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24 Abstract

25 Background. One in eight men will be affected by prostate cancer (PCa) in their lives. While the 

26 current clinical standard prognostic marker for PCa is the Gleason score, it is subject to inter-

27 reviewer variability. This study compares two machine learning methods for discriminating 

28 between high- and low-grade PCa on histology from 47 PCa patients. 

29 Methods. Digitized slides were annotated by a GU fellowship-trained pathologist. High-resolution 

30 tiles were extracted from annotated and unlabeled tissue. Glands were segmented and pathomic 

31 features were calculated and averaged across each patient. Patients were separated into a training 

32 set of 31 patients (Cohort A, n=9345 tiles) and a testing cohort of 16 patients (Cohort B, n=4375 

33 tiles). Tiles from Cohort A were used to train a compact classification ensemble model and a 

34 ResNet model to discriminate tumor and were compared to pathologist annotations. 

35 Results. The ensemble and ResNet models had overall accuracies of 89% and 88%, respectively. 

36 The ResNet model was additionally able to differentiate Gleason patterns on data from Cohort B 

37 while the ensemble model was not. 

38 Conclusions. Our results suggest that quantitative pathomic features calculated from PCa 

39 histology can distinguish regions of cancer; how-ever, texture features captured by deep learning 

40 frameworks better differentiate unique Gleason patterns.

41
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42 Introduction

43 Prostate cancer (PCa) is the most diagnosed non-cutaneous cancer in men, affecting an estimated 

44 268,000 men in 2022[1]. Improved prostate cancer screening and therapies have led to a high five-

45 year survival rate and the overall prognosis for PCa is one of the best compared amongst all 

46 cancers. Prostate cancer is currently graded using the Gleason grading system, assigning scores 

47 corresponding to the two most predominant morphological patterns present. More recently, it has 

48 been used to assign patients into one of five Grade Groups (GG) to predict prognosis[2].  Clinically 

49 significant cancer (GG ≥ 2, tumor volume ≥ 0.5 mL, or stage ≥ T3) is often treated with radiation 

50 therapy and/or radical prostatectomy. Low-grade cancer can often be monitored through annual 

51 prostate specific antigen (PSA) testing. Side effects from prostate cancer treatment can include 

52 long-term complications such as impotence and impaired urinary function[3], thus early and 

53 accurate detection of PCa is necessary to minimize overtreatment while still addressing clinically 

54 significant cancer. 

55

56 Digital pathology is playing an increasingly important role in clinical research, with applications 

57 in diagnosis and treatment decision support[4].  Fast acquisition time, management of data, and 

58 interpretation of histology has made digital pathology popular and easier for pathologists to 

59 manage and share slides. Additionally, artificial intelligence (AI) with digital pathology has 

60 created opportunities to incorporate computational algorithms into pathology workflows or for AI-

61 based computer-aided diagnostics[5]. 

62

63 In prostate cancer research, many machine learning applications have been focused on automated 

64 Gleason grading. While the Gleason score is currently the gold standard prognostic marker for 
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65 prostate cancer, the process of assigning grades is a subjective, quantitative metric. Additionally, 

66 pathologist-provided annotations for digital pathology studies is not only time consuming, but can 

67 result in significant inter-observer variability[6, 7]. The primary focus of these automated Gleason 

68 grading methods has been on biopsies or tissue microarrays as opposed to whole-slide images[8-

69 11]. A fast, automated tool for identifying Gleason patterns in prostate histology could allow for 

70 rapid annotation and grading, as well as provide important prognostic information such as 

71 recurrence probabilities.

72

73 In this study, we developed an Automated Tumor Assessment of pRostate cancer hIstology 

74 (ATARI) classification model for the Gleason grading of whole-mount prostate histology using 

75 quantitative histomorphometric features calculated from digitized prostate cancer slides. The 

76 results of this model were validated using ground truth pathologist annotations. In addition, we 

77 compared this model to a residual network with 101 layers (ResNet101) for automated Gleason 

78 grading[12]. Specifically, we tested the hypothesis that a machine learning model applied to 

79 second-order features calculated from digitized histology could discriminate prostate cancer from 

80 normal tissue. We also hypothesized that deep learning model would differ in classification 

81 accuracy, both in detecting cancer and differentiating Gleason patterns. 

