding (Wang et al., 2020). Error 398

trial analysis would be helpful at determining whether the target encoding in FOF 399

was computed from the start and direction coding since it would allow us to ask 400

whether target encoding was more like where the animal went vs. where we would 401

expect the animal to go based on start and position decoding. However, our 402

visually-guided task had a low error rate which hampered our ability to perform this 403

analysis. 404

Our results, which were quite surprising to us, are largely consistent with decades 405

of primate research into the neurobiology of motor planning (Andersen et al., 1985, 406

Bharmauria et al., 2020, Caruso et al., 2018, Salinas and Sejnowski, 2001, Wang 407

et al., 2007, Zipser and Andersen, 1988) suggesting conserved neural computations 408

for motor planning across species. However, despite decades of research, a full 409

understanding of phenomena like gain fields and reference-frame shifts has been 410

hampered by a lack of tools for precise perturbations for circuit dissection in 411

primates (cited from Shenoy et al., 2013). In contrast, the neural circuits 412

underlying basic phenomena of motor planning (i.e. spatial memory and movement 413

initiation in 2AFC tasks), have been revealed in rodents models (Bharmauria et al., 414

2020, Duan et al., 2021, Guo et al., 2017, Inagaki et al., 2019, Kopec et al., 2015, Li 415

et al., 2016, Yang, 2022). Our behavioral paradigm and neurophysiological 416

observations provide a basis for employing the latest tools of rodent systems 417

neuroscience to make progress in understanding all the phenomena associated with 418

ethological motor planning. 419
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Materials and Methods 420

Subjects 421

Three adult male Sprague-Dawley rats and one adult male Brown Norway rat (Vital 422

River, Beijing, China) was used in this study. For a portion of the experiments 423

presented here, rats were placed on a controlled-water schedule and had access to 424

free water 20 minutes each day in addition to the water they earned in the task. For 425

some experiments, rats were given free access to a 4% citric acid solution (Reinagel, 426

2018), in addition to the normal water they earned in the task. They were kept on a 427

reversed 12 hour light–dark cycle and were trained during their dark cycle. Animal 428

use procedures were approved by New York University Shanghai International 429

Animal Care and Use Committee following both US and Chinese regulations. 430

Behavior 431

Rats were trained in custom behavioral chambers, located inside sound- and 432

light-attenuated boxes. Each chamber (23× 23× 23 cm) was fit with a vertical 2-D 433

port wall that had 7 operant ports and 1 reward delivery port, with speakers located 434

on the left and right side (Figure 1). Each operant port contained a pair of blue 435

and a pair of yellow light emitting diodes (LED) as visual cues, as well as an infrared 436

LEDs and photo-transistors for detecting rats’ interactions with the ports. The 437

reward delivery port contained a stainless steel tube for delivering water rewards. 438

The task timeline is described in detail in Results and Figure 1. In one rat 439

(2147), in addition to the main type of timeline, which we denote as “target during 440

fixation”, there were two other types of trial timelines: “target before fixation” and 441

“target after go”. These trial types are described in detail in Figure S4. 442

The duration of the fixation period was dynamically adjusted for each animal, 443

ranging between 0 ∼ 1.2 s (Figure S2). A trial was considered a fixation violation 444

if the rat withdrew from the start port before the go sound. In fixation violation 445

trials, an “error” sound was delivered and the trial was aborted. 446

In the final behavioral stage, three rats (subject ID 2068, 2095, 2134) moved in 6 447

directions and 30 movement trajectories, and one rat (subject ID 2147) moved in 4 448

directions and 16 movement trajectories (Figure S1). 449

In rat 2068, 2095 and 2134, there were two session types interleaved across days: 450

the “reference” sessions and the “distance” sessions. In the “reference‘’ sessions, 451

each of the 6 directions had 4 movement trajectories of the same distance. In the 452

“distance” sessions, each of the 6 directions had 3 movement trajectories involving 3 453

ports, where the distance of one movement trajectory is twice of the movement of 454

the other two(Figure S1). 455

In rat 2147, there were 4 movement directions, from and to 7 operant ports. 456

Each direction had 4 trajectories of the same distance, summing up to a total of 16 457

trajectories (Figure S1). 458
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Behavior training pipeline 459

Rats went through a series of training stages, which had mainly two phases: (1) the 460

operant conditioning phase, and then (2) the multi-directional orienting phase. 461

In the operant conditioning phase, rats became familiar with the training 462

apparatus and learned to do a one step poke into the illuminated choice port. The 463

first stage was to learn to collect reward from the reward delivery port. Each trial 464

began with the illumination of the reward port, and water reward was immediately 465

delivered upon port entry, followed by a short timeout period before the start of 466

next trial. After the rats learned to poke into the reward port reliably (not missing 467

any reward for 6 trials in a row), they proceeded to the next training stage. In the 468

second stage, we turned on the LED for several random ports at the beginning of 469

each trial. Rats had to first poke into any illuminated choice port before gaining 470

water reward from the reward delivery port. The number of the illuminated port 471

will gradually decrease to one after several trials when animals started to learn. 472

