1 RNA sequencing analyses of gene expression by CRISPR/Cas9 knockout of

2 CLL-1 gene in acute myeloid leukemia cells

- 3 Yanyu Wang^{*1}, Songfang Wu^{*2}, Jing Yang³, ShiLiang Wang³, Hong Xiong^{&1}, Shui-Jun
- 4 Li^{&2}
- ⁵ ¹Department of Hematology Fudan University Shanghai XuHui District hospital,
- 6 Shanghai, 200030, China;
- ⁷²Central laboratory, Fudan University Shanghai XuHui District hospital, Shanghai,
- 8 200030, China;
- 9 ³Cancer Institute, Middle Longhua Hospital, Shanghai University of Traditional
- 10 Chinese Medicine, Shanghai 200030, China;

11 *Corresponding author

- 12 *Yanyu Wang, Songfang, contributed equally to this work.
- 13 & to whom correspondence may be addressed. Email: xhxymzd666@163.com,
- 14 shuijunli@163.com,
- 15 Address: No. 966 Middle Huaihai Rd, XuHui District, Shanghai 200030, China,
- 16 Tel: +86-1231270810; Fax: +86-2164085875;

17 Data Availability Statement

- 18 The datasets used and/or analysed during the current study are available from the
- 19 corresponding author on reasonable request.
- 20

21 Funding Statement

22 The study was supported by XuHui district of ministry of health [SHXH201708].

23 Conflict of Interest Disclosure

24 All authors declare that they have no conflict of interest.

25

- 26 Ethics Approval Statement
- 27 Not applicable

28

- 29 Patient Consent Statement
- 30 Not applicable

31

32 Permission to Reproduce Material from other Sources

33 Not applicable.

34

- 35 Clinical Trial Registration
- 36 Not applicable

37

38 Abstract

CLL-1 has been revealed its potential role in acute myeloid leukemia (AML), however, the underlying mechanisms remain unclear. CRISPR/Cas9 strategy was employed to knock out CLL-1 gene in U937 cells and western-blot was used to validate the success of knock out. CCK8 and Transwell assays were used to detect cells viability and migration, respectively. RNA-sequencing was performed to profile mRNA expression in CLL-1 gene knock-out and wide type U937 cells. A cutoff of 1.5-fold change and false discovery rate (FDR) <0.05 was used to screen differentially

46	expressed genes (DEGs), which were presented by volcano plots and hierarchical
47	cluster heatmap. Protein-protein interaction (PPI) network was constructed by String
48	database and Cytoscape software. Furthermore, hub genes were mined by CytoNCA
49	and MCODE, which were subjected to functional enrichment using R package.
50	Finally, the findings were validated using qRT-PCR and western-blot. The protein
51	level of CLL-1 was significantly lowered, and cell viability and migration were
52	suppressed in knock-out cells compared to wide type. Using RNA-sequencing and
53	bioinformatics analysis, 452 DEGs (179 up-regulated and 273 down-regulated) were
54	obtained, and several important hub genes (such as CCR2, FBXO21, UBB and
55	UBE2C) were filtered out, which were enriched in 132 GO terms and 36 KEGG
56	pathways such as chemokine signaling pathway and ubiquitin mediated proteolysis. A
57	total of 8 representative genes mRNA expressions were validated by qRT-PCR, and
58	the protein levels of 6 genes were confirmed by western-blot. CLL-1 gene might exert
59	its role in AML through modulating genes enriched in multiple functions such as
60	chemokine signaling and ubiquitination. Our results may give us new knowledge of
61	CLL-1 in AML and provide a basis for mining novel targets.

62

Keywords: CRISPR/Cas9; RNA sequencing; acute myeloid leukemia; CLL-1; gene
knockout.

65

66 Introduction

67 Acute myeloid leukemia (AML) is a disease of the bone marrow, a disorder of

68	hematopoietic stem cells due to genetic alterations in blood cell precursors resulting in
69	overproduction of neoplastic clonal myeloid stem cells (Pelcovits & Niroula,
70	2020).AML is the most common acute leukemia in adults and among the most lethal
71	(Kadia, Ravandi, Cortes, & Kantarjian, 2016). The median age at diagnosis of AML is
72	around 70 years, and approximately 3% of AML cases occur in children age 14 years
73	or younger (Tamamyan et al., 2017). The 2018 AML incidence estimates from SEER
74	are <1.23 per 100,000 in the <40-year-old population, 10.92 per 100,000 in the
75	\geq 60-year-old population and 20.89 per 100,000 in the \geq 75-year-old population in the
76	USA (Lin, Zhang, Yu, & Wu, 2021). However, there has been little progress in the
77	standard therapy for AML over the past four decades (Yang & Wang, 2018), further
78	understanding of the molecular heterogeneity and pathogenesis of AML is needed to
79	develop novel therapies.

80 With unprecedented advances in molecular genetics, a deeper insight into the biology 81 has opened doors to the development of therapeutic approaches in the hope of 82 achieving durable remissions and improving survival (Higgins & Shah, 2020). Besides, recent advances in immunotherapy have generated substantial excitement for cancer 83 patients. Due to the immunosuppressive nature of AML, the activation of the immune 84 system through genetically engineered T-cell therapy presents a promising, curative 85 86 option for patients (Gill, 2019). C-type lectin-like receptors play a pivotal role in the fight against infection and maintain homeostasis and self-tolerance by recognizing 87 88 damage associated and pathogen associated molecular patterns leading to regulation of innate and adaptive immunity (Ma, Padmanabhan, Parmar, & Gong, 2019).C-type 89

