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Summary 
 
Developmental insults causing limb progenitor cell cycle defects or death tend to produce micromelic limbs with 
maintained segmentation. This suggests that the developing limb is plastic yet has a bias towards proximo-distal 
patterning. Here we use a minor spliceosome-deficient (U11-null) mouse forelimb, which has severe micromelia 
yet maintains proximo-distal segmentation, to decipher the mechanism(s) underlying this form of developmental 
robustness. We show that U11 loss triggers transcriptomic stalling upon spatially heterogenous mis-splicing of 
minor intron-containing genes. Through spatial transcriptomics, we detected a failure of the U11-null forelimb to 
separate its distal patterning program from its proximal differentiation program, which was supported by single-
cell RNAseq-determined developmental delay of U11-null chondroprogenitors. Ultimately, these molecular and 
cellular deficits culminated in perturbed chondrogenesis, myogenesis, and axonogenesis. Taken together, we 
suggest that, upon sensing depletion of progenitors, the limb halts its transcriptional networks to pause its cellular 
trajectory, affording time to restructure its developmental program. 
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Introduction 
 

The limb is a biological tool designed for environmental interaction. Thus, species with distinct ecological 

niches tend to have diverse limb shapes and sizes1,2. These alterations operate within a fundamental, tripartite 

framework, which includes a stylopod (upper limb), zeugopod (middle limb), and autopod (distal limb)1,2. This 

observation suggests that the developing limb is plastic yet has a developmental bias favored towards its 

proximo-distal (shoulder to fingertip) segmentation. Evidence supporting this idea has been observed across a 

range of experimental models that induce limb progenitor cell (LPC) cell cycle defects and/or cell death3–8, 

including Wolpert’s classical X-irradiation experiment9 that was mechanistically resolved much later10. However, 

an integrated understanding of limb plasticity at the molecular and cellular level upon changes in LPC number 

remains unclear. 

Recently, we reported that minor spliceosome inhibition in the developing mouse limb results in severe 

micromelia due to mis-splicing of minor intron containing genes (MIGs) that regulate cell cycle, thereby causing 

reduced proliferation and apoptosis of LPCs11. Despite these cellular deficits, proximo-distal segmentation was 

maintained11. This finding is in line with limb reduction defects that do not perturb limb patterning in multiple 

developmental disorders caused by disrupted minor spliceosome function, including microcephalic 

osteodysplastic primordial dwarfism type 1 (MOPD1), Roifman syndrome (RS), and Lowry-Wood syndrome 

(LWS)12–16. Thus, we reasoned that resolving how the minor spliceosome-deficient limb responds to loss of LPCs 

at a molecular, cellular, and systems level could lend insight toward the mechanism(s) underlying the plasticity 

and proximo-distal developmental bias of the limb.  

Here, we conduct spatiotemporal multi-omics on the minor spliceosome-deficient (Rnu11flx/flx::Prrx1-Cre+) 

mouse forelimb11,17. Through temporal RNAseq, we report that the U11-null (mutant) forelimb shows sustained 

transcription of key limb patterning genes that are downregulated across time in the wild-type (WT) forelimb, 

which we define as transcriptomic stalling. Subsequently, we designed a novel microdomain analysis that 

revealed spatially heterogenous splicing patterns for MIGs, which was reflected in the proteome, that result in 

dysregulation of the mutant forelimb’s spatial transcriptome. Using single cell RNAseq, we show that the 

molecular deficits of the mutant forelimb result in developmental delay of chondroprogenitors. Finally, through 3-

dimensional systems reconstructions, we reveal that molecular and cellular stalling of the limb mesenchyme 
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manifests in developmental delay of chondrogenesis and, consequently, disrupted migration of non-endogenous 

myoblasts and axons. Taken together, our data suggests that upon sensing depletion of LPCs, the limb pauses 

its molecular program and halts the LPC developmental trajectory, likely affording itself the opportunity to 

recalibrate prior to furthering development.  