After animals were able to poke the only illuminated choice port successfully for 6 473

trials in a row, we will upgrade them to the second training phase. 474

In the first stage of the multi-directional orienting phase, the start port was 475

always the central port, and the target port was one of the 6 surrounding ports. 476

Rats needed to poke into the start port to trigger the target port light, and then 477

poke into the target port after a delay. Trials of the same movement trajectory was 478

repeated until the animal could do several correct trials in a row. The training of 479

“fixation” at the start port was introduced in this phase. Fixation means the rat 480

had to keep its nose in the start port for a given time period (typically > 0.5s). 481

Fixation duration was initially 0.02 s early in the training, and was gradually 482

increased based on an adaptive steps method: the fixation duration would increase 483

on a successful fixation, and decrease when the fixation failed. We trained subjects 484

to perform fixation for at least 0.6 s before the surgery, and fixation duration always 485

jittered across trials in recording sessions. However, the speed to recover fixation 486

after the surgery varied across subjects, thus we manually adjusted the fixation 487

duration for each subject. In 2095, the mean fixation period in each session was 488

shorter than 0.2 s for around 30% of sessions. In other subjects, the mean fixation 489

period was typically longer than 0.4 s (Figure S2 G). In the second stage of the 490

training phase, the start port could be any one of the 7 ports, and the target port 491

was one of the 6 remaining ports. Rats were trained on the “target during fixation” 492

trial class. Rat 2147 was then introduced to the “target before fixation” and “target 493

after go” trial classes, described in Figure S4. 494

Electrophysiology 495

Rats were unilaterally implanted with Cambridge Neurotech microdrives and 64 496

channel silicon probes. To target the frontal orienting field (FOF), silicon probes 497

were placed at anteroposterior (AP) and mediolateral (ML) coordinates as following: 498

rat 2068, AP +2.2, ML +1.5; rat 2095, AP +2.0, ML +1.5; rat 2134, AP +2.5, ML 499
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-1.5; rat 2147, AP +2.2, ML -1.4 (Figure S3). The probes were placed initially 0.5 500

mm below the brain surface and were advanced 50 to 100 um every 1 to 4 days, 501

after each recording session. The same neurons could be sampled across sessions. 502

Analysis of neural data 503

Spike sorting Spike sorting was performed with automatic clustering and manual 504

curation in JRClust. Single units were defined as those with signal-to-noise ratio 505

larger than 5, fraction of inter-spike interval smaller than 1 ms less than 1% , and 506

within-trial firing rate larger than 1 Hz. However, our main results were robust to 507

different single neuron criteria (Figure S5). 508

Data inclusion For a unit to be included in the main figures, the session must 509

have at least 8 trials for each of the 7 start positions, 4 or 6 movement directions 510

and 7 target positions. The sessions could be “reference”, “distance”, or sessions 511

from rat 2147. As described above, there were 3 types of trial timeline in rat 2147, 512

but only “target during fixation” trials are included in the main figures. This 513

resulted in 104 sessions and 1224 single cells in 4 animals. 514

In pseudopopulation decoding, we included cells from sessions that had at least 8 515

trials for each of the 6 movement directions, 7 start positions, and 7 target 516

positions. The sessions could be “reference” or “distance” sessions. This resulted in 517

1197 cells from 99 sessions, 3 animals. 518

Video tracking was available in 58 sessions in 3 rats, and there were 638 single 519

neurons in these sessions. In posture tuning analysis, we only included neurons with 520

start position selectivity during fixation (p < 0.01, permutation test) from sessions 521

that had video tracking, resulting in 106 cells, 30 sessions from 3 rats. 522

For neuron inclusion criteria for all the main figures, see Table S1. 523

Unless otherwise specified, only correctly performed trials were included in the 524

analysis. 525

Key time windows In single-neuron level analysis for single spatial variables, we 526

focused on 4 key time windows: pre-cue, -300 to 0 ms aligned to target cue onset; 527

post-cue, 0 to 300 ms aligned to target cue onset; go, 0 to 300 ms aligned to the go 528

sound; arrival, -150 to 150 ms aligned to arrival at the target. 529

When comparing the pure and mixed selective models (Figure 6), we used the 0 530

to 500 ms time window aligned to the visual cue onset in. 531

For continuous time windows, neural response was quantified by counting the 532

number of spikes in sliding windows of 300 ms width and 50 ms step, aligned 533

causally to task events, unless otherwise specified. Causal alignment means that the 534

value at time 0 refers to the neural activity in a time bin between -300 ms and 0 ms. 535

