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ABSTRACT 13 
Pathogens pose a major risk to human health globally, causing 44% of deaths in low-resource 14 
countries. Currently, there are over 500 known bacterial pathobionts, covering a wide range of 15 
functional capabilities. Some well-known pathobionts are well characterized computationally and 16 
experimentally. However, to gain a deeper understanding of how pathobionts are evolutionarily 17 
related to the principles that govern their different functions and ultimately identify possible 18 
targeted antimicrobials, we must consider both well-known and lesser-known pathobionts. Here, 19 
we developed a database of genome-scale metabolic network reconstructions (GENREs) called 20 
PATHGENN, which contains 914 models of pathobiont metabolism to address these questions 21 
related to functional metabolic evolution and adaptation. We determined the metabolic 22 
phenotypes across all known pathobionts and the role of isolate environment in functional 23 
metabolic adaptation. We also predicted novel antimicrobial targets for bacteria specific to their 24 
physiological niche. Understanding the functional metabolic similarities between pathobionts is 25 
the first step to ultimately developing a precision medicine framework for addressing all infections. 26 
 27 
INTRODUCTION 28 
Bacterial pathogens pose a major risk to human health. Globally, pathogens are responsible for 29 
16% of all deaths, and responsible for 44% of deaths in low-resource countries1. Financially, 30 
global economic losses from pathogenic disease outbreaks amount to tens of billions of dollars in 31 
the past 10 years2. In recent years, there has been an increase in infectious disease emergence 32 
attributed to urbanization, globalization, climate change, population growth, and human/animal 33 
interaction 3. Currently, there are over 500 known human bacterial pathobionts4. Pathobionts are 34 
microorganisms that have the capacity to be pathogenic5 and range across many taxonomic 35 
classes and genera. Therefore, there exists a wide range in metabolic function, phylogeny, and 36 
infection niches (e.g., stomach, wound, lung) across pathobionts.  37 
 38 
Due to their imminent danger to human health, some pathobiont species have been well 39 
characterized experimentally and computationally 6–8. However, to gain a deeper understanding 40 
of how pathobionts are evolutionarily related and the principles that govern their differential 41 
functions and ultimately identify novel targeted antimicrobial therapies, we need to consider both 42 
well-characterized and poorly-characterized pathobionts. We can leverage ‘omics approaches to 43 
understand the relationship between pathobionts and their physiological environment to shed light 44 
on functional metabolic differences between species. A better characterization of governing 45 
principles of pathobiont function could enable the development of new approaches to target 46 
pathobionts through novel therapies or drug repurposing. Additionally, using antimicrobial 47 
therapies to target environment-specific essential genes rather than organism-specific essential 48 
genes could reduce the harmful effects of broad-spectrum antimicrobials9 49 
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 50 
Genome-scale metabolic network reconstructions (GENREs) for can be used to elucidate the 51 
functional metabolic mechanisms of individual pathobionts6,10. Once assembled, GENREs can 52 
probe an organism’s genotype-phenotype relationship through constraint-based modeling and 53 
analysis (COBRA)11. Computational modeling through GENREs has proven effective at defining 54 
functional metabolism in individual priority pathogens, allowing for interpretation of mechanisms 55 
of infection and antibiotic resistance10.  56 
 57 
Here, we determined the evolutionary relatedness of metabolic phenotypes across pathobionts 58 
and the role of isolate environment in functional metabolic adaptation. We characterized the 59 
correlation of functional metabolism with the physiological niche of a pathobiont. We also 60 
predicted novel antimicrobial targets for pathobionts specific to a given physiological niche. To 61 
address the above questions, we generated the first database of GENREs of all known bacterial 62 
pathobionts (referred to as PATHGENN) with a current total of 914 in silico models of pathobiont 63 
metabolism, which can serve as a key resource for the community.  64 
 65 
RESULTS 66 
The PATHGENN Database 67 
We created PATHGENN, a database of GENREs for all known human bacterial pathobionts 68 
through an automated pipeline (Figure S1). PATHGENN utilizes publicly available genome 69 
sequences from the Bacterial and Viral Bioinformatics Resource Center (BV-BRC)12 paired with 70 
open-source software including Python and COBRApy 11, and a recently developed GENRE 71 
reconstruction algorithm13. The PATHGENN database is the first to contain GENREs of all known 72 
human bacterial pathobionts and is among the largest publicly available databases of GENREs 73 