82

83 Materials and Methods

84 Patient Population and Data Acquisition

85 Data from 47 prospectively recruited patients (mean age 59 years) with pathologically confirmed 

86 prostate cancer were analyzed for this study. This study was conducted according to the guidelines 

87 of the Declaration of Helsinki and approved by the Institutional Review Board of the Medical 
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88 College of Wisconsin. Written informed consent was obtained from all subjects involved in the 

89 study. The data presented in this study are available on request from the corresponding author. The 

90 data are not publicly available due to patient privacy concerns. For model development, subjects 

91 were split into 2/3 training (n = 31 patients) and 1/3 testing (n = 16 patients) data sets, matched for 

92 tumor grade and other clinical characteristics (see Table 1). 

93

94

95 Table 1:  Patient demographics of the study cohort at the time of radical prostatectomy (RP). 

Training

(n = 31)

Testing

(n = 16)

Age at RP, years (mean, SD) 59 (6.8) 59 (4.9)

Preoperative PSA, ng/mL (mean, SD) 7.9 (6.2) 7.7 (4.5)

Grade group at RP (n, %) (n = 72)

6 8 (26) 2 (12)

3+4 13 (41) 7 (44)

4+3 4 (13) 3 (19)

8 3 (10) 1 (6)

≥ 9 3 (10) 3 (19)

96

97 Tissue Collection and Processing

98 Prostatectomy was performed using a da Vinci robotic system (Intuitive Surgical, Sunnyvale, 

99 CA)[13, 14]. Whole prostate samples were fixed in formalin overnight and sectioned using custom 

100 axially oriented slicing jigs[15]. Briefly, prostate masks were manually segmented from the 
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101 patient’s pre-surgical T2-weighted magnetic resonance image using AFNI (v.19.1.00) (Analysis 

102 of Functional NeuroImages, http://afni.nimh.nih.gov/)[16]. Patient-specific slicing jigs were 

103 modeled using Blender 2.79b (https://www.blender.org/) to match the orientation and slice 

104 thickness of each patient’s T2-weighted image[6, 17-19], and 3D printed using a fifth-generation 

105 Makerbot (Makerbot Industries, Brooklyn, NY). The MRI scans were not used beyond slicing 

106 molds for the remainder of this study. 

107

108 Whole-mount tissue sections were processed, paraffin embedded, and resulting whole mount slides 

109 were hematoxylin and eosin (H&E) stained. The slides were then digitally scanned using a slide 

110 scanner (Olympus America Inc., Center Valley, PA, USA) at a resolution of 0.34 microns per pixel 

111 (40x magnification) to produce whole slide images (WSI), and down-sampled by a factor of 8 to 

112 decrease processing time. A total of 330 digitized slides were manually annotated using a 

113 Microsoft Surface Pro 4 (Microsoft, Seattle, WA, USA) with a pre-loaded color palette for 

114 different Gleason patterns[2] by a GU fellowship-trained pathologist (KAI). An example of the 

115 prostate annotation process is shown in Figure 1. 

116

117 Fig 1. Top:  Annotation and tile extraction process. After manual annotation of digitized slides, 

118 3000x3000 pixel tiles are extracted from unique annotated regions. Those tiles are then further 

119 divided into 1024x1024 pixel tiles and those that remain within a mask are saved (black tiles 

120 indicate unsaved tiles). Middle:  Workflow for the ATARI classifier. Quantitative pathomic 

121 features calculated from the large tiles are used as input to a compact classification ensemble to 

122 predict cancer vs non-cancer in a whole-slide image. Bottom:  Workflow for the ResNet101 

123 classifier. 1024x1024 pixel annotated tiles are used as input into the ResNet model to predict non-
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124 cancer vs Gleason grade groups.  Abbreviations: HGPIN = high-grade prostatic intraepithelial 

125 neoplasia; G3 = Gleason pattern 3; G4CG = Gleason pattern 4 cribriform; G4NC = Gleason pattern 

126 4 non-cribriform; G5 = Gleason pattern 5.