The responses could be aligned to the time of visual target cue onset, the go sound 536

onset, the time of “fixation out” (the time when the nose left the start port, 537
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detected by the IR sensors) or target poke (the time when the nose arrived at the 538

target port, detected by the IR sensors). 539

Cross-validated R2s and log likelihood The cross-validated R2s (denoted as
CV R2s in figures) was defined as

R2 = 1− SSres

SStot

= 1−
∑N

i=1 (yi − ŷi)
2

V ar(y)

ŷi was the predicted mean spike count in the ith trial from the test set, and yi 540

was the observed spike count in this trial. In the best case, y is equal to ŷ, and the 541

cross-validated R2 is 1. In the worst case, ŷ is uncorrelated with y, and
∑

i (yi−ŷi)
2

V ar(y)
542

can be larger than 1 by chance, thus CV R2s can be negative. 543

The cross-validated log likelihood is defined as

LL =
N∑
i=1

log(P (yi|ŷi))

P (yi|ŷi) denote the probability of observing the spike count on the ith trial being 544

yi, given the predicted mean spike count being ŷi. N denote the number of trials. 545

We assumed spike counts to follow the Poisson distribution. 546

PETHs For each neuron, we combined the spike trains in correctly performed 547

trials by the movement directions or target positions, and generated smoothed 548

PETHs with an half-Gaussian kernel of 200 ms standard deviation. The kernel was 549

causal, such that selectivity at time t was contributed by neural activity at or before 550

time t. 551

Generalized linear models for single neuron selectivity We fit the neural
spike counts in specific time windows to 3 generalized linear models (GLMs) with
Poisson distributions:

Spikes ∼ β0 + β1Xstart

Spikes ∼ β0 + β1Xdirection

Spikes ∼ β0 + β1Xtarget

The spatial variables were all included as dummy variables. Start position had 7 552

levels, direction had 6 levels, and target position had 7 levels. 553

In the main text, we labeled neurons as “having significant selectivity to a spatial 554

variable”. This significance is derived from the permutation test of the GLM, where 555

the test statistic was the leave-one-out cross-validated log-likelihood, against the 556

null hypothesis that the log-likelihood was not significantly different from when trial 557

labels were shuffled. For each spatial variable, the trial labels were shuffled 1000 558

times to obtain a distribution of goodness-of-fits, then the p value of the GLM was 559
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the fraction of log-likelihoods from shuffling that is greater than the log-likelihood 560

from actual data. 561

The best selectivity of a neural response (Figure 3A) was assigned to the 562

spatial variable with the smallest p value of the GLM. When there were ties in p 563

values, we additionally compared the leave-one-out cross-validated log-likelihoods, 564

and the best selectivity was assigned to the spatial variable with the largest sum of 565

log-likelihoods. The reason for possible ties is that we are using permutation tests 566

with 5000 permutations. 567

In Figure 3 B, the R2s were derived from GLMs fit similarly, but without 568

cross-validation. Only the model with the largest R2 was plotted with the 569

corresponding color at each time point. Both the best GLM measurement and the 570

R2 measurement for the relative strength of spatial selectivity were robust to the 571

task-induced correlation between spatial variables, which was verified with surrogate 572

data (Figure S6, also see Surrogate data paragraph below). 573

Cross-validated R2s of the GLMs in Figure 2 were derived from 10-fold cross 574

validation. 575

Spatial preference of single neurons The preferred direction of a neuron in a 576

specific time window was defined as the direction of the weighted vector sum of the 577

coordinates of the 6 movement directions, where the weight for each direction was 578

the mean firing rate in that direction. Horizontal directions were defined as 579

directions between −45◦ and 45◦ around the horizontal directions, and similar for 580

vertical directions. The preferred position of a neuron at a specific time window was 581

simply denoted as the port with the highest mean firing rate. 582

Start-target tuning correlation The start-target tuning correlation in Figure 583

4D was defined as the Pearson correlation between the tuning curve for start 584

position in the “pre-cue” window and target position in the “arrival” window: 585

ρ = cov(FRstart, FRtarget)/σ(FRstart)σ(FRtarget)