14,15. PATHGENN consists of 914 GENREs, covering 345 species, 94 genera, 36 orders, 17 74 
classes, and 9 phyla (Figure 1a, c) of pathobionts. PATHGENN GENREs account for the function 75 
of a sum total of 1.27 million reactions (6,304 unique reactions), 1.22 million genes, and 1.20 76 
million metabolites. Each GENRE contains an average of 1,355	reactions (standard deviation: 77 
344), 1,310 genes (standard deviation: 593), and 1,394 metabolites (standard deviation: 331) 78 
(Figure 1b). The relationship between the number of genes and reactions in the reconstructions 79 
is logarithmic, which is consistent with the expectation that there are limited evolutionary 80 
advantages for bacteria with increasingly large genomes16(Figure 1d).  81 
 82 
KEGG reaction annotations were utilized and reactions across all PATHGENN GENREs were 83 
separated into core (present in > 75% of GENREs), accessory (between 25% and 75%), and 84 
unique (present in < 25%) metabolism. There are 2,515 annotated unique reactions, 1,044 85 
annotated accessory reactions, and 752 annotated core reactions (Figure 2a). The large number 86 
of unique reactions can be attributed to the size of the PATHGENN database and the taxonomic 87 
range PATHGENN GENREs represent. Furthermore, we determined notable differences in the 88 
unique and core metabolic subsystems through KEGG reaction subsystem annotation. More 89 
unique reactions were involved in xenobiotic metabolism (7% more), terpenoid/polyketide 90 
metabolism (11% more), and carbohydrate metabolism (4% more). Additionally, more core 91 
reactions were involved in nucleotide metabolism (7% more), and cofactor/vitamin metabolism 92 
(2% more) (Figure 2b). 93 
 94 
Metabolic Phenotype Evolution  95 
To understand the evolutionary relationship between pathobionts and their essential genes and 96 
network structure (two important attributes of functional metabolism), we calculated predicted 97 
essential genes, genetic distance between all pairs of pathobionts, and delineated differences in 98 
the reactions present in each organism. For each strain, essential gene profiles were determined 99 
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by using an FBA single-gene-knockout method in COBRApy. Given gene essentiality is a function 100 
of the organism’s physiological environment, for this analysis all exchange reactions were open 101 
which results in the minimum number of essential genes for a given organism. Reaction presence 102 
profiles were created by probing the model in COBRApy (see Methods). These analyses 103 
produced binary profiles describing the presence of all essential genes and reactions in each 104 
model, which were subsequently used to calculate pairwise dissimilarity. The evolution of 105 
essential gene and reaction presence profiles is shown in Figures 3 and S2, respectively. Both 106 
relationships can be approximated with a three-parameter logarithmic growth function. 107 
Additionally, the logarithmic function reaches a saturation point (x | y = 1.0) for essential gene 108 
dissimilarity and reaction presence dissimilarity.  109 
 110 
The saturation points observed in Figure 3 are indicative of conserved essential genes and 111 
reactions, respectively, across bacterial strains. That is, even at genetic difference of 100%, a 112 
pair of pathobionts will be only 18% different with respect to the essential gene profiles, and 34% 113 
different with respect to the reaction presence profiles. A previous study17 determined a similar 114 
relationship between essential gene profiles and genetic distance across bacteria (not specifically 115 
pathobionts), but determined a saturation point of ~53% essential gene difference. This 116 
discrepancy in essential gene saturation point could be attributed to possible inherent pathobiont 117 
similarities that are not shared across all genera of bacteria. With host infection as a shared 118 
functional process of pathobionts, this result could suggest a shared functional signature 119 
associated with infection regardless of the specific niche which is not shared with non-pathobiont 120 
bacteria. 121 
 122 
Additionally, the logarithmic trends shown in Figure 3 suggests there is adaptive pressure for 123 
closely related pairs of organisms to evolve to occupy their own distinct metabolic niche. As 124 
pathobionts begin to occupy distinct metabolic niches, they continually adapt their metabolic 125 
capabilities to better take advantage of their new environments, suggesting metabolic composition 126 
of the environment as a major governing principle of the evolution of functional metabolism. 127 
 128 
Essential Gene Metabolic Subsystem Analysis 129 
We further explored the relationship between physiological environment and metabolic function 130 
by essential gene subsystem analysis. We pooled the essential genes for all isolates of a given 131 
environment, and determined the metabolic subsystem distribution through KEGG genes 132 
annotation. Figure 4 shows the metabolic subsystem distribution of essential genes in eight of the 133 