 

Results 

 

The U11-null forelimb displays transcriptomic stalling that affects key limb patterning genes. 

 

The mutant forelimb experiences a significant reduction in its size that precipitates as early as embryonic 

day (E)11.511. By P0, the mutant forelimb is drastically reduced in length but maintains proximo-distal 

segmentation, as it contains a stylopod, a single zeugopod bone, and a single autopodial digit11. This phenotype 

agrees with the symptomology of MOPD1, RS, and LWS, where individuals show reduced limb size but 

conserved limb patterning12–15. Thus, we sought to understand how minor spliceosome inhibition alters the 

transcriptional trajectory of the developing limb. For this, we interrogated the expression of all protein-coding 

genes by leveraging our RNAseq datasets of the WT and mutant forelimb at E10.5 and E11.511. We considered 

a gene expressed if it had transcripts per million (TPM) above 0.5, a TPM slightly below the lowest expression 

of Shh (a lowly-expressed known truth) found among the two WT data sets18. With this threshold, we performed 

pairwise comparisons for each age-matched sample. We found that 57 genes were upregulated (≥1 log2 fold-

change (log2FC); P≤0.01) and 235 genes were downregulated (≤1 log2FC; P≤0.01) in the E10.5 mutant forelimb 

compared to its WT counterpart (Fig. 1A). At E11.5, 988 genes were upregulated and 15 genes were 

downregulated in the mutant forelimb (Fig. 1A). Thus, while U11 loss primarily impacts the splicing of MIGs11, 

we secondarily observed a massive transcriptional upregulation by E11.5 (Fig. 1A).  

We next sought to understand the WT temporal expression pattern for the 988 upregulated genes in the 

mutant forelimb. Of these, 311 genes were expressed more highly in the E10.5 WT forelimb, 633 were NonDE, 

6 were expressed more highly in the E11.5 WT forelimb, and 38 were not considered expressed in either sample 

(Fig. 1B). We chose to focus our attention on the 311 genes that were (i) expressed significantly higher in the 

E11.5 mutant forelimb when compared to the E11.5 WT (Fig. 1A), and (ii) expressed significantly higher in E10.5 

WT forelimb when compared to the E11.5 WT (Fig. 1B). This differential expression pattern suggested to us that 
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these genes had transcriptional signatures in the E11.5 mutant forelimb that were reminiscent of an E10.5 WT-

like state. To test this, we performed hierarchical clustering of our four datasets using only the expression of 

these 311 genes (Fig. 1C). Indeed, we found that the E11.5 mutant forelimb clustered most similarly to the E10.5 

WT forelimb, leading us to hypothesize that a subset of the mutant transcriptome was developmentally stalled 

(Fig. 1C).  

To capture genes whose expression was developmentally stalled in the mutant forelimb, we defined four 

categories: (1) genes that failed to be turned on, (2) genes that failed to be turned off, (3) genes that failed to be 

turned up, and (4) genes that failed to be turned down (Fig. 1D). We analyzed all expressed genes for their 

presence in one of these bins and discovered that the two most represented sets of genes showing 

developmental stalling in the mutant forelimb between E10.5 and E11.5 included 45 genes that failed to be 

turned off and 1,491 genes that failed to be turned down (Fig. 1D). DAVID analysis of genes that had been failed 

to be turned off revealed enrichment for limb development pathways, including “anterior/posterior pattern 

specification” and “embryonic skeletal system morphogenesis” (Fig. 1E). Moreover, genes that failed to be turned 

down enriched for many general biological terms such as “DNA maintenance”, “splicing”, “cell cycle”, and 

“chromatin organization” (Fig. 1E). We sought to corroborate our developmental stalling binning approach by 

performing principal component analysis (PCA) for genes that had failed to be turned off. Indeed, PCA revealed 

that while there was clear separation of the E10.5 and E11.5 WT forelimb datasets, both E10.5 and E11.5 mutant 

datasets clustered among each other and among the E10.5 WT dataset (Fig. 1F).  