FRstart is a vector where each element is the mean firing rate for a specific start 586

position, and FRtarget is a vector where each element is the mean firing rate for a 587

specific target position. Similarly, we calculated the start-target tuning correlations 588

for different pairs of time windows and the tuning correlation between time ti and tj 589

for the same variable. The time windows were warped to align to the time of the 590

visual cue, the go sound and the target poke. The 300 ms “pre-cue” and “arrival” 591

time windows were preserved. For these time windows, we calculated the tuning 592

correlations between to halves of trials that were randomly split, that is, we used 593

start tuning in the first half versus target tuning in the second half, and vice versa, 594

and then took the average of the two correlation coefficients. 595

The tuning correlation was subject to the Fisher-z transformation, and then 596

tested against the null hypothesis that the mean value across a specific neural 597

population was not significantly larger than zero. The p value indicated the fraction 598
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of mean lying below zero among 104 bootstraps, and was corrected with Bonforroni 599

correction. 600

Timing of start-target switching In Figure 4 I, spike counts in 300 ms time 601

windows of 50 ms steps were fit to the Poisson GLM of either start or target 602

position. The R2s of each GLM across time was smoothed with a moving average 603

kernel with the size of 3 bins, and then the start GLM R2 was subtracted by the 604

target GLM R2. The time of switching from start encoding to target encoding was 605

defined as the first time window where R2
start −R2

target < 0, after the positive peak of 606

R2
start −R2

target. 607

Mixed selectivity To detect mixed selectivity for each neuron, we compared 608

between 4 models of the neural firing rate. 609

In the Gaussian direction tuning model, the firing rate was a Gaussian function
centered by the preferred direction, defined as in the “Spatial preference of single
neurons” section in Methods.

f(θ) = b0 + b1
1

σ
√
2π

exp(− θ2

2σ2
) (1)

In the start position plane model, the firing rate was modulated linearly by the
horizontal and vertical coordinates of the start position.

f(x, y) = b0 + b1x+ b2y (2)

In the gain field model, the firing rate was a multiplicative combination of a
Gaussian tuning centered by the preferred direction and a start position
modulation.

f(θ, x, y) = b0 + (b1x+ b2y)
1

σ
√
2π

exp(− θ2

2σ2
) (3)

In the additive model, the firing rate was an additive combination of a Gaussian
tuning centered by the preferred direction and a start position modulation.

f(θ, x, y) = b0 + (b1x+ b2y) +
b3

σ
√
2π

exp(− θ2

2σ2
) (4)

In these functions, f was the firing rate, θ was the movement direction relative to 610

the preferred direction, and x and y are the horizontal and vertical coordinates of 611

the start positions in the port wall. b0,1,2,3 and σ were fit for each model with 612

maximum likelihood estimation assuming Poisson spike counts, using the Matlab 613

fmincon function. The models were fit with 20-fold cross validation. 614

For each pair of models, we compared the cross-validated R2s among neurons 615

whose average of cross-validated R2s of the 4 compared models was larger than 0.05. 616

Significance level was tested against the null hypothesis that the mean difference 617

between the Fisher-z transformed cross-validated R2s in the x-axis model and the 618

23/43

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2022. ; https://doi.org/10.1101/2022.11.10.515968doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.10.515968
http://creativecommons.org/licenses/by-nc-nd/4.0/


y-axis model was not significantly larger than zero, quantified as the fraction of the 619

mean value smaller than zero among 105 bootstraps. 620

For a given movement direction, the target position coordinates were simply an 621

additive translation of the start position, thus the start position and target position 622

modulations were the same in the gain field model and the additive model. 623

Pseudopopulation decoding Pseudopopulations were constructed separately 624

when decoding each spatial variable. For example, when decoding the start position, 625

we constructed the pseudopopulation by resampling trials for each start position. 626

For each neuron, trials were randomly split into 2 folds for each condition of the 627

spatial variable, and 32 trials were resampled for each fold in each condition, 628

yielding 224 trials per fold for position decoding and 192 trials per fold for direction 629

decoding. These resampled trials were termed “pseudo-trials”. Pseudo-trials were 630

resampled randomly with a different seed for each neuron, so as to remove 631

trial-by-trial correlations between neurons in the same session. 632

We included single neurons from sessions that had at least 8 trials for each of the 633

7 start positions, 6 directions and 7 target positions (1197 neurons, 99 sessions, 3 634

rats). In each pseudopopulation, neurons were also resampled with a different seed, 635

so that only about 63.2% of the neurons were included in each pseudopopulation. 636

We generated 100 pseudopopulations for the decoding each spatial variable. 637

The error of decoding was defined as the Euclidean distance between true and 638

predicted coordinates. The goodness of prediction was measured as the mean error 639

between the predicted and the actual coordinates across all the pseudo-trials in that 640

pseudo session. For start and target position, we removed the trials with [0 0] 641

coordinates from the quantification of decoding accuracy. This is because 642

predictions from unsuccessful decoding tend to cluster at the [0 0] coordinates, so 643

decoding accuracy for the [0 0] coordinates in positions (i.e. the central port) will 644

always seem “good”. 645

Decoding was performed with multivariate regression models (mvregress function 646

in Matlab Statistics and Machine Learning Toolbox). The spike counts of the 647

training set and the test set were first combined, z-scored, and applied to principle 648

component analysis, and then split again for training and decoding. We found that 649

the cross-validated decoding accuracy was the best when including only the first 4 650