most represented isolate environments: throat, respiratory, lung, stool, ear, stomach, mouth, and 134 
blood. There is significantly different subsystem representation across physiological 135 
environments as determined by an ANOVA test for each subsystem (p < 0.05 for all subsystems).  136 
 137 
Some of the most notable differences in metabolic subsystem representation were amongst 138 
stomach isolates. There was evident lack of nucleotide metabolism, energy metabolism, and 139 
glycan metabolism in the essential genes of stomach isolates. Additionally, there was a clear 140 
enrichment of amino acid and lipid metabolic subsystems compared to essential gene 141 
subsystems in other isolate environments. The clear differences in metabolic subsystem 142 
utilization by organisms in different environments provides strong evidence for differential 143 
metabolic functional adaptation according to environment.  144 
 145 
Influence of Environment on Functional Metabolism 146 
Previous studies have delineated a relationship between functional metabolism and taxonomic 147 
class 15,18,19. While it is clear that taxonomy is a driver for metabolic function, functional metabolism 148 
could also be attributed to physiological environment because an organism’s environment 149 
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influences adaptation. To determine if there is a significant association between functional 150 
metabolism and physiological envirionment in addition to taxonomic class in pathobionts, we 151 
utilized flux balance analysis (FBA)20 for each strain (n = 10 samples per strain). t-SNE was used 152 
to reduce the dimensionality of the flux output across strains and for subsequent visualization 153 
(see methods). We colored the t-SNE output on both taxonomic class (Figure 5a) and isolate 154 
environment (Figure 5b). Significant clustering was exhibited in Figure 5a and b (PERMANOVA: 155 
p < 0.01), suggesting functional metabolism is related to both taxonomic class and isolate 156 
environment.  157 
 158 
Gammaproteobacteria is the class of bacteria with the largest number of models in PATHGENN 159 
(Figure 5a). However, Gammaproteobacteria isolates came from a variety of sources including 160 
stool, urine, lung, and blood among others (Figure 5b). Gammaproteobacteria is the most genera-161 
rich taxon of Prokaryotes, containing over 250 genera21. This diversity in bacterial genera within 162 
the Gammaproteobacteria suggests a broader range of functional capabilities than other taxa, 163 
providing reasoning for the diverse environments from which Gammaproteobacteria were 164 
isolated. Another notable cluster, Actinomycetia, contains isolates from lung, respiratory, sputum, 165 
and throat sites. Mycobacterium tuberculosis and Actinomyces species belong to this class and 166 
are known to infect the lungs and throat respectively22,23. Clustering of M. tuberculosis and 167 
Actinomyces suggests organisms in similar environments across the respiratory tract exhibit 168 
similar functional capabilities.  169 
 170 
A prominent cluster in Figure 5b is associated with bacteria isolated from the stomach. The 171 
stomach environment is highly acidic (pH 1.5 to 2.0)24, allowing for only a few key bacteria to take 172 
up residence, one of which is Helicobacter pylori. H. pylori has adapted to this extremely unique 173 
environment by utilizing differential metabolic pathways25. The evident separation of the stomach 174 
cluster from others and the uniqueness of the stomach environment suggests25 bacteria with 175 
highly unique functional metabolism. This result suggests genes essential to growth in stomach 176 
isolates are uniquely essential compared to pathobionts from other isolation sites. We can 177 
leverage these uniquely essential genes to identify novel antimicrobial targets that are specific to 178 
stomach pathobionts.  179 
 180 
Identifying Site-Specific Antimicrobial Targets 181 
To determine genes that are uniquely essential to stomach bacteria, essential genes were 182 
determined for all strains in PATHGENN using an FBA single-gene-knockout method in 183 
COBRApy (see Methods). If a gene was considered essential if >= 80% of strains in an isolate 184 
environment requires the gene to produce biomass. Two genes were identified as uniquely 185 
essential to stomach pathobionts (not essential in any other environment), fabF and tktA. fabF 186 
encodes the beta-ketoacyl-ACP synthase (KAS), implicated in the chain elongation step of fatty 187 
acid synthesis26, and tktA encodes transketolase (TK), the most critical enzyme in the non-188 
oxidative pentose phosphate pathway27. While neither of these genes are currently known 189 
antimicrobial targets specific to stomach pathobionts, there already exist several antimicrobials 190 
that target these gene products. According to DrugBank28, fabF is a target of lauric acid. Lauric 191 
acid has been shown to have bactericidal effects against the stomach pathogen H. pylori and was 192 
cited to have a lower propensity to develop resistance compared to metronidazole or 193 