90 lectin-like molecule-1(CLL-1 or CLEC12A) is a type-II transmembrane glycoprotein, 91 which belongs to the C-type lectin-like receptor family (J. Wang et al., 2018). It is reported that CLEC12A/CLL-1 played an essential role in attenuating sterile 92 inflammation which is induced by uric acid crystal in a Syk-dependent pathway 93 (Neumann et al., 2014). In a collagen antibody-induced arthritis (CAIA) model, 94 Clec12a^{-/-} mice experienced more severe inflammation during CAIA due to the 95 96 over-activation of myeloid cells (Begun et al., 2015). 97 Intriguingly, CLEC12A has been found selectively present on leukemic stem cells (LSCs) in AML but absent in normal HSCs (Leipold et al., 2018), which may be an 98 effective alternative target for AML with specificity against leukemic progenitor cells 99 100 and their progeny, while sparing normal myeloid precursor cells. Indeed, 101 mono-antibody therapy targeting CLL-1 has been revealed its potential efficacy 102 against AML cells and shown to be effective in reducing AML burden in xenograft 103 model (Lu et al., 2014). Researchers have developed and optimized CLL-1 CAR-T for 104 AML and showed efficient and specific anti-leukemia activity to AML cell lines and 105 primary blasts from AML patients, as well as in mouse model (Laborda et al., 2017; Tashiro et al., 2017). Our previous study revealed that CLL-1 is a novel prognostic 106 107 predictor that could be exploited to supplement the current AML prognostic risk 108 stratification system, and potentially optimize the clinical management of AML (Y.Y. 109 Wang et al., 2017). However, the exact physiological function and underlying 110 mechanisms of CLL-1 in AML need to be elucidated.

111 In the present study, CRISPR/Cas9 was used to knock out CLL-1 gene in AML U937

	11	11.1	/1 1	DITA	•		C 1		C1	1	1	6
112	cells and	1 h1σh-	throughnu		sequencing	was	nerformed	to	nrofile 1	the	changes	ot.
TT	comb, and	a mgn	unougnpu		bequenting	vv ub	periornica	ιU	prome		onungoo	U1

- 113 mRNA expression. The results will broaden our knowledge of CLL-1 gene's function
- and provide novel therapeutic targets in AML.
- 115

116	Methods
110	Michius

- 117 *Cell culture*
- 118 The AML cell line U937 was obtained from the American Type Culture Collection
- 119 (Rockville, MD, USA), and maintained at 37 °C, in the presence of 5% CO2 and in a
- 120 humidified atmosphere. The cells were cultured in RPMI-1640 medium (Gibco
- 121 Technologies, Germany), supplemented with 10% fetal bovine serum (Moregate,
- 122 Australia) and 1% penicillin/streptomycin (10,000 U/ml and 10,000 μ g/ml
- respectively; Gibco/Life Technologies, Germany).

124 Knockout of CLL-1 gene using CRISPR/Cas9

125 CLL-1 gene was knocked out by Bioray Laboratories Inc. (Shanghai, China) using the 126 CRISPR/Cas9 gene editing system according to manufacturer's instructions. In brief, 127 the primers including CLL-1 sgRNA1- forward (5'-CACCGGCTGGACGC CATACATG AGA-3'), CLL-1 sgRNA1- reverse (5'- AAACTCTCATGTATGGCGT 128 129 CCAGC-3'), CLL-1 sgRNA2- forward (5'-CACCGGATATAGCTCACGACATAAT 130 T-3') and CLL-1 sgRNA2-reverse (5'-AAACAATTATGTCGTGAGCTATATC-3') 131 were synthesized. Cloning of the sgRNA oligos was performed using lentiCRISPR V2 132 vector. The vector lentiCRISPR V2 was digested using BbsI restriction endonuclease. 133 The diluted sgRNAs were then ligated in the vector lentiCRISPR V2 with T4 DNA

134	ligase. The ligated vector was inserted into E.cloni® 10G electro-competent cells.
135	Plasmid construction was performed according to protocol and confirmed by
136	sequencing. The U937 cells were transfected with CLL-1 knock-out plasmid using
137	Lipofectamine 2000 for 48 h. The transfected cells were selected with puromycin
138	(3ug/ml) for seven days. Thereafter, single-cell cloning was performed in a 96-well
139	plate to grow single clones. After growth, western blot and sequencing were
140	performed to confirm knock-out of CCL-gene according to manufacturer's protocols.
141	Cell viability assays
142	The CCK-8 assay (Dojindo Molecular Technologies, Gaithersburg, MD, USA) was
143	performed to evaluate cell viability according to manufacturer's instructions. Briefly,
144	cells were seeded into 96-well plates (5 \times 10 ⁴ cells/well) and cultured for 24h,48 h and
145	72h, respectively. Subsequently, $10\mu l$ of CCK-8 solution was added to each well and
146	incubated at 37 °C for 1 h. The absorbances (Abs) at 450 nm were recorded using a
147	microplate reader (Bio-Rad, Hercules, CA, USA).
148	Cell migration assay
149	Cell migration was assessed using Transwell chambers with 8 μm pore size membrane
150	inserts (BD Falcon TM ; BD Biosciences) according to previously described methods
151	(Han et al., 2018). Briefly, 2×10^5 cells were seeded into the upper chamber
150	supplemented with 100 ul segum free medium, while 700 ul PDMI1640 containing

supplemented with 100 μl serum-free medium, while 700 μL RPMI1640 containing
10% FBS was added to the lower chamber. After 12 hours' incubation (5% CO₂,
37°C), non-migrated cells in the upper chamber were removed and migrated cells in

the lower chamber were fixed with 4% paraformaldehyde and stained with 0.1%

crystal violet. Finally, cells were washed with PBS and counted using an inverted
microscope (Olympus Corporation) with ImageJ software. The experiments for each
group were repeated in triplicate.

159 **RNA** sequencing raw data acquisition

160 CLL-1 gene knock-out (KO) and wide type (WT) U937 cells (n=3, each group) were 161 harvested and subjected to total RNA extraction using TRIzol reagent (Beyotime, 162 China). RNA quality was evaluated by an Agilent 2100 Bioanalyzer, and RNA 163 samples (n=3, each group) with RNA integrity number (RIN) more than 7 were used 164 for purification, library preparation, amplification and sequencing for 150bp paired 165 end reads using Illumina HiSeq 2500 platform according to manufacturer's 166 instructions.