PCs when decoding start position from neural activity in the “pre-cue” time window 651

(Figure S7G), so we used 4 PCs for all subsequent pseudopopulation decoding. 652

In Figure 3B, multivariate regression models were trained and tested with spike 653

counts in 3 key time window as indicated in the plot (see “Key time windows” 654

section for details). The plots showed the result from one example pseudo-session, 655

the same pseudo-session as the first row in Figure 3C. In Figure 3C, the time 656

windows were 300 ms width with 50 ms step, causally aligned to the go sound. Each 657

row was a different pseudo-session. Each row of the heat map was a 658

pseudopopulation with a different resampling of neurons, and the color indicated 659

the mean error with two-fold cross-validation. In Figure 3D, the mean error of one 660
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spatial variable was subtracted by the mean error of another spatial variable in each 661

pseudopopulation, termed the Delta error, which represented the relative goodness 662

of decoding between the two spatial variables. The distribution of Delta errors of the 663

100 pseudopopulations was then illustrated with the mean and standard deviation. 664

In Figure 3E, models were trained at one time window and tested at another 665

also with two-fold cross validation. In the last panel, a multivariate regression 666

model was trained to decode start position coordinates from the start position 667

pseudopopulation data, and then tested its decoding of target position coordinates 668

from the target position pseudopopulation data. The heat-map showed the average 669

of mean errors across 100 pseudopopulations. P values for multiple comparisons 670

were obtained with extreme pixel-based permutation test (Cohen, 2014). One 671

dummy heat-map was generated for each pseudopopulation by shuffling trial labels, 672

and the maximum of each heat map was gathered to construct a null distribution. 673

The white contours enclosed the area in which the averaged mean error was smaller 674

than the minimum value of this distribution (p < 0.01). 675

Posture analysis 676

Video tracking and body posture estimation Videos were acquired at 30 677

frames per second with one Raspberry Pi Camera at the top of the rig. 678

We estimated the coordinates of the head, the ears and the hip of the rat in the 679

video frames using DeepLabCut (Mathis et al., 2018). Coordinates were in the unit 680

of pixels. The head position was approximated as the Intan chip plugged on the 681

animal’s head. The body angle was estimated as the angle between the head and 682

the tail relative to the horizontal direction in the video frame. For continuous 683

sampling of body coordinates aligned to task events, we linearly interpolated to 684

achieve the sampling rate of 100 frames per second. 685

The body angle was defined as the angle between the head-hip axis and the 686

horizontal axis. In Figure 7B,D&F, the body angle was at the interpolated frame 687

150 ms after the nose arrived at the start port. 688

Posture tuning In Figure 7G, we fit the body angle as a linear mixed effect
model of start position and movement direction:

θ ∼ 1 + direction+ (1|position) (5)

where θ represents the continuous variable of the body angle at each interpolated 689

video frames aligned to the go sound. Direction was a 6-level categorical variable of 690

the movement directions. Position was a 7-level categorical variable for the start 691

positions. This design allowed the inclusion of all possible trials whereas factoring 692

out the effect of start position on body angle. 693

In Figure 7B-D, we compared the fitting of neural spike rates to two
Generalized Linear Mixed Effect models of Poisson link function:

Spikes ∼ 1 + θ + (1|Position) (6)
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and
Spikes ∼ 1 + Position+ (1|θ) (7)

Here θ was a 3-level categorical variable of the body angle from the median frame in 694

this time window. Each level was a group of equal number of trials with body angles 695

that were small, medium or large within the session. Modeling the body angle as a 696

categorical variable allowed for arbitrary tuning functions for body angles. Spikes 697

were the spike counts in the 0 ∼ 300 ms time window aligned to the arrival of the 698

start port. Position was the 7-level categorical variable of the start position. For 699

each neuron, the cross-validated R2s and the log-likelihoods of spike count 700

observation under each model were calculated with leave-one-out cross validation. 701

Surrogate data 702

To verify the reliability of our model comparison approaches, we performed the 703

same analysis on surrogate data which were known to have specific spatial tuning as 704

on real neurons. These surrogate spike counts were generated to have specific 705

spatial tuning, to match the overall firing rate of a real neuron, and as if sampled 706

from a real session. 707

To generate surrogate data matching one neuron but tuned to a specific model, 708

we first fit the spike counts of the real neuron to that model, so as to obtain the 709

predicted firing rate at each trial condition. We then randomly selected a real 710

session and used a Poisson random process to generate spike counts that followed 711

these predicted firing rates. In the surrogate data for GLMs, we only used neurons 712

that have significant selectivity to that GLM to generate surrogate data. In 713

surrogate data to compare between pure and mixed selectivity models, we used all 714

neurons to generate surrogate data. 715

Following stages of analyses was identical for surrogate data and real data. If our 716

methods were reliable, the surrogate data designed to have a specific functional 717

form would be best fitted by the same functional form. 718

Code and data sharing 719

Please visit https://github.com/erlichlab/fof-visually-guided to access the 720

code used for analyses and to generate figures. Links to the data are available from 721

the github repository. 722
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Figure Panel(s) N Criteria

Figure
3

A 1224 Single neurons in 4 animals that had at least
8 trials for each condition. 771 neurons from
reference sessions, 426 from distance sessions, 27
from rat 2147.