tetracycline29. Other drugs that target fabF and tktA are Cerulenin (fabF, currently used as an 194 
antifungal antibiotic), Platensimycin (fabF, currently in preclinical trials as a MRSA antibiotic), and 195 
Cocarboxylase (tktA, currently used to target tktA in E. coli), although there is no published 196 
literature regarding their use to treat stomach specific infections. The ability to predict lauric acid 197 
as a possible stomach-targeted antimicrobial with indirect literature validation demonstrates the 198 
value of PATHGENN to enable clinical hypothesis generation.  199 
 200 
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Additionally, we visualized the pathway structure that the genes tktA and fabF are implicated in 201 
across three stomach isolates that were captured in the PATHGENN database: Helicobacter 202 
pylori, Arcobacter butzleri, and Campylobacter coli using fluxer30 and adapted the generated 203 
pathways in Figure 6. There are clear differences in pathway structure between the three different 204 
species of stomach isolates.  205 
 206 
DISCUSSION 207 
Here, we present a novel pipeline for generating GENREs of human bacterial pathobionts and 208 
apply it to create 914 GENREs representing all known bacterial pathobionts, a resource called 209 
PATHGENN. PATHGENN is among the largest databases of GENREs14,15, and the first specific 210 
to pathobionts. PATHGENN GENREs adhere to the community benchmarking standards 211 
(MEMOTE, see Methods) and utilizes the ModelSEED namespace. These standards allow 212 
PATHGENN GENREs to be easily used in conjunction with existing models from other sources.  213 
All PATHGENN models are publicly available, and we encourage others to utilize the database 214 
to probe biological and clinically relevant questions not explored here. While the models in 215 
PATHGENN are not manually curated, they were all developed using the same pipeline utilizing 216 
an automated gap-filling process, allowing for a large number of GENREs in PATHGENN to be 217 
directly compared.  218 
 219 
There are a total of 2,515 reactions that were unique to less than 25% of GENREs (unique 220 
reactions) in PATHGENN, while there were 752 reactions that were common in greater than or 221 
equal to 75% of GENREs (core reactions). There is an evident enrichment of nucleotide metabolic 222 
subsystems in core reactions (7% more). This result is consistent with the ubiquitous role of 223 
nucleotide metabolism across bacterial species31. Additionally, it has been shown that the 224 
nucleotide metabolism pathway plays a role in pathogenesis, further providing evidence that the 225 
GENREs in PATHGENN accurately capture and represent the biochemical processes in 226 
pathobionts32. Furthermore, there was an enrichment of xenobiotic metabolic subsystems in 227 
unique reactions (7% more). Bacterial species evolve to utilize differential xenobiotic pathways to 228 
best make use of ingested compounds through the utilization of different enzymes and 229 
hydrolytic/reduction reactions33. The evolution of unique xenobiotic metabolic reaction pathways 230 
allows bacteria to occupy their own metabolic niches and take advantage of their environment. 231 
 232 
Understanding the evolution of metabolic phenotypes can provide important insight into fitness 233 
and adaptation of pathobionts. We used PATHGENN to better understand metabolic evolution in 234 
the context of adaptation through changes in functional metabolism over generational time. 235 
Results presented in Figure 3 (and Figure S2) suggest that there is adaptive pressure for closely 236 
related organisms to occupy their own distinct metabolic niche, which could occur through 237 
possible mechanisms of horizontal gene transfer, random mutation, or other methods. Closely 238 
related pathobionts experience pressure to adapt and quickly occupy a distinct metabolic niche 239 
to avoid competition and ensure the survival of the species. In more distantly related species, 240 
organisms have already adapted to occupy their own unique metabolic niches. It is evident that 241 
organisms continue to specialize after finding their niche, adapting further to gain fitness in their 242 
given environment. This observation suggests a two-phase evolutionary process. First, an initial 243 
diversification of both essential genes and reaction network due to adaptive pressure, followed 244 
by further diversification over generations. Additionally, by definition, pathobionts share a common 245 
function with host infection. Consequently, that shared activity could limit functional differences 246 
even if genetic history of the pathobiont is quite distinct. This concept could explain results in the 247 
logarithmic nature of the relationship between essential gene/reaction similarity and genetic 248 
distance (Figure 3).  249 
 250 
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It is important to note that in Figure 3 there is one group of pathobiont pairs that are more 251 
genetically distant from each other. For every pair in this group, one bacterium in the pair is 252 