167 **RNA sequencing data analysis**

168 Before read mapping, clean reads were obtained from the raw reads by removing the 169 adaptor sequences and low-quality reads using FastQC software. The clean reads were 170 then aligned to Human genome (GRCh38, NCBI) using the Hisat2 (Kim, Langmead, 171 & Salzberg, 2015) and reconstructed by Cufflinks (Ghosh & Chan, 2016). HTseq was used to calculate the expression of genes (Anders, Pyl, & Huber, 2015). The read 172 173 counts of each transcript were normalized to the length of the individual transcript and 174 to the total mapped read counts in each sample and expressed as FPKM (Fragments 175 Per Kilobase of exon per Million mapped reads). Differential expression analysis was 176 performed using DESeq2 with the threshold of 1.5-fold change ($|\log_2 fold$ change 177 >0.58) and false discovery rate (FDR) less than 0.05. The differential expressed

- 178 mRNAs between WT and KO U937 cells were presented with volcano plots and
- 179 hierarchical cluster heatmap using R software.

180 GO and KEGG pathway enrichment

- 181 To reveal the function of the differential expressed genes between WT and KO U937
- 182 cells, gene ontology (GO) (including biological process, cellular component and
- 183 molecular function) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
- 184 pathway analysis was performed using the Bioconductor package clusterProfiler.

185 Protein-protein interaction network and module analysis

Protein-protein interaction (PPI) was screened using STRING (https://string-db.org/) database with interaction score of 0.9 as the threshold, and the PPI network was visualized by Cytoscape software. Furthermore, CytoNCA was used to screen hub genes based on the nodes degree, and the candidate modules were obtained by molecular complex detection (MCODE) with default parameters: degree cut-off = 2, node score cut-off = 0.2, *k*-core = 2, and max depth = 100.

192 *Real-Time qPCR*

Total RNA was extracted from WT and KO U937 cells using TRIzol reagent (Beyotime,China). Real-time qPCR was performed according to previously described methods (Zhu et al., 2019). Briefly, the cDNA was synthesized using the PrimeScript RT reagent Kit (Yeasen, China) and amplified by real-time qPCR with an SYBR Green Kit (Yeasen, China) on QuantStudio 12K Flex Real-Time PCR System. The relative gene expression levels were determined using $2^{-\Delta\Delta Ct}$ method with GAPDH as an internal control. All of the primers were synthesized by Biosune (Shanghai, China), and the sequences of primers were shown in Table 1.

201 Western-blot

- 202 WT and KO U937 cells were harvested and subjected to total protein extraction using
- 203 RIPA lysis. For each sample, 50 µg of protein was used for gel electrophoresis in
- 204 10-14% SDS-PAGE gels and transferred to PVDF membranes (Merck Millipore,
- Billerica, MA, USA). After blocking in 5% defatted milk, the membranes were
- incubated with primary antibodies of FBXO21, FBXO21, FBXO25, UBB, USP53,
- 207 UBE2C, UBE2E3, USP2, USP44 and B-Actin overnight at 4 °C. After incubation
- 208 with secondary antibodies, signals were detected using the ECL detection system
- 209 (Thermo Fisher Scientific) and analyzed by ImageJ software.
- 210 Statistical analysis
- The data are presented as the mean \pm SD, and statistical analysis was performed using
- 212 SPSS software (version 22.0). Student's t-test was used to compare continuous
- variables, and P < 0.05 were considered as statistically significant.

214

215 **Results**

216 Confirmation of CLL-1 gene knock-out

217 CLL-1 gene knock-out was confirmed by western blotting (GAPDH serve as internal

control) to ensure the absence of CLL-1 protein expression. As shown in Figure 1, the

- 219 CLL-1 protein level was significantly lowered in CLL-1 gene knock out U937 cells
- compared to wide type, which indicated the successful knock-out of CLL-1 gene.

221 CLL-1 gene knock-out reduced cells viability and migration

222	To examine the effects of CLL-1 gene knock-out on U937 cells viability and
223	migration, CCK-8 and Transwell assays were performed, respectively. After CLL-1
224	gene knock-out, the cells viability was obviously reduced at the time-point of 24h,48h
225	and 72h(Figure 2A). Besides, the migrated cells in CLL-1 knock-out group were
226	significantly decreased compared to wide type group (Figure 2B). These results
227	indicated CLL-1 gene might play an important role in the cell viability and migration
228	of AML.

229 CLL-1 gene knock-out altered mRNA profile in U937 cells

To explore the underlying mechanisms of CLL-1 affecting AML, RNA-seq was 230 231 performed to profile the mRNA expression in CLL-1 knock-out and wide type U937 232 cells. The differential gene analysis (Figure 3 A & B) revealed that there were 452 233 differentially expressed genes (DEGs) in KO cells compared to WT cells. In addition, 234 we noticed that there were 179 up-regulated (including TRMT12, IL1B, CD86, etc.) 235 and 273 down-regulated mRNAs (including FBXO25, FBXO21, UBE2C, etc.) The 236 top 30 representative mRNAs were listed in Table 2, and 452 DEGs were listed in 237 Table S1.

238 Protein-protein interaction network analysis

To reveal protein-protein interaction (PPI) among DEGs, 452 DEGs were imported to String database to screen and visualized by Cytoscape software. A PPI network with 340 nodes and 904 edges was obtained (Figure 4). To obtain the hub genes in the PPI network, CytoNCA was performed. As shown in Figure 5A, the top 30 genes with higher degrees (>13) were filtered out, which included UBB, IL1B, CD86, etc. 244 Furthermore, MCODE was performed to explore the important modules in the PPI

- network. As shown in Figure 5B, we obtained a module with the highest socre (9.684),
- which composed of 20 nodes (including FBXO21, UBB, UBE2C, etc.) and 92 edges.

247 GO and KEGG pathway functional enrichment

To better understand the biological functions of the 20 DEGs involved in the 248 249 important module, functional enrichment was performed. We noticed that these DEGs 250 were enriched in 132 GO terms and 36 pathways, including ubiquitin mediated 251 proteolysis, chemokine signaling pathway, protein ubiquitination, etc. For example, 252 GNG7, ADCY1, CXCL8 and CCR2 were enriched in chemokine signaling pathway. 253 UBE2C and UBE2E3 were enriched in ubiquitin mediated proteolysis and genes 254 including SPSB1, ZBTB16, UBB, TRIM71, UBE2C, FBXO21, LMO7 and UBE2E3 255 were enriched in protein ubiquitination. The TOP 30 GO terms and KEGG pathways 256 were presented in Figure 6, and detailed information was listed in Table S2 and Table 257 S3.