Figure
3

B-E 1197 Single neurons that had at all 6 directions, and
at least 8 trials in each group of trial conditions.
771 neurons from reference sessions, 426 from
distance sessions. 3 rats.

Figure
4

D (black
bars)-H

174 Single neurons that have significant selectivity
to start port during the “precue” time window
and target port during the ”arrival” time win-
dow(GLM, both p < 0.05), among the 1224 neu-
rons in Figure 3A.

Figure
4

D (white
bars)

289 Single neurons that have significant selectivity
to either the start port during the “precue” time
window or the target port during the ”arrival”
time window (GLM, only one p < 0.01), among
the 1224 neurons in Figure 3A.

Figure
4

I 202 Single neurons that have significant selectivity
to start port during the “pre-cue” time win-
dow(GLM, p < 0.01), among the 1224 neurons
in Figure 3A.

Figure
4

J 209 Single neurons that have significant selectivity
to target port during the ”arrival” time win-
dow(GLM, p < 0.01), among the 1224 neurons
in Figure 3A.

Figure
5

A-C 274 Single neurons that have significant selectivity
to direction during the“post-cue” or ”go” time
window (GLM, p < 0.01), among the 1224 neu-
rons in Figure 3A.

Figure
6

E 199 Single neurons that have the average of CV R2s
larger than 0.05. Effectively from 4 rats.

Figure
7

D 106 Single neurons that meet two criteria: (1) Hav-
ing significant start position selectivity during
the ”pre-cue” time window (GLM, p < 0.01).
(2) Having video recordings, which resulted in
638 out of 1224 neurons in 58 out of 133 ses-
sions. Effectively from 3 rats.

Table S1. Criteria for the inclusion of neurons in each analysis. Single neurons:
SNR>5, in-trial firing rate > 1 Hz, fraction of inter-spike interval less than 2 ms < 1%. All
the cells are from sessions where the target cue illuminated during the fixation period.
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Reference trial types

Distance trial types

Trial types in rat 2147

Figure S1. Movement trajectories configurations in each type of sessions. There were 24
configurations in the “reference” sessions. There were 18 configurations in the “distance”
sessions, where each movement direction has two short distance configurations and one long
distance configuration. In subject 2147, there were 16 configurations.
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G
2068 2095 2134 2147

A B C

D E F

Figure S2. Behavioral measurements of the 4 animals. A. The proportion of correct trials
among all the finished trials in each movement direction and each animal. The proportion
of correct movements among all finished trials in each session was summarized by subjects.
B. The proportion of errors made into the same side among trials starting from the central
port. Errors were made into the same side, and animal 2095 and 2134 almost made no error
into the opposite side. The percentage of same side errors were significantly larger than
50% (91.87% ± 2.20% across all sessions, mean ± s.e., p < 10−3, permutation test for the
mean over sessions, n = 288 sessions). C. The proportion of errors that were relatively up,
down or in the same vertical level, compared to the correct target port position among all
error trials. In A-C, points indicate outliers and box plot indicates the quartiles. D. The
distribution of instructed fixation period in correctly performed trials, defined as the time
between nose arrival at the start port and the go sound. E. The distribution of movement
initiation time, defined as the time between the go sound and the nose departure from the
start port. F. The distribution of reaction time, defined as the time between the go sound
and the nose arrival at the target port. The nose departure or arrival time were detected
by the infra-red sensors in each port. G. The distribution minimum, mean and maximum
of instructed fixation period in each session among correctly performed trials. Each panel
was an animal. Thick line was the ECDF of the mean fixation period in each session. Thin
lines were the ECDFs of the minimum and maximum fixation periods, respectively.
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Rat 2147

Rat 2068

Rat 2134

Rat 2095

A B

Rat 2147

Figure S3. Histology. A. The coronal section of an example rat brain (2147) showing
the placements of the silicon probes. Dashed lines indicate the estimated area of M2 in
this brain section. B. The lesion marks matched to the coronal sections of the rat brain
atlas(Paxinos and Watson, 2004). Lesions were made at the end of all the recording sessions
with 200 uA for 3s relative to the GND. Colored marks indicate the lesion marks in A, and
colors indicate subject ID. Recording sites in this manuscript varied across subjects in the
anterior-posterior axis, ranging from AP 2.5 to 3.5 relative to the Bregma. These recording
sites were within an head-orienting-related area based on previous anatomical, lesion, and
microstimulation studies (Cowey and Ek, 1973, Crowne and Pathria, 1982, Leonard, 1969,
Sinnamon and Galer, 1984), although more anterior compared to a previous electrophysi-
ological study recording from the FOF literature where rats performed an auditory-guided
2AFC head orienting task (Erlich et al., 2011). Despite the variability in recording targets,
the main findings in this manuscript were qualitatively consistent across subjects (Figure
S5). Further experiments will be required to determine if there is a functional gradient over
the anterior-posterior axis in the FOF.
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A B C