Mycolicibacterium fortuitum, which is an opportunistic pathogen that is responsible for skin and 253 
bone infections belonging to the actinomycetia taxonomic class34. In this group, the bacteria 254 
paired with Mycolicibacterium fortuitum are: seven different Bacillus species, two Vibrio species, 255 
two Acinetobacter species, two Burkholderia species, and one Providencia, Enterobacter, and 256 
Stenotrophomonas species. This result suggests that these species are genetically distant from 257 
Mycolicibacterium fortuitum, but have more similar essential gene profiles to Mycolicibacterium 258 
fortuitum than expected according to the log fit function. Additionally, there is a high density of 259 
pathobiont pairs with genetic distances between 0.2 and 0.3. This result suggests that the average 260 
genetic distance between pairs of pathobionts is between 0.2 and 0.3, which is consistent with 261 
what has been found in another study examining pairwise genetic distances (determined by 16S 262 
rRNA sequence alignment) across pairs of bacteria35. 263 
 264 
The analysis of the evolution of metabolic phenotypes suggests that isolate environment could be 265 
a major evolutionary driver of metabolic function. This idea was further confirmed by metabolic 266 
subsystem annotation of essential genes via KEGG orthologs. There was a clear difference in 267 
metabolic subsystem representation of essential genes in different isolate environments (ANOVA 268 
with p < 0.05 for each subsystem). This difference in metabolic subsystem utilization could also 269 
suggest isolates from different isolate environments are functionally different, thereby occupying 270 
distinct metabolic niches.  271 
 272 
Functional metabolic similarities have been tied to taxonomic class in many studies14,15,18,19, but 273 
the underlying importance of isolate environment and its role in driving adaptation is often 274 
underappreciated. We determined that functional metabolism is related to both taxonomic class 275 
and isolation source through FBA, dimensionality reduction and visualization (t-SNE), and 276 
subsequent PERMANOVA (p < 0.01). This result provides more support for the hypothesis that 277 
functional metabolism is related to metabolic niche, which has been suggested in previous work 278 
15. Additionally, within taxonomic classes, there are distinct clusters of flux samples based on 279 
isolate environment. There are visibly distinct clusters of throat, respiratory, lung, ear, stomach, 280 
blood, and stool, which were also shown to have distinct metabolic subsystem utilization in the 281 
essential gene and metabolic subsystem analysis (Figure 4). The corroboration of results in these 282 
two different analyses provides further evidence that isolate environment is a strong factor in the 283 
evolution of metabolic phenotypes.  284 
 285 
Additionally, within the class of Epsilonproteobacteria there are two distinct clusters: a stomach 286 
cluster and a stool cluster. This result further implies that closely related organisms develop 287 
distinct functional metabolic capabilities related to their specific environment to outcompete 288 
related organisms and ensure the survival of the distinct population or species. These results 289 
suggest similarities between organisms that occupy the same environment and not only because 290 
they are phylogenetically related. While phylogeny is undoubtedly related to metabolic phenotype, 291 
it is clear that environment is also a driving factor for the evolution of functional metabolic 292 
characteristics.  293 
 294 
The most distinct cluster of metabolic flux samples is the stomach cluster, implying these isolates 295 
exhibit strong similarities in functional metabolism. Additionally, this suggests these isolates are 296 
functionally distinct from isolates of different environments. These functional metabolic 297 
differences could be driven by the extreme environment of the stomach, pressuring adaptation. 298 
Distinct metabolic phenotypes in the stomach environment were also shown in Figure 4, with a 299 
visible enrichment of amino acid and lipid metabolism subsystems and a lack of nucleotide, 300 
energy, and glycan metabolic subsystems in the essential genes of stomach isolates.  301 
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 302 
Stomach infection with H. pylori can cause a variety of adverse effects including chronic gastritis 303 
leading to complications (peptic ulcer, gastric cancer, lymphoma)36,37. Additionally, H. pylori 304 
infection is incredibly difficult to treat, requiring multi-antimicrobial regimens and acid 305 
suppressants36. Given that stomach isolates are functionally different from isolates in other 306 
environments, we identified two genes, fabF and tktA, that are uniquely essential to stomach 307 
isolates. Creating antimicrobial therapies specifically targeting these genes could eliminate the 308 
need for multi-antimicrobial regimens and broad-spectrum antibiotics which are associated with 309 
adverse health effects9. Additionally, targeted antimicrobial therapies would allow for more rapid 310 