258 Validation of RNA-sequence data by qRT-PCR and western-blot

To validate our findings from RNA-sequence, a total of 8 genes (including FBXO21, FBXO25, UBB, USP53, UBE2C, UBE2E3, USP2 and USP44) were selected to perform qRT-PCR and western-blot experiments. The results of qRT-PCR and RNA-sequence data of all the 8 genes were in good accordance (Figure 7A), and 6 genes (FBXO21, FBXO25, UBB, USP53, UBE2C and UBE2E3) expression were further verified in the protein level. These results indicated the reliability of our RNA-sequence analysis.

266

267 Discussion

268	In the present study, we aimed to explore the effects and underlying mechanisms of
269	CLL-1 gene in AML, RNA-sequencing was performed to profile mRNA expression in
270	CLL-1 gene knock-out and wide type U937 cells. We obtained numerous
271	differentially expressed mRNAs in CLL-1 gene knock-out cells, and filtered out a
272	batch of important genes which enriched in multiple GO terms and KEGG pathways.
273	It is reported that CLL-1 gene might be the most prominently differently expressed
274	surface markers in AML (Daga et al., 2019). We observed that the viability and
275	migration were reduced in CLL-1 gene knock-out U937 cells, which implicated the
276	important role of CLL-1 in AML. Using RNA-sequencing, we obtained a batch of
277	differentially expressed genes related to CLL-1 gene knock-out, which might account
278	for the underlying mechanisms of its role in AML. AML is a bone marrow disease in
279	which the leukemic cells show constitutive release of a wide range of CCL and CXCL
280	chemokines and express several chemokine receptors (Kittang, Hatfield, Sand,
281	Reikvam, & Bruserud, 2010). It is noticed that chemokine receptors may play an
282	important role in orchestrating the migration of cells and mediating the recruitment of
283	immune cells (Stone, Hayward, Huang, Z, & Sanchez, 2017). CC chemokine receptor
284	2 (CCR2) is the chemokine receptor, which has been found to be associated with
285	advanced cancer, metastasis, and relapse (Nagarsheth, Wicha, & Zou, 2017). It is
286	reported that tumor growth was reduced in CCR2 ^{-/-} mice compared to wild-type mice
287	(Huang et al., 2007). It was shown that CCR2 was almost exclusively expressed on

288	monocytoid AML in human samples (Cignetti et al., 2003). High expression of CCR2
289	was observed in AML cell lines and 65% of human AML samples, and the blockade
290	of CCL2/CCR2 axis inhibited cells transmigration and proliferation in AML
291	(Macanas-Pirard et al., 2017). These previous studies indicated that chemokine
292	receptor CCR2 might play an important role in AML. In the present study, we noticed
293	that CCR2 gene expression was significantly lowered in CLL-1 knock-out U937 cells,
294	which was partially consistent with previous studies and implicated that CLL-1 gene
295	might affect AML through CCR2 signaling. However, we did not observe the change
296	of CCR2 ligand, which needed further investigation. In addition, we also observed
297	several hub genes (such as GNG7, ADCY1and CXCL8) enriched in chemokine
298	signaling pathway were altered, which suggested that CLL-1 gene might modulate
299	chemokine signaling in AML.

300 Besides, we noticed that a batch of important genes such as UBB, UBE2C, FBXO21, 301 USP53 and UBE2E3 were significantly changed in CLL-1 knock-out cells and 302 enriched in ubiquitination related GO terms and pathways, which indicated that CLL-1 might regulate ubiquitination in AML. Ubiquitination is an essential 303 304 post-translational modification involved in protein stability, localization, interactions, 305 and activity, which influences cell apoptosis, cell survival, cell-cycle progression, 306 DNA repair and antigen presentation, and is implicated in multiple pathophysiological 307 states and diseases such as cancer, infections and hereditary disorders (van Wijk, 308 Fulda, Dikic, & Heilemann, 2019). Ubiquitination is mediated by the sequential action of ubiquitin-activating enzyme, ubiquitin-conjugating enzyme and ubiquitin protein 309

310	ligase (Manasanch & Orlowski, 2017), and the abundance of cellular ubiquitin is
311	modulated by a family of multiple ubiquitin genes such as UBB and UBC (Haakonsen
312	& Rape, 2017). UBB has been implicated in many tumors including ovarian cancer,
313	gastric cancer, lung adenocarcinoma, etc (Deng, Huang, Wang, & Chen, 2020; Gong,
314	Lin, & Yuan, 2020; Scarpa et al., 2020). However, there is no report about UBB in
315	AML. Here, we reported that the expression of UBB mRNA and protein levels were
316	lowered in CLL-1 knock-out U937 cells, which indicated that UBB might play a role
317	in AML. It has been reported that UBE2C (an ubiquitin-conjugating enzyme)
318	participated in carcinogenesis by regulating the cell proliferation, apoptosis, and
319	transcriptional processes (Jin et al., 2019). UBE2C mRNA and/or protein levels were
320	aberrantly increased in many cancer types with poor clinical outcomes, and inhibition
321	of UBE2C suppressed proliferation, clone formation, and malignant transformation in
322	tumor cells (Xie, Powell, Yao, Wu, & Dong, 2014). Although little is known about
323	UBE2C in AML, it has been reported that UBE2C gene expression was increased in
324	aneuploid acute myeloid leukemia, which implicated the correlation of UBE2C with
325	AML (Simonetti et al., 2019). In addition, FBXO21 belongs to F-box proteins which
326	serves as the substrate-recognition subunit of a SKP1-CUL1-F-box protein
327	(SCF)-type ubiquitin ligase (Watanabe, Yumimoto, & Nakayama, 2015), and
328	ubiquitin-specific proteases 53 (USP53) belongs to the family of deubiquitinating
329	enzymes, which catalyze the reversible modification of target proteins with ubiquitin
330	and stabilize proteins (Fraile, Quesada, Rodriguez, Freije, & Lopez-Otin, 2012). It has
331	been reported that knockdown of USP53 in Siha cells downregulated damage-specific

332	DNA binding protein and caused G2/M cell cycle arrest and decreased the survival
333	rate of cells in response to radiation (Zhou, Yao, Wu, Chen, & Fan, 2020). However,
334	little has been reported about the role of FBXO21 and USP53 in AML. In the present
335	study, we noticed that the mRNA and protein levels of FBXO21 and USP53 were
336	significantly decreased after CLL-1 gene knock-out. Further investigations on these
337	genes enriched in ubiquitination related GO terms and pathways may provide novel
338	targets in AML.