D E F

G H I

Figure S4. 3 types of trial timelines in rat 2147, and the corresponding PETHs of an
example neuron. In rat 2147, there were 2 types of sessions interleaved across days. In
one session type, the trial timeline was similar to other animals, where the target LED was
always illuminated when the rat fixated into the start port. In the other session type, there
were 2 randomly interleaved types of timeline: “target before fixation” and “target after go”.
The example neuron in B-C and H-I were recorded from the same session, and in E-F from
another session. These units were considered as the same neuron based on the recording
site, the waveform and the PETHs. A. The timeline of the “target before fixation”
trial class. In these trials, the target LEDs and the start port LEDs illuminated at the
same time, thus the target position information was available to the rat before fixation. B.
The PETHs of an example neuron in “target before fixation” trials that were grouped by
the start position and were into the same direction. C. The PETHs of the same example
neuron as in B, but grouped by the movement direction and were from the same start
position. D-F Similar to A-C, but for the “target at fixation” trials. In these trials, the
target LEDs were illuminated when the animal poked into the start port. The neuron was
selective to both the start position and the movement direction before the go sound. Note,
that the neuron did not encode the movement direction earlier in C than in F, indicating
that direction representation was related to the movement planning and not the visual cue.
G-I Similar to A-C, but for the “target after go” trials. In these trials, the target LEDs
illuminated after the animal has left the start port, which was detected by the IR sensors.
Since the animal didn’t know the target port during fixation, the neuron was not selective
to the movement direction before the go sound.
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Figure S5. The sequential encoding of start position, direction and target position was
consistent across subjects and single neuron selection criteria. In this figure, the selectivity
of a neural response to a task variable was measured at each time point for the x and y
coordinates separately using the area under the empirical ROC curve (the Wilcoxon-Mann-
Whitney U-statistic). The p value was calculated by permutation test, where the null
distribution was generated by shuffling the category labels 2000 times. A. The fraction of
single neurons with spatial selectivity at different cutoff criteria for the in-trial firing rate.
The signal-to-noise ratio cut-off was fixed at 5. A neuron is classified as spatially selective if
the area under the empirical ROC curve is significantly larger than chance for any one of the
3 spatial variables (start position, direction or target position) during any one of the 4 time
windows (“pre-cue”, “post-cue”, “go” or “arrival”)(p < 0.05, permutation test). B. The
fraction of single neurons with spatial selectivity at different cutoff criteria for the signal-to-
noise ratio (SNR) of the waveform. The cut-off criteria for in-trial firing rate was fixed at 1
Hz (p < 0.05, permutation test). C. The number of single neurons with spatial selectivity at
different in-trial firing rate cutoff. D. The number of single neurons with spatial selectivity
at different SNR cutoff. for the signal-to-noise ratio of the spike waveform. E. The fraction
of neurons selective to the x coordinates (left panel) or y coordinates (right panel) of each
spatial variable at the 4 time windows based on ROC analysis (p < 0.05, permutation test),
when the SNR cutoff was 5 and in-trial firing rate cutoff was 1 Hz. Error bars were 95%
confidence intervals of the binomial distribution. F. Similar to E, but the cut-off criteria is
SNR > 6 and in-trial firing rate > 2. G. Similar to E, but for each subject.
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Figure S6. Validation of GLM analysis with surrogate data. A. The R2 of GLMs among
neurons that were selective to at least one spatial variable in at least one of the 4 time
windows (n = 541). R2s of GLMs are plotted over the right edge of the window (causal)
of 300 ms with 50 ms steps. At each time window, only the GLM with the largest R2