response to infection, since all organisms in an environment can be treated unilaterally with one 311 
antimicrobial so species identification is not necessary. We identified four drugs that target these 312 
genes: lauric acid (fabF), Cerulenin (fabF), Platensimycin (fabF), and Carboxylase (tktA). Lauric 313 
acid has been cited to have antimicrobial properties against H. pylori, and a lower propensity to 314 
cause the development of resistance than if H. pylori were treated with metronidazole or 315 
tetracycline29. Since the GENREs in PATHGENN were able to correctly predict lauric acid as an 316 
antimicrobial target, the other three identified drugs could be tested.  Additionally, we visualized 317 
the pathways that fabF and tktA are a part of in three different stomach isolate species (H. pylori, 318 
A. butzleri, and C. coli) (Figure 6). There are clear differences in pathway structure between the 319 
three different species despite tktA and fabF being essential genes in stomach isolates. This 320 
finding further highlights the importance of investigating unique metabolic functional capabilities 321 
that develop due to adaptive pressures for antimicrobial discovery and drug repurposing. 322 
 323 
The GENREs in PATHGENN were generated through an automated pipeline, first generating 324 
genome-informed draft network reconstructions then a curation of the reconstructions through an 325 
automated gapfilling process based on parsimony principles. Generating all models through the 326 
same pipeline with the same level of automated curation allows for comparison across all 327 
GENREs for a high-level, cross-genome, analysis of bacterial pathobionts. However, the strength 328 
of the models is dependent on the accuracy and detail of genome annotations. The analyses 329 
presented in this paper could be enhanced by further manual curation of poorly annotated 330 
species.  331 
 332 
We successfully generated a database of 914 GENREs of all human bacterial pathobionts 333 
(PATHGENN) which we used to investigate the role of environment in adaptation and generation 334 
of unique functional metabolism. Additionally, we were able to use uniquely essential metabolic 335 
genes in pathobionts isolated from the stomach to predict possible targeted antimicrobial options 336 
for treating stomach-specific bacterial infection. We can continue to investigate questions related 337 
to functional metabolism by curating the isolate environment to simulate metabolism in more 338 
specific contexts. This effort will allow for better understanding of the functional metabolic 339 
differences in pathobionts in the context in which they grow as infections. Furthermore, we can 340 
begin to integrate environment-specific functional metabolism and other pertinent metadata to 341 
identify drug targets that are relevant to patient-specific infections. Identifying unique metabolic 342 
functions across pathobiont species is the first step to developing a framework for a personalized 343 
medicine approach to addressing infection in the clinic.  344 
 345 
METHODS 346 
GENRE Creation From Genome Sequences 347 
We first filtered all genome sequences in the BV-BRC 3.6.12 database to only include those that 348 
were considered “good” quality and “complete”. BV-BRC guidelines define “good” as “a genome 349 
that is sufficiently complete (80%), with sufficiently low contamination (10%)”, and amino acid 350 
sequences that are at least 87% consistent with known protein sequence. “Complete” means that 351 
replicons were completely assembled. 352 
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 353 
There are 538 species of bacterial pathobionts4, some of which either do not have publicly 354 
available genome sequences via BV-BRC or do not have “good” and “complete” genome 355 
sequences in BV-BRC. There is at least one NCBI taxid for each pathobiont species, with some 356 
species having multiple unique NCBI taxids. Multiple genome sequences are available in BV-BRC 357 
for each NCBI taxid, so sequences were selected based on the presence of metadata in a 358 
hierarchical nature. Sequences with the most associated metadata were prioritized. If multiple 359 
sequences had the same amount of metadata, we selected the sequence that had isolate 360 
environment-associated metadata. If multiple sequences fulfilled the previous requirements, the 361 
strain that had host health-associated metadata was selected. This hierarchical selection was 362 
continued for metadata categories of isolation country, collection date, and host age, in that order 363 
of priority. The resulting list contained 914 unique genome sequences. This procedure was 364 
automated with a python script. 365 
 366 
All amino acid sequences were then automatically annotated with RAST 2.038,39, and GENREs 367 
were created for each strain using the Reconstructor13 algorithm. All models are publicly available 368 
(see Data Availability section). We benchmarked all GENREs using the community standard, 369 
MEMOTE40, and have included all scores in stable .html files on GitHub.  370 