339 Despite the significant findings in the present study, there are some limitations should 340 be noted. Although several important genes expression were validated in mRNA and 341 protein levels, our results were mainly based on RNA-sequencing and bioinformatics 342 analysis, which need further biological function investigation. Besides, our results 343 were obtained from AML cell models, which needed further animal models and 344 large-scale patient experiments to verify.

In conclusion, knock out of CLL-1 gene suppressed cell viability and migration in AML cell line U937 cells, and the underlying mechanisms might be related to a batch of important genes which were enriched in multiple functions such as chemokine signaling and ubiquitination. Our results may give us new knowledge of CLL-1 in AML and provide a basis for mining novel targets.

350

351 Acknowledgements

352 Not applicable.

353

354 **Reference**

355	Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeqa Python framework to work with
356	high-throughput sequencing data. Bioinformatics, 31(2), 166-169.
357	doi:10.1093/bioinformatics/btu638
358	Begun, J., Lassen, K. G., Jijon, H. B., Baxt, L. A., Goel, G., Heath, R. J., Xavier,
359	R. J. (2015). Integrated Genomics of Crohn's Disease Risk Variant Identifies a
360	Role for CLEC12A in Antibacterial Autophagy. Cell Rep, 11(12), 1905-1918.
361	doi:10.1016/j.celrep.2015.05.045
362	Cignetti, A., Vallario, A., Roato, I., Circosta, P., Strola, G., Scielzo, C., Ghia, P.
363	(2003). The characterization of chemokine production and chemokine receptor
364	expression reveals possible functional cross-talks in AML blasts with
365	monocytic differentiation. Exp Hematol, 31(6), 495-503.
366	doi:10.1016/s0301-472x(03)00066-3
367	Daga, S., Rosenberger, A., Quehenberger, F., Krisper, N., Prietl, B., Reinisch, A.,
368	Wolfler, A. (2019). High GPR56 surface expression correlates with a leukemic
369	stem cell gene signature in CD34-positive AML. Cancer Med, 8(4),
370	1771-1778. doi:10.1002/cam4.2053
371	Deng, H., Huang, Y., Wang, L., & Chen, M. (2020). High Expression of UBB, RAC1,
372	and ITGB1 Predicts Worse Prognosis among Nonsmoking Patients with Lung

- Adenocarcinoma through Bioinformatics Analysis. *Biomed Res Int, 2020*, 2071593. doi:10.1155/2020/2071593
- 375 Fraile, J. M., Quesada, V., Rodriguez, D., Freije, J. M., & Lopez-Otin, C. (2012).

- 376 Deubiquitinases in cancer: new functions and therapeutic options. *Oncogene*,
- 377 *31*(19), 2373-2388. doi:10.1038/onc.2011.443
- 378 Ghosh, S., & Chan, C. K. (2016). Analysis of RNA-Seq Data Using TopHat and
- 379
 Cufflinks.
 Methods
 Mol
 Biol,
 1374,
 339-361.
- doi:10.1007/978-1-4939-3167-5_18
- Gill, S. I. (2019). How close are we to CAR T-cell therapy for AML? *Best Pract Res*
- 382 *Clin Haematol*, *32*(4), 101104. doi:10.1016/j.beha.2019.101104
- 383 Gong, G., Lin, T., & Yuan, Y. (2020). Integrated analysis of gene expression and DNA
- 384 methylation profiles in ovarian cancer. *J Ovarian Res, 13*(1), 30.
 385 doi:10.1186/s13048-020-00632-9
- 386 Haakonsen, D. L., & Rape, M. (2017). Ubiquitin levels: the next target against
- 387 gynecological cancers? J Clin Invest, 127(12), 4228-4230.
 388 doi:10.1172/JCI98262
- 389 Han, H., Chen, W., Yang, J., Liang, X., Wang, Y., Li, Q., . . . Li, K. (2018). Inhibition
- 390of cell proliferation and migration through nucleobase-modified391polyamidoamine-mediated p53 delivery. Int J Nanomedicine, 13, 1297-1311.
- 392 doi:10.2147/IJN.S146917
- Higgins, A., & Shah, M. V. (2020). Genetic and Genomic Landscape of Secondary
 and Therapy-Related Acute Myeloid Leukemia. *Genes (Basel)*, 11(7).
 doi:10.3390/genes11070749
- 396 Huang, B., Lei, Z., Zhao, J., Gong, W., Liu, J., Chen, Z., . . . Feng, Z. H. (2007).
- 397 CCL2/CCR2 pathway mediates recruitment of myeloid suppressor cells to