is shown. Neurons are sorted by the total mass of the R2s of start position, direction
and target position for the 3 alignments respectively. B. The R2s of GLMs in surrogate
data with specific spatial selectivity. Each column was a group of surrogate data designed
to have start, direction or target selectivity, and each row was a surrogate neuron. The
color indicated the R2 of the model with the maximum R2, same as in Figure 3B. If the
surrogate “neuron” had the largest R2 in the start position model, the corresponding cell
was colored red, etc. Note, that the best model according to the R2s was visually consistent
with the surrogate selectivity. C. Fraction of cells best selective to each spatial variable in
surrogate data with specific spatial selectivity. There were 614 “surrogate neurons” in each
column, designed to selective to the start position, the direction and the target position,
respectively. The number in each row represented the fraction of “surrogate neurons”
assigned as best selective to each model. S, start position model. D, direction model. T,
target position model. N, non-selective to any one of the models. Surrogate data was
generated to match the overall firing rates and the behavioral sessions of real neurons, but
were known to selective to only one spatial variable (Methods). The best selectivity of a
surrogate “neuron” was assigned in the same way as in Figure 3A. The assignment of
“best selectivity” was correct in around 75% of surrogate “neurons”.
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Figure S7. Principle components across time and trial types in the FOF population. A.
The first 5 principle components of FOF population activity in each movement configuration
across time aligned to the go sound, colored by the start position. The population was
consisted of neurons with at least 8 trials in each of the 6 directions, 7 start positions and 7
target positions in “reference” sessions (771 neurons). Principle components were computed
from a matrix of N by C×T , where N was the number of neurons, C was the number of trial
configurations, and T was the number of time windows. B-C. Similar to A, but the PCs
were colored by the direction and the target position, respectively. D-F. The coefficients of
PC 2, PC 3 and PC 4 in each movement configuration at different time windows aligned to
the go sound, colored by the start position (D), the direction (E) and the target position (F),
respectively. The coefficients were rotated at each time window to aid visualization. In early
stages of the trial (e.g. -0.20 s aligned to the go sound), trials with different start positions
were well separated. As the movement initiates, direction became well separated in these
PCs (0.20 s and 0.60 s). In later phases of the trial, the target position was well separated in
these PCs (1.00 s). G.Number of principle components included versus pseudopopulation
decoding accuracy. Mean error for start position decoding using spike count data in the
pre-cue time window, among the same neurons and using same methods as in Figure 3
C, but including different numbers of principle components for the decoding. Thin line and
shaded areas indicated the mean and the 5% and 95% intervals, as a result of re-sampling
neurons with replacement for constructing the pseudopopulation.
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Figure S8. Start-target tuning correlation, start-start tuning correlation, and target-target
tuning correlation were correlated. Diagonal. The three panels illustrate the number of
neurons with different levels of start tuning correlation (at the pre-cue time window), target
tuning correlation (at the arrival time window), or the start-target tuning correlation (pre-
cue time window for start and arrival time window for target), respectively. The white bars
indicate all the neurons with any spatial selectivity in any one of the “pre-cue”, “post-cue”,
“go” or “arrival” time windows (p < 0.05, n= 808). The black bars indicate the neurons
that were selective to the start position during the “pre-cue” window as well as the target
position during the “arrival” window (p < 0.05, n=174). The black dot and horizontal line
at the top of a panel indicate the mean ± 95% CI of the correlation coefficients among
all the cells. Scatter plots. The tuning correlation of one pair of spatial variables versus
the other. Black circles indicate all the spatially selective cells, matching white bars in the
diagonal panels (n=541). Red circles indicate start and target selective cells, matching black
bars in the diagonal panels (n=174). Texts at the top of each panel were the Spearman rank
correlation coefficients of one tuning correlation versus the other, and text color matches the
dot color. Start-start tuning correlation, target-target tuning correlation and start-target
tuning correlation were significantly correlated with each other, i.e. neurons with consistent
position selectivity tend to also be consistent between start and target selectivity.
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Figure S9. Detection of mixed selectivity with surrogate dataset. Scatter plots. Each
point is one surrogate “neuron” in each panel. The position on the x and y axes indicates
the cross-validated R2s of one model versus the other. In each column of panels, the spike
counts of surrogate “neurons” were designed to follow the same model as the fit model in the
x axis. To generate the surrogate spike counts that followed the specific model, we fit the
real neurons (n = 1224) to that model, and then generated Poisson distributed spike counts
according to the predicted mean firing rates in each trial condition. We fit the surrogate
spike counts to the spatial tuning models as in Figure 6, obtained 20-fold cross-validated
R2s, and only plotted those surrogate “neurons” whose average of R2s in the 4 models were
larger than 0.05. The number of included surrogate “neurons” in each surrogate dataset
was indicated in the histograms. The p value in each panel was calculated with permutation
test against the null hypothesis that the mean difference between the Fisher-z transformed
R2s of the x axis model and the y axis model was not significantly different from zero
(permuted 2000 times, n indicated in each panel). In each panel except the diagonal panels,
the mean difference across surrogate “neurons” was significantly larger than 0, indicating
that the model comparison with cross-validated R2s well captured the true functional form
of spike count modulation. Notably, the method distinguished between the gain field and
the additive model.

Histograms. The distribution of cross-validated R2s for the 4 models, among surrogate
“neurons” whose average of R2s in the 4 models were larger than 0.05 in each dataset.
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