Next, we explored individual genes that failed to be turned off. We found that 6 of the 8 genes that 

enriched for “anterior/posterior pattern specification” were Hox genes (Fig. 1E). Thus, we explored transcriptional 

changes for all Hox genes at E11.5. We found that Hoxa4, a7, a11, Hoxb2, b3, b4, b5, b6, b7, Hoxc4, c5, c6, 

c8, and Hoxd9 were upregulated, while none were downregulated in the mutant forelimb (Fig. 1G). Through 

PCA, we found that the E11.5 mutant forelimb possesses a Hox transcriptional program that bridges the E10.5 

and E11.5 WT state (Fig. 1H). Given that Hox genes regulate limb patterning19, we proposed their mis-expression 

would alter their function and potentially contribute to micromelia upon U11 loss11. One notable upregulated gene 

in this list is Hoxa11 as it is a critical regulator of zeugopod formation20, which we have previously reported is 

disproportionately reduced in the P0 U11-null limb11. Thus, we hypothesized that Hoxa11 may have an aberrant 
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DNA binding footprint in the mutant forelimb. To test this, we performed cleavage under targets and release 

using nuclease (CUT&RUN)21 for Hoxa11 at E11.5 (Fig. 1I). Hoxa11 was bound to similar motifs in the mutant 

forelimb as compared to the WT (Fig. 1J). However, we found that the frequency of Hoxa11 bound to targets 

with the top motif identified in the WT dataset was reduced by ~13% (Fig. 1J). In addition, we found 22 

differentially bound peaks, with two peaks over-bound in the mutant forelimb and 20 peaks under-bound in the 

mutant forelimb (Fig. 1K). The two over-bound peaks corresponded to promoter regions of Prrx1, a marker of 

early limb progenitor cells17, and Sin3a, a transcriptional repressor that regulates cell proliferation22 (Fig. 1K). 

Amongst the 20 under-bound peaks was Noc2l, which is known to repress p53-mediated apoptosis23 (Fig. 1K). 

Lastly, we confirmed the upregulation of Hoxa11 in the mutant forelimb through whole mount in situ hybridization 

(WISH), which revealed that Hoxa11 expression expanded anteriorly and posteriorly along the distal edge of the 

mutant forelimb (Fig. 1L). This shift in the Hoxa11 expression pattern suggested that transcriptomic alterations 

are spatially biased in the U11-null forelimb.  

 

Microdomain RNAseq reveals spatially heterogenous mis-splicing of MIGs in the U11-null forelimb.  

 

Distal posterior expansion of Hoxa11 expression reinforced our previous findings that the consequences 

of U11 loss are spatially biased, such as observed for cell death, which we had found to be distal posteriorly 

concentrated11. To confirm this phenomenon, we performed immunofluorescence for cleaved caspase 3 (CC3), 

an early marker of apoptosis, on serial sections of an E11.5 WT and mutant forelimb. By 3-dimensionally 

reconstructing this signal, we found that the highest concentration of CC3-positive cells was in the distal posterior 

region, followed by the distal anterior region (Fig. 2A). These observations suggested to us that either i) U11 

loss causes the same splicing defects throughout the limb, but spatially distinct populations of limb progenitor 

cells respond differently to these deficits; ii) U11 loss leads to distinct splicing defects in different domains of the 

limb; or iii) both. To distinguish between these hypotheses, we harvested N=3 WT and mutant embryos at E11.5 

and micro-dissected the forelimb into four regions – proximal anterior (PA), proximal posterior (PP), distal anterior 

(DA), and distal posterior (DP) – and subsequently performed total RNAseq (Fig. 2B). We first confirmed 

downregulation of Rnu11 in the mutant microdomains, which we found was significant for DA, DP, and PA, but 

not PP (Fig. 2C). 
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To test the possibility that there was differential minor spliceosome inhibition in the mutant microdomains 

(as read out by changes in minor intron splicing), we quantified a mis-splicing index (MSI) for each microdomain, 

which measures the amount of minor intron retention relative to canonical splicing for each minor intron. Indeed, 

each mutant microdomain was found to have a significant increase in minor intron retention relative to its WT 

counterpart (Fig. 2D). In line with the differential loss of U11, we found that the mutant DA, DP, and PA 

microdomains showed higher levels of minor intron retention than the mutant PP microdomain (Fig. 2D). 