398	cancers. Cancer Lett, 252(1), 86-92. doi:10.1016/j.canlet.2006.12.012
399	Jin, D., Guo, J., Wu, Y., Du, J., Wang, X., An, J., Wang, W. (2019). UBE2C,
400	Directly Targeted by miR-548e-5p, Increases the Cellular Growth and Invasive
401	Abilities of Cancer Cells Interacting with the EMT Marker Protein Zinc Finger
402	E-box Binding Homeobox 1/2 in NSCLC. Theranostics, 9(7), 2036-2055.
403	doi:10.7150/thno.32738
404	Kadia, T. M., Ravandi, F., Cortes, J., & Kantarjian, H. (2016). New drugs in acute
405	myeloid leukemia. Ann Oncol, 27(5), 770-778. doi:10.1093/annonc/mdw015
406	Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with
407	low memory requirements. Nat Methods, 12(4), 357-360.
408	doi:10.1038/nmeth.3317
409	Kittang, A. O., Hatfield, K., Sand, K., Reikvam, H., & Bruserud, O. (2010). The
410	chemokine network in acute myelogenous leukemia: molecular mechanisms
411	involved in leukemogenesis and therapeutic implications. Curr Top Microbiol
412	Immunol, 341, 149-172. doi:10.1007/82_2010_25
413	Laborda, E., Mazagova, M., Shao, S., Wang, X., Quirino, H., Woods, A. K., Young,
414	T. S. (2017). Development of A Chimeric Antigen Receptor Targeting C-Type
415	Lectin-Like Molecule-1 for Human Acute Myeloid Leukemia. Int J Mol Sci,
416	18(11). doi:10.3390/ijms18112259
417	Leipold, D. D., Figueroa, I., Masih, S., Latifi, B., Yip, V., Shen, B. Q., Kamath, A.
418	V. (2018). Preclinical pharmacokinetics and pharmacodynamics of
419	DCLL9718A: An antibody-drug conjugate for the treatment of acute myeloid

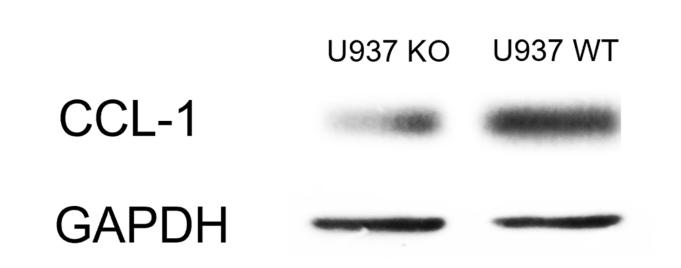
420	leukemia. MAbs, 10(8), 1312-1321. doi:10.1080/19420862.2018.1517565
421	Lin, G., Zhang, Y., Yu, L., & Wu, D. (2021). Cytotoxic effect of CLL1 CART cell
422	immunotherapy with PD1 silencing on relapsed/refractory acute myeloid
423	leukemia. Mol Med Rep, 23(3), 1. doi:10.3892/mmr.2021.11847
424	Lu, H., Zhou, Q., Deshmukh, V., Phull, H., Ma, J., Tardif, V., Schultz, P. G. (2014).
425	Targeting human C-type lectin-like molecule-1 (CLL1) with a bispecific
426	antibody for immunotherapy of acute myeloid leukemia. Angew Chem Int Ed
427	Engl, 53(37), 9841-9845. doi:10.1002/anie.201405353
428	Ma, H., Padmanabhan, I. S., Parmar, S., & Gong, Y. (2019). Targeting CLL-1 for
429	acute myeloid leukemia therapy. J Hematol Oncol, 12(1), 41.
430	doi:10.1186/s13045-019-0726-5
431	Macanas-Pirard, P., Quezada, T., Navarrete, L., Broekhuizen, R., Leisewitz, A., Nervi,
432	B., & Ramirez, P. A. (2017). The CCL2/CCR2 Axis Affects Transmigration
433	and Proliferation but Not Resistance to Chemotherapy of Acute Myeloid
434	Leukemia Cells. <i>PloS one, 12</i> (1), e0168888.
435	doi:10.1371/journal.pone.0168888
436	Manasanch, E. E., & Orlowski, R. Z. (2017). Proteasome inhibitors in cancer therapy.
437	Nat Rev Clin Oncol, 14(7), 417-433. doi:10.1038/nrclinonc.2016.206
438	Nagarsheth, N., Wicha, M. S., & Zou, W. (2017). Chemokines in the cancer
439	microenvironment and their relevance in cancer immunotherapy. Nat Rev
440	Immunol, 17(9), 559-572. doi:10.1038/nri.2017.49
441	Neumann, K., Castineiras-Vilarino, M., Hockendorf, U., Hannesschlager, N., Lemeer,

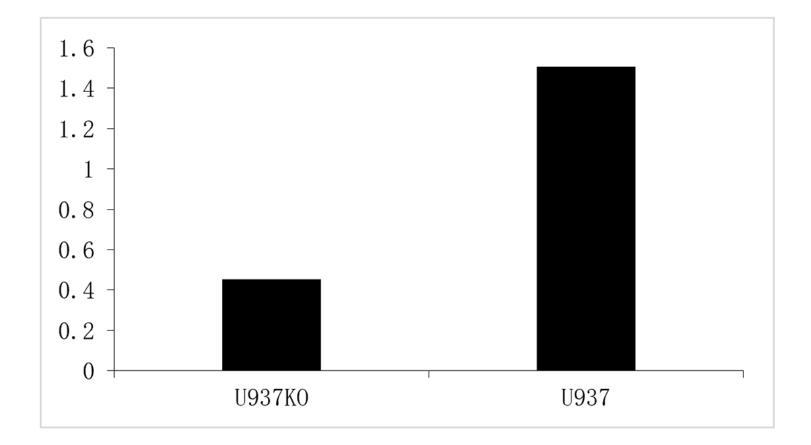
442	S., Kupka, D., Ruland, J. (2014). Clec12a is an inhibitory receptor for uric
443	acid crystals that regulates inflammation in response to cell death. Immunity,
444	40(3), 389-399. doi:10.1016/j.immuni.2013.12.015
445	Pelcovits, A., & Niroula, R. (2020). Acute Myeloid Leukemia: A Review. R I Med J
446	(2013), 103(3), 38-40.
447	Scarpa, E. S., Tasini, F., Crinelli, R., Ceccarini, C., Magnani, M., & Bianchi, M.
448	(2020). The Ubiquitin Gene Expression Pattern and Sensitivity to UBB and
449	UBC Knockdown Differentiate Primary 23132/87 and Metastatic MKN45
450	Gastric Cancer Cells. Int J Mol Sci, 21(15). doi:10.3390/ijms21155435
451	Simonetti, G., Padella, A., do Valle, I. F., Fontana, M. C., Fonzi, E., Bruno, S.,
452	Martinelli, G. (2019). Aneuploid acute myeloid leukemia exhibits a signature
453	of genomic alterations in the cell cycle and protein degradation machinery.
454	Cancer, 125(5), 712-725. doi:10.1002/cncr.31837
455	Stone, M. J., Hayward, J. A., Huang, C., Z, E. H., & Sanchez, J. (2017). Mechanisms
456	of Regulation of the Chemokine-Receptor Network. Int J Mol Sci, 18(2).
457	doi:10.3390/ijms18020342
458	Tamamyan, G., Kadia, T., Ravandi, F., Borthakur, G., Cortes, J., Jabbour, E.,
459	Konopleva, M. (2017). Frontline treatment of acute myeloid leukemia in
460	adults. Crit Rev Oncol Hematol, 110, 20-34.
461	doi:10.1016/j.critrevonc.2016.12.004
462	Tashiro, H., Sauer, T., Shum, T., Parikh, K., Mamonkin, M., Omer, B., Brenner, M.
463	K. (2017). Treatment of Acute Myeloid Leukemia with T Cells Expressing