127

128 Annotation Segmentation

129 Digital whole-mount slides were divided into high resolution tiles that were 3000x3000 pixels and 

130 labeled using their corresponding xy-coordinates within the image. This size tile was chosen as it 

131 is the smallest resolution that our pathologist could determine Gleason grades. These tiles were 

132 then stitched back together to recreate the whole-mount image while concurrently creating x- and 

133 y-coordinate look-up tables. A subset of slides was rescanned on the Olympus slide scanner, and 

134 annotations that were performed on lower resolution digitized versions of the slide were 

135 quantitatively transferred (n=201 slides). Briefly, the analogous annotated image was aligned to 

136 the newly digitized slide using MATLAB 2021b’s imregister function (The MathWorks Inc., 

137 Natick, MA, USA). The annotations were isolated to create a single mask for each of eight possible 

138 classes: seminal vesicles, atrophy, high-grade prostatic intraepithelial neoplasia (HGPIN), Gleason 

139 3 (G3), Gleason 4 cribriform gland (G4CG), Gleason 4 non-cribriform glands (G4NC), Gleason 5 

140 (G5), and unlabeled benign tissue. Gleason 4 patterns have been separated in our annotations as 

141 there are notable prognostic differences between the cribriform and non-cribriform patterns[20-

142 23]. An additional averaged white image of non-tissue (i.e., background, lumen, and other 

143 artifacts) was found to remove these areas from the annotation masks to ensure the most 

144 representative histology remained for analysis. Each region of interest (ROI) within an individual 

145 class was individually compared to the xy-look-up tables to determine coordinates corresponding 

146 to tiles, and only those with over 50% of a specific annotation were included. Five tiles from each 
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147 ROI were saved into annotation-specific directories for use with the ATARI model, except for 

148 unlabeled benign tissue where 15 tiles were randomly saved from each slide. ROIs that were too 

149 small to extract 5 tiles from were excluded.

150

151 Each annotated tile was further divided into 1024x1024 pixel tiles for use with the ResNet101 

152 model, resulting in upwards of 9 sub-tiles used for the ResNet101 per full-sized tile used for the 

153 ATARI model. Sub-tiles that remained within a mask were saved into annotation-specific 

154 directories, similarly to the large tiles used for the ATARI model. The ResNet101 additionally 

155 was trained using background tiles determined by areas that were included in the average white 

156 image. Tiles used for training were augmented by resizing (250x250 pixel), random cropping 

157 (240x240), applying color jitter (0.3, 0.3, 0.3), adding random rotations (±0-30º), applying 

158 random horizontal and vertical flips and center cropping to the ResNet input size of 224x224 as 

159 well as normalizing to ImageNet's mean (0.485, 0.456, 0.406) and standard deviation (0.229, 

160 0.224, 0.225). This tile extraction process is demonstrated in Figure 1, and breakdown of slides 

161 and sorted tiles can be found in Table 2.

162

163 Table 2. Breakdown of tiles used for training and testing each of the models. 

Training

(n = 31)

Testing

(n = 16)

Tissue samples (n, %) 213 117

Samples per patient (mean, SD) 6.9 (2.3) 7.3 (1.9)

Annotated Tiles (n, %) ATARI ResNet101 ATARI ResNet101

Atrophy 3555 (38) 30000 (24) 1675 (38) 72098 (57)
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G3 990 (11) 16000 (13) 475 (11) 14565 (11)

G4CG 130 (1) 5477 (4) 60 (1) 1078 (1)

G4NC 515 (6) 16482 (13) 235 (5) 5382 (4)

G5 75 (1) 4118 (3) 55 (1) 236 (<1)

HGPIN 285 (86) 4785 (4) 45 (1) 610 (<1)

Seminal Vesicles 435 (67) 10456 (8) 210 (5) 5728 (5)

Unlabeled Benign Tissue 3360 (67) 20000 (16) 1620 (37) 13483 (11)

Background  0 (0) 20000 (16) 0 (0) 14027 (11)

Total 9345 127319 4375 (32) 127207

164

165 Pathomic Feature Extraction

166 High resolution tiles were down-sampled to increase processing time, and then were processed 

167 using a custom, in-house MATLAB function to extract pathological features for use with the 

168 ATARI model. First, a color deconvolution algorithm was applied to each image to segment 

169 stroma, epithelium, and lumen based on their corresponding stain optical densities (i.e., positive 

170 hematoxylin or eosin, and background)[24]. These features were then further smoothed and 

171 filtered to remove excess noise and improve segmentations. Glands with lumen touching the edge 

172 of a tile were excluded. Overall stromal and epithelial areas were calculated on a whole-image 

173 basis, and an additional six features were calculated on an individual gland-basis: epithelial area, 

174 roundness, and wall thickness; luminal area and roundness, and cell fraction (i.e., the percent of 

175 epithelial cells per total gland area, defined by the area of the epithelium without lumen).