We next identified the MIGs whose minor introns showed significantly elevated retention in each mutant 

microdomain when compared to their WT counterpart. This yielded 190, 138, 215, and 197 MIGs with 

significantly elevated minor intron retention in the mutant PA, PP, DA, and DP microdomains, respectively (Fig. 

2E). Whereas 73 MIGs showed significantly elevated minor intron retention in all mutant microdomains, we 

identified an abundance of MIGs with elevated minor intron retention in all potential sample combinations (Fig. 

2F). We subsequently leveraged DAVID to identify the biological pathways enriched by MIGs with elevated minor 

intron retention in each mutant microdomain. In line with the global cell cycle defects we previously reported in 

the U11-null forelimb11, we found that the gene ontology (GO)-terms “cell cycle” and “centrosome” were enriched 

by MIGs with elevated minor intron retention in all mutant microdomains (Fig. 2G) We also found that each 

mutant microdomain, as well as combinations of mutant microdomains, enriched for unique GO-terms, such as 

“Cullin-RING ubiquitin ligase complex” only in mutant DA or “cilium assembly” only in mutant PP (Fig. 2G).  

We have previously reported that inhibition of the minor spliceosome results in alternative splicing (AS) 

around minor introns24,25. Therefore, we employed our previously reported minor intron AS bioinformatics 

pipelines, which employ BEDTools to bin AS events into one of eight categories (including exon skipping, cryptic 

5’ splice site usage, cryptic 3’ splice site usage, and cryptic exon usage), to detect the number of AS events 

occurring in each mutant microdomain24. In line with our hypothesis, we found an increase in the number of AS 

events in each mutant microdomain, which were concentrated mainly in exon skipping and cryptic 5’ splice site 

events (Fig. 2H). Altogether, we quantified a significant increase in 75, 56, 96, and 93 AS events in the mutant 

PA, PP, DA, and PP microdomains, respectively, when compared to their appropriate WT counterpart (Fig. 2I). 

Whereas 40 MIGs showed significant AS in all four mutant microdomains, we nonetheless detected unique MIGs 

with AS in each possible sample combination (Fig. 2J). Consistent with our minor intron retention findings, MIGs 
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with elevated AS in all mutant microdomains enriched for “condensed chromosome kinetochore”, further 

supporting the global cell cycle defect experienced throughout the U11-null forelimb11 (Fig. 2K). Moreover, 

overlap analysis of DAVID GO-terms generated by MIGs with significantly elevated AS for each mutant 

microdomain revealed enrichment for unique terms from mis-spliced MIGs in the PP, DP, and PA+PP (Fig. 2K).  

Through RT-PCR, we validated multiple shared and unique AS events among the four mutant 

microdomains. We found robust exon skipping for both exons flanking the minor intron in Fam92a (also known 

as Cibar1), which encodes a critical regulator of hedgehog signaling in the developing limb26,27 (Fig. 2L). We 

validated the same category of AS detected for Hnrnpm, which encodes an essential, ubiquitously expressed 

splicing factor whose genetic ablation in mice leads to pre-weaning lethality28–30 (Fig. 2L). Notably, our RNAseq 

analysis quantified this AS event to be significantly elevated in the distal mutant microdomains when compared 

to the proximal mutant microdomains, which was captured by RT-PCR (Fig. 2L). We next validated an upstream 

exon skipping event for Exosc1 that our RNAseq analysis detected in all mutant microdomains except PP, and 

a cryptic 3’ splice site usage for Cdk5 that our RNAseq analysis detected in all mutant microdomains except DA 

(Fig. 2L). Exosc1 is a crucial member of the exosome RNA surveillance complex and its loss in mice also leads 

to pre-weaning lethality30–32. Moreover, Cdk5 encodes a kinase that regulates nervous system development 

through various pathways, including neuronal differentiation, axonal migration, and synaptogenesis33. 