 371 
Genetic Distance and Essential Gene Profile/ Reaction Presence profile distance 372 
All sequences used to create GENREs in PATHGENN were re-annotated to determine the rRNA 373 
genome features. All 16S rRNA sequences were extracted from the annotation output, for a total 374 
of 245 16S rRNA sequences, each from a unique PATHGENN strain (still representing the same 375 
9 phyla represented in all 914 PATHGENN GENREs). The 16s rRNA sequences were then 376 
aligned using Clustal Omega and the resulting Percent Identity Matrix was downloaded. Identity 377 
percentages were converted to values between 0 and 1, 0 being the most similar and 1 being the 378 
most different. This value was then converted to a percentage. This metric was defined as the 379 
genetic distance for subsequent analyses. 380 
 381 
Essential gene profiles for each of the corresponding 245 GENREs (those with available 16s 382 
rRNA sequences) using an FBA-based, single-gene-knockout method in COBRApy 383 
(cobra.flux_analysis.variability.find_essential_genes()).  Essential genes were then converted to 384 
KEGG Orthologs, and a binary matrix was created indicating essential gene presence in each 385 
strain (1 = presence, 0 = absence). The pairwise essential gene distance was defined as the 386 
calculated hamming distances41 between each strain’s essential gene profile.   387 
 388 
Reaction presence was determined for each of 245 GENREs via model probing in COBRApy. A 389 
binary matrix was created indicating reaction presence or absence in each strain (1 = presence, 390 
0 = absence). The pairwise reaction presence distance was defined as the calculated hamming 391 
distances between each strain’s reaction presence profile.  392 
 393 
Genetic distance vs essential gene distance, and genetic distance vs reaction presence distance 394 
were plotted for each pair of pathobionts. Logarithmic functions were fit to both plots using the 395 
scipy.optimize.curve_fit function in the python scipy toolbox.  396 
 397 
FBA and t-SNE Dimensionality Reduction/Visualization 398 
For each of the 914 models, Flux Balance Analysis (FBA) was performed using the COBRApy 399 
toolbox for each model in PATHGENN to capture metabolic flux through all model reactions. 10 400 
flux samples were taken per model for a total of 9,140 flux samples.  401 
 402 
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t-distributed stochastic neighbor embedding (t-SNE)42 was used for dimensionality and 403 
subsequent visualization of the FBA output. The perplexity parameter was optimized to preserve 404 
local and global relationships in the data using ! = #

!
" , where P = perplexity, and N = number of 405 

points. Points were colored based on taxonomic class, and subsequently colored on isolation 406 
source for visualization purposes. Significant clusters in both taxonomic class and isolation site t-407 
SNE outputs were determined using a PERMANOVA43 test.  408 
 409 
To ensure that 10 flux samples was sufficient to capture the flux solution space as well as 100 410 
flux samples per model would, we ran paired-down t-SNE analyses. We randomly sampled 100 411 
GENREs from the 914 total GENREs in PATHGENN. Then, for each of those 100 GENREs we 412 
used 100 flux samples to perform dimensionality reduction and subsequent visualization via t-413 
SNE (Figure S3). We performed this analysis three times, to ensure that the results would hold 414 
true for multliple randomly selected subsets of GENREs.  415 
 416 
Through this subsequent t-SNE analysis, we still see clustering by taxonomic class in figure S3. 417 
Specifically, we still see large clusters of Gammaproteobacteria and Actinomycetia. Additionally, 418 
we still see the separation of Epsilonproteobacteria into distinct clusters, one of which is 419 
completely comprised of stomach isolates.  420 
 421 
Determination of Novel Antibiotics to Target Stomach Isolates 422 
Essential genes for all 914 models were determined using an FBA based single-gene-knockout 423 
method in COBRApy (cobra.flux_analysis.variability.find_essential_genes()). All essential genes 424 
were translated to KEGG orthologs. Strains and their corresponding essential genes were 425 
grouped by isolation site. Essential genes present in >= 80% of strains in a given isolation source 426 
were defined as uniquely essential to that isolation source. Uniquely essential genes present in 427 
stomach isolates that are not uniquely essential to other isolation sites were selected.  DrugBank28 428 
was used to identify drugs that target uniquely essential genes of stomach isolates.  429 
 430 
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Figure 1 | Scope of the PATHGENN database. (a) Phylogenetic tree depicting the diversity of 914 considered 
bacterial pathobionts in PATHGENN. It is important to note there are many strains of E. coli, H. pylori, and M. 
tuberculosis included in the database. This cladogram was created using the GraPhlAn44 python tool. (b) 
Boxplots representing the spread of genes, reactions, and metabolites in each model, classified by phylum. 