176

177 Model training
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178 Flowcharts for the ATARI model and ResNet101 classifier can be found in Figure 1. An ensemble 

179 algorithm was used as the framework for developing the ATARI classifier on 31 subjects based in 

180 MATLAB (Mathworks, Inc. Natick, MA). A compact classification ensemble was used, which 

181 fitted predictors trained on bootstrapped samples from the training data set to obtain a combined 

182 ensemble model that minimized variance across learners[25, 26]. Inputs for this model were mean, 

183 median, and variance of the calculated pathomic features averaged across each tile, z-scored across 

184 the training data. To test the granularity of Gleason pattern prediction, we trained predictive 

185 models using several different levels of tumor specificity including all Gleason grades; high- (G4+) 

186 and low-grade (G3) cancer and benign tissue (HG vs LG model); and non-cancer and cancer (G3+) 

187 (NC vs CA model). To test generalizability, the model was applied to a left-out test set. Predictions 

188 were then plotted on three slides from the test data set using the same features calculated across 

189 all tiles for the slide to assess successful identification of tumor and compared to ground-truth 

190 pathologist annotations and the ResNet model. 

191

192 To test a deep learning approach for comparison, a ResNet model with 101 layers was implemented 

193 in Python using the PyTorch framework (v.1.8.1)[12, 27]. The same tiling procedure as previously 

194 described was used to curate the dataset for this network, with the addition of splitting all tiles into 

195 smaller 1024x1024 pixel patches and saving those that remained 50% within an annotation mask. 

196 Data from Cohort A was split into 80/20 training and validation datasets to prevent overfitting and 

197 several data augmentation techniques were used to increase training samples. The image patches 

198 were resized to 250x250 pixels, randomly cropped to 240x240 pixels, augmented and center 

199 cropped to generate the needed input size of 224x224 pixels. The same three model designs as the 
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200 ATARI were trained using the ResNet101 framework. Class imbalance of the training dataset was 

201 addressed by introducing sample number-based class weights in the cross-entropy loss function. 

202

203 Results

204 The accuracy of both models was analyzed using a left-out test dataset from 17 patients (95,875 

205 image patches for the ResNet; 4,375 image tiles for ATARI). The ATARI model was unable to 

206 successfully classify Gleason grades (overall accuracy 85%, per-class accuracy range 0% - 99%) 

207 nor high- (HG) and low-grade (LG) cancer (overall accuracy 83%, per-class accuracy range <1% 

208 - 99%). In both models, normal tissue was classified well above chance level (20% for all Gleason 

209 grades, 33% for high- and low-grade cancer), with G3 in the Gleason grades model and HG in the 

210 HG vs LG model performing at chance. The non-cancer (NC) vs cancer (CA) model had an overall 

211 accuracy of 89% and a per class accuracy of 97% and 53% for NC and CA, respectively. The 

212 ResNet model was able to successfully classify all Gleason grades with an absolute overall 

213 accuracy of 79% (per class accuracy range 25% - 87%), HG vs LG (overall accuracy 72%, per 

214 class accuracy range 55% - 72%), and NC vs CA (overall accuracy 83%) with an accuracy 91% 

215 and 74% for non-cancer and cancer (Figure 2).  

216

217 Fig 2. Confusion matrices for the three classification models for both the ResNet101 and ATARI. 

218 The ResNet101 was able to distinguish between unique Gleason patterns at higher accuracies that 

219 the corresponding ATARI models.

220

221 Figure 3 show the representative slides as their ATARI and ResNet101 annotations as compared 

222 to ground-truth annotations. Although the ATARI model was unable to capture unique Gleason 
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223 patterns, it was able to define the region of tumor present on the slide. The ResNet101 model was 

224 able to accurately predict the Gleason patterns with a per class accuracy of 25-52%.

225

226 Fig 3. Ground truth annotation maps compared to the ResNet101 model for all Gleason grades and 

227 the three tested ATARI models: all Gleason grades, high- vs low-grade cancer, and cancer vs non-

228 cancer only. ResNet101 model for all Gleason grades and the three ATARI models:  all Gleason 

229 grades, high- vs low-grade cancer, and cancer vs non-cancer only.