Mis-splicing of MIGs is predicted to result in downregulated expression of their endogenously encoded 

proteins. Thus, we performed LC-MS/MS on microdomains collected from E11.5 WT and mutant forelimbs. We 

detected >4,400 proteins within each microdomain, of which >96% were shared between both conditions per 

microdomain (Fig. 2M). Nonetheless, each microdomain contained sets of proteins detected only in the WT or 

only in mutant, which we deemed as downregulated or upregulated, respectively (Fig. 2M, N). In addition, for 

proteins that were detected in both WT and mutant samples per microdomain, we employed student’s two-tailed 

T-test with Benjamini-Hochberg P-value adjustment to identify those expressed significantly higher or lower in 

the mutant microdomain (BH < 0.05) (Supp. Fig. 1). We did not incorporate a fold-change cut-off to avoid omitting 

potential false-negatives. Ultimately, we grouped the uniquely detected proteins with those significantly 

differentially expressed into their respected upregulated or downregulated bins for each microdomain (Fig. 2N). 

With this approach, we discovered 113, 97, 103, and 136 proteins upregulated in the mutant PA, PP, DA, and 
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DP, respectively (Fig. 2N). Additionally, we found 96, 64, 139, and 174 proteins downregulated in the mutant 

PA, PP, DA, and DP, respectively (Fig. 2N). Overlap analysis of the downregulated MIG-encoded proteins 

revealed a high degree of heterogeneity, as only a single MIG-encoded protein (Pdpk1) was downregulated in 

all four mutant microdomains (Fig. 2O). Notably, 5 MIG-encoded proteins were downregulated only in the mutant 

PA microdomain, 3 in PP, 9 in DA, and 10 in DP, whereas 3 were shared to be downregulated anteriorly (PA+DA) 

and 7 were shared to be downregulated distally (DA+DP) (Fig. 2O). This data corroborated that spatial molecular 

heterogeneity regarding mis-splicing of MIGs upon U11 loss manifests in regionally biased downregulation for 

MIG-encoded proteins. 

 

Spatially distinct splicing patterns can be linked to spatial gene expression changes in the U11-null forelimb.  

 

Given the abundance of regionally specific mis-splicing events identified through our microdomain 

approach, we hypothesized that U11 loss would drive spatially distinct changes in gene expression. To test this 

hypothesis, we performed a head-to-head differential gene expression analysis for each WT and mutant 

microdomain pair (ex: WT-DA vs Mut-DA) through isoEM2 and isoDE234. Using a 1 TPM threshold for gene 

expression, we found an abundance of upregulated genes in each microdomain with few downregulated genes 

(Supp. Fig. 2A-B). Overlap analysis for the number of differentially expressed genes for each possible 

combination of microdomains yielded a high degree of dissimilarity, with the greatest overlap found for 

upregulated genes (53) shared by both distal mutant microdomains (Supp. Fig. 2A-B). Indeed, we identified only 

nine genes (including one MIG: Mapk8) upregulated in all four mutant microdomains and only two genes 

(including one MIG: Phyh) downregulated in all four mutant microdomains (Supp. Fig. 2A-B). In line with this 

heterogeneity, we found that the biological pathways enriched by the differentially expressed genes for each 

microdomain were mostly distinct (Supp. Fig. 2C-D). 