The number in parentheses after the phylum name represents how many models are in that respective phylum. 
(c) PATHGENN represents 9 phyla, 17 classes, 36 orders, 94 genera, and 345 species of pathobionts. Across 
the 914 models, there are a sum total of 1.27 million reactions, 1.22 million genes, and 1.20 metabolites. (d) 
The relationship between the number of genes and the number of reactions in each model displays a positive 
trend and heteroscedasticity similar to other model ensembles15. Colors correspond to taxonomic class of 
pathobiont represented by each point (same legend as Figure 1 a) 
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Figure 2 | Core and unique metabolic reaction 
subsystems across pathobionts. (a) Histogram of 
annotated reactions across models display prevalent 
reaction classes used in core metabolism (>75% models 
have a given reaction) and unique metabolism (<25% 
models have a given reaction). Notably, the reaction 
classes xenobiotic degradation/metabolism and 
metabolism of terpenoids/polyketides are much more 
prevalent in unique reactions than core reactions. 
PATHGENN is largest database of GENREs to date (914 
GENRES representing 345 species), and the first to 
include all bacterial pathobionts. (b) Different metabolic 
subsystems are enriched in core and unique reactions. 
Amino acid, Xenobiotics, and Terpenoid/Polyketide 
metabolism is noticeably enriched in unique reactions, 
while Nucleotide metabolism is noticeably enriched in 
core reactions. 
 

Core MetabolismUnique Metabolism Accessory Metabolism

a) 

b) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 | Differences in metabolic function of pathobiont pairs are related to their genetic 
distance. The relationship between pairwise essential gene profile distance and genetic distance of 
245 pathobionts suggests adaptive pressure for closely related pairs of organisms to evolve to 
occupy their own distinct metabolic niche. This result further suggests that metabolic composition of 
environment is a major governing principle of evolution of functional metabolism. 

!(#) = & ∙ log(# + ,) + -	
# = 4.35, 		+ = 2.26, 			. = 17.22		

RMSE = 0.0231               R-squared = 0.4741 

y | x = 1 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 | Essential gene subsystems vary by isolate location. Enrichment of amino acid and 
lipid metabolism in stomach isolates is evident, along with an absence of essential genes used in 
glycan biosynthesis and energy metabolism. Each subsystem indicates differential metabolic 
subsystem utilization by isolate location (ANOVA p < 0.05).  
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Figure 5 | tSNE of Flux Samples Clustering on Taxonomic Class and Isolation Site.  10 flux 
samples across all 914 GENREs were plotted using tSNE, and points were colored on taxonomic 
class (a) and isolation site (b).  
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Figure 6 | fabF (a) and tktA (b) metabolic pathways in 
three stomach pathobionts: Helicobacter pylori, 
Arcobacter butzleri, and Campylobacter coli. There are 
differences in pathway structures in both fabF and tktA 
pathways across three stomach pathobionts. This figure was 
adapted from pathways generated with fluxer30. 
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S1 | PATHGENN Development Pipeline. The BV-BRC database45 was used to select pathobiont genome 
strains that satisfied quality criteria. These genome strains were then annotated using the RAST annotation 
toolbox38,39 to generate the amino acid FASTA file that was then used in Reconstructor13 to generate the 914 
GENREs of PATHGENN.  



 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S2 | Reaction differences in pathobiont pairs are related to their genetic distance. The relationship 
between pairwise reaction presence profile distance and genetic distance of 245 pathobionts can be 
approximated with log functions. 
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S3 | t-SNE plot of 100 flux samples for 100 GENREs. The clustering relationships seen in Figure 4 
with 10 flux samples for each of 914 models are consistent with the clusters seen here with three 
randomly selected subsets of 100 GENREs with 100 flux samples each.  

 