230

231 Discussion

232 In this study, high-resolution tiles taken from annotated regions on whole-mount digital slides after 

233 radical prostatectomy were used to train models to support pathologist diagnoses of prostate 

234 cancer. Specifically, the ATARI model used quantitative features to classify glandular features, 

235 whereas the ResNet101 classifier used deeper textural features of histology. The ATARI was only 

236 able to accurately predict cancer and non-cancer, whereas the ResNet101 classifier was able to 

237 further predict unique Gleason grades present on the slide. The results from our study indicate that 

238 while machine learning models using calculated features may be successful at differentiating 

239 tumor from non-tumor, deeper features found using neural networks can further define unique 

240 patterns. This may indicate that Gleason patterns exist beyond simple glandular features and may 

241 be more readably quantified using textural features. The absolute accuracies of 89% and 83% for 

242 the ATARI and ResNet101 models, respectively, show the need for a more general approach to 

243 using machine learning for cancer diagnosis. 

244
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245 Machine and deep learning applications are becoming prominent in clinical research. Machine 

246 learning focuses on the use of data and algorithms to imitate the way that humans learn. Data used 

247 in machine learning applications are human-derived, quantitative metrics that are then analyzed 

248 through statistical methods to make classifications or predictions. Deep learning is a sub-field of 

249 machine learning that automates the feature extraction without the need for human intervention. It 

250 can uncover more nuanced patterns within the data to generate predictions. In this study, our 

251 proposed machine-learning model outperformed the ResNet model at classifying cancer from non-

252 cancer; however, the ResNet could classify unique Gleason grades. This may indicate that the 

253 features of Gleason grades do not have strong quantitative differences, but rather texture 

254 differences that are discernible using a deep learning model. Other prior studies have shown similar 

255 results where a trained deep learning model outperformed a simple model trained on handcrafted 

256 features[28-30].

257

258 Automated Gleason grading applications have been previously applied for multiple purposes. One 

259 prior study trained a convolutional neural network (CNN) using WSI-level features constructed 

260 from a CNN-based PCa detection model that was trained from slide-level annotations to predict 

261 the final patient Gleason Grade Group[31]. This model achieved a 94.7% accuracy at detecting 

262 cancer and 77.5% accuracy at predicting the patient Grade Group. While promising, this model 

263 does not provide histological annotations to WSI, but rather only predict patient Grade Group. 

264 Several previous studies have applied deep learning models to prostate biopsy specimens[11, 32, 

265 33]. While these models have achieved high accuracies at annotating biopsy cores, our ResNet101 

266 model was able to annotate whole-slides images and could distinguish between regions of Gleason 

267 4 cribriform and non-cribriform tumors.  
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268

269 Integrating rapid annotation of Gleason patterns after tissue resection into the clinical workflow 

270 could save a tremendous amount of pathologist time. Once slides are digitally scanned, a diagnosis 

271 could be predicted automatically based on the automated annotations. This could then be used to 

272 rank slides by order of importance for pathologist review and to aid in treatment planning. The 

273 proposed models could be applied to large data sets and would decrease the workload on 

274 pathologists. Additionally, annotations provided from quantitative metrics may eliminate 

275 variability in Gleason annotations. 

276

277 One major limitation of the study is the use of only one pathologist for annotating the training and 

278 test datasets. Inter-observer variability is a known issue in prostate cancer diagnosis, and thus 

279 should be addressed in the training phase. Additionally, only one slide scanner was used to digitize 

280 the slides used in this study. Future studies should investigate the impact additional slide scanners 

281 would have on the generalizability of the models, as this analysis was outside the scope of the 

282 current study. Finally, future studies should look at larger populations to provide a more robust 

283 dataset of Gleason patterns which may increase accuracy in the machine learning models, as this 

284 study had a relatively small cohort of 47 patients.

285

286 Conclusion 

287 We demonstrate in a cohort of 47 patients that machine learning models and neural networks can 

288 accurately predict regions of prostate cancer, where the latter network was further able to classify 

289 unique Gleason patterns. These models are anticipated to aid in prostate cancer decision support 
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290 by decreasing the diagnostic burden of pathologists. Future studies should determine how inter-

291 observer and slide scanner resolution impact these networks in their classifications.

292
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