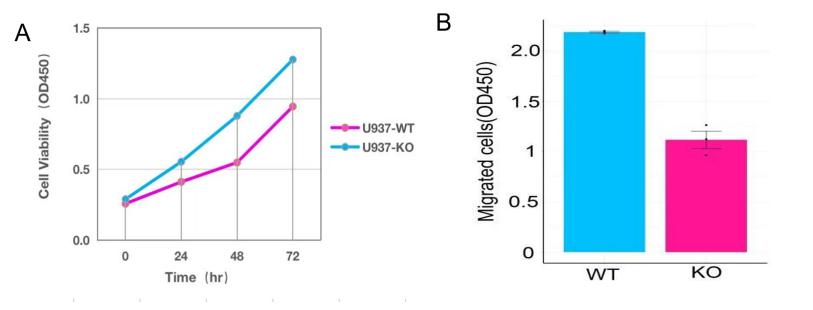
464	Chimeric	Antigen	Receptors	Directed	to	C-type	Lectin-like	Molecule	1.	Mol

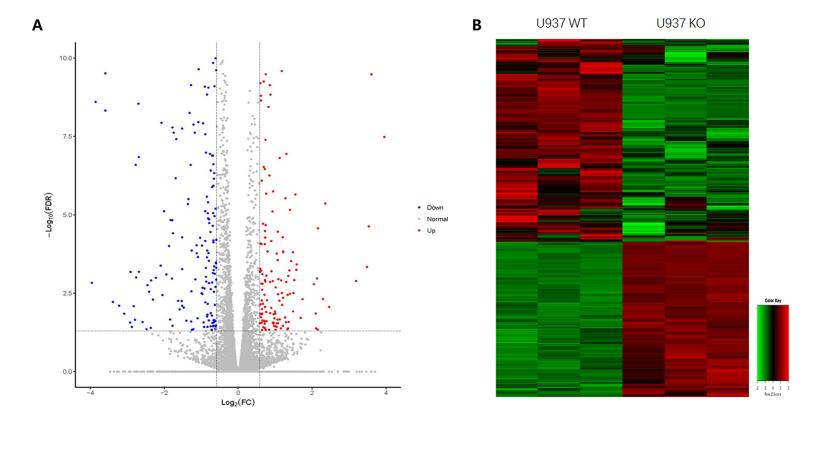
- 465 *Ther*, 25(9), 2202-2213. doi:10.1016/j.ymthe.2017.05.024
- 466 van Wijk, S. J., Fulda, S., Dikic, I., & Heilemann, M. (2019). Visualizing
- 467 ubiquitination in mammalian cells. *EMBO Rep*, 20(2).
- 468 doi:10.15252/embr.201846520
- 469 Wang, J., Chen, S., Xiao, W., Li, W., Wang, L., Yang, S., . . . Zhou, P. (2018). CAR-T
- 470 cells targeting CLL-1 as an approach to treat acute myeloid leukemia. J
 471 *Hematol Oncol, 11*(1), 7. doi:10.1186/s13045-017-0553-5
- 472 Wang, Y. Y., Chen, W. L., Weng, X. Q., Sheng, Y., Wu, J., Hao, J., ... Wang, J. (2017).
- 473 Low CLL-1 Expression Is a Novel Adverse Predictor in 123 Patients with De
- 474 Novo CD34(+) Acute Myeloid Leukemia. *Stem Cells Dev*, 26(20), 1460-1467.
- 475 doi:10.1089/scd.2016.0310
- Watanabe, K., Yumimoto, K., & Nakayama, K. I. (2015). FBXO21 mediates the
 ubiquitylation and proteasomal degradation of EID1. *Genes Cells*, 20(8),
 667-674. doi:10.1111/gtc.12260
- 479 Xie, C., Powell, C., Yao, M., Wu, J., & Dong, Q. (2014). Ubiquitin-conjugating
 480 enzyme E2C: a potential cancer biomarker. *Int J Biochem Cell Biol, 47*,
- 481 113-117. doi:10.1016/j.biocel.2013.11.023
- Yang, X., & Wang, J. (2018). Precision therapy for acute myeloid leukemia. J
 Hematol Oncol, 11(1), 3. doi:10.1186/s13045-017-0543-7
- Zhou, Q., Yao, X., Wu, C., Chen, S., & Fan, D. (2020). Knockdown of
 Ubiquitin-Specific Protease 53 Enhances the Radiosensitivity of Human