Since we identified regional heterogeneity for changes in both minor intron splicing and differential gene 

expression, we hypothesized that microdomain-specific gene expression changes were influenced by 

microdomain-specific splicing alterations. One way this could happen is if these genes were part of shared 

biological networks. To test this idea, we employed STRING to identify known interactions between genes 

underlying regionally enriched biological pathways and MIGs with microdomain-specific upregulation of minor 
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intron retention or AS. For example, we found that submission of the eight genes that were upregulated in the 

mutant DA microdomain and enriched for KEGG “p53 signaling pathway” (Supp. Fig. 2C) along with the 23 and 

9 MIGs showing uniquely upregulated minor intron retention and AS, respectively, in this microdomain (Fig. 2F, 

J) generated a tight-knit network, connecting all upregulated genes with a subset of the mis-spliced MIGs (Supp. 

Fig. 2E). Notably, we found that the 18 and 8 MIGs with uniquely upregulated minor intron retention and AS, 

respectively, in the mutant DP microdomain (Fig. 2F, J) showed distinct connectivity patterns when submitted to 

STRING with the DP-specific upregulated genes underlying the GO terms “extracellular matrix structural 

constituent” (Supp. Fig. 2D, F) or “ATP binding” (Supp. Fig. 2D, G). Whereas 10 mis-spliced MIGs formed a 

concise network with nine of the “extracellular matrix structural constituent” genes, they did so by all feeding into 

one single MIG – Eed – that connected at multiple nodes in the upregulated gene network (Supp. Fig. 2F). On 

the other hand, we found that 16 mis-spliced MIGs were integrated throughout a network with 32 “ATP-binding 

genes” (Supp. Fig. 2G). In either case, disruption in the expression or function of the encoded MIG product upon 

mis-splicing is predicted to dramatically affect the functions of these networks. Thus, our findings suggest that 

regionally biased mis-splicing causes disrupted gene expression regulation for non-MIGs, resulting in spatially 

distinct gene expression changes.  

 

Spatial transcriptomic patterns governing the transition from limb patterning to differentiation are stalled upon 

U11 loss.  

 

The developing limb relies upon spatially discrete gene expression profiles for its patterning35. Therefore, 

detection of spatially distinct changes in splicing and gene expression in the mutant forelimb led us to suspect 

that this would lead to alterations in its spatial transcriptome. To test this, we needed to devise a method to 

generate a spatial atlas of gene expression for the WT forelimb, from which we could compare whether the 

mutant successfully established the appropriate spatial gene expression profiles. Ultimately, we leveraged our 

microdomain RNAseq datasets and approximated each gene’s expression pattern in the developing limb by 

generating what we refer to as a spatialPlot, a graph that has predictive value for the location of a gene’s 

expression within a tissue. Using a 1 TPM cut-off for expression, we omitted all genes found to be below this 

threshold in all four microdomains. Next, we averaged each expressed gene’s TPM values among proximal 
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domains (PA, PP), distal domains (DA, DP), anterior domains (PA, DA), and posterior domains (PP, DP). With 

these averaged values, we calculated each gene’s proximo-distal log2FC and antero-posterior log2FC and 

plotted them such that their graphical position corresponds to their anticipated spatial position in the developing 

E11.5 WT forelimb (Fig. 3A). We then highlighted genes that were statistically significantly enriched in their 

respective domain as determined by ANOVA followed by post-hoc Tukey’s test (Fig. 3A). For example, Pax1 

was found to have a proximo-distal log2FC of -7.3 and an antero-posterior log2FC of 4.4, positioning it proximal-

anteriorly on the spatialPlot (Fig. 3A). Indeed, it has been shown through whole mount in situ hybridization 

(WISH) that Pax1 expression is restricted to the PA domain in the E11.5 WT forelimb36. Importantly, we found 

spatially enriched expression for previously validated genes through WISH for each region, including Pkdcc 

proximally37, Dlk1 in PP38, Hand2 posteriorly39, Shh in DP18, Hoxa13 distally40, Zic3 in DA41, and Asb4 anteriorly42 

(Fig. 3A). We further confirmed the validity of this approach by identifying GO terms enriched by each of the 

spatial gene sets (Supp. Fig. 3A). Distally restricted genes enriched for terms such as “proximo-distal pattern 

formation” and “positive regulation of cell proliferation”, whereas proximally restricted genes enriched for “skeletal