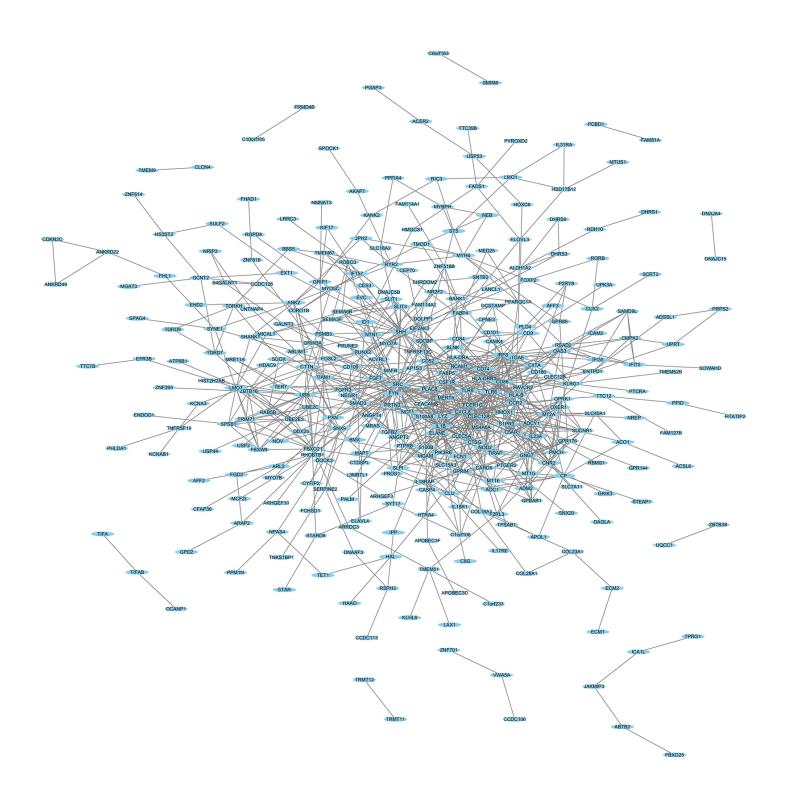
486	Cervical Squamous Cell Carcinoma by Regulating DNA Damage-Binding
487	Protein 2. Technol Cancer Res Treat, 19, 1533033820929792.
488	doi:10.1177/1533033820929792
489	Zhu, K. P., Zhang, C. L., Ma, X. L., Hu, J. P., Cai, T., & Zhang, L. (2019). Analyzing
490	the Interactions of mRNAs and ncRNAs to Predict Competing Endogenous
491	RNA Networks in Osteosarcoma Chemo-Resistance. Mol Ther, 27(3), 518-530.
492	doi:10.1016/j.ymthe.2019.01.001
493	
494	Figure legends
495	Figure 1. Western-blot analysis of CLL-1 expression in knock-out and wide type
496	U937 cells.
497	Figure 2. CCK8 and Transwell assays in CLL-1 knock-out and wide type U937 cells.
498	A. CCK8 assay, B. Transwell assay.
499	Figure 3. Volcano plots and hierarchical cluster analysis. A. Volcano plots, blue dots
500	represent down-regulated mRNAs, grey dots represent no significant changed
501	mRNAs, red dots represent up-regulated mRANs. B. Heatmap of hierarchical cluster,
502	red colors indicate up-regulated and green colors indicate down-regulated.
503	Figure 4. PPI network of 452 DEGs. PPI network with 340 nodes and 904 edges, and
504	blue nodes indicate DEGs and edges indicate interactions.
505	Figure 5. Subnetworks of hub genes and an important module. A. Subnetwork of the
506	top 30 hub genes with higher degrees (>13). B. Subnetwork of an important module
507	with the highest socre (9.684). Blue nodes indicate DEGs and edges indicate

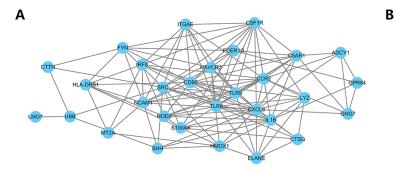

508 interaction	s.
-----------------	----

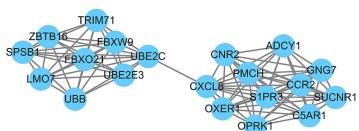

- 509 Figure 6. Top 30 GO terms and KEGG pathways. A. Top 30 GO terms, B. Top 30
- 510 KEGG pathways.
- 511 Figure 7. Validation by qRT-PCR and western-blot. A. The mRNA levels of 8 genes
- 512 were validated by qRT-PCR, the red line represents RNA sequence data and green line
- 513 represents qRT-PCR data. B. The protein levels of 8 genes were validated by
- 514 western-blot.

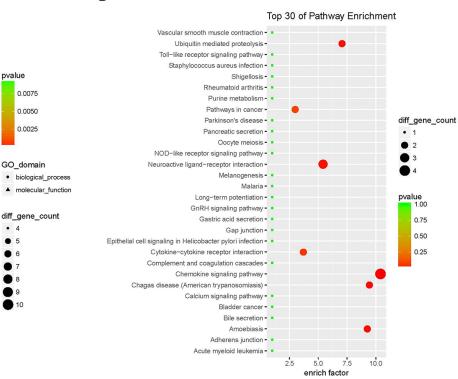

515

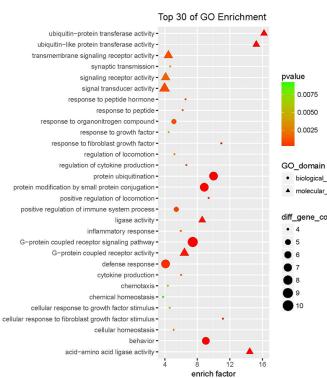

516 Supporting Information

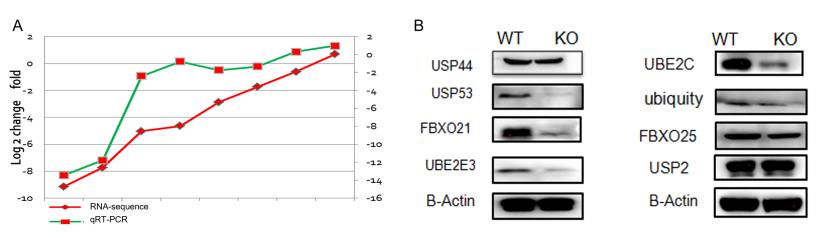

- 517 Table S1: WSF-KO vs WSF-WT.log2FC0.585.FDR0.05.Diff.mRNA&circRNA
- 518 Table S2: Negative Analysis miRNA mRNA.GO-Analysis
- 519 Table S3: Pathyway Analysis Result











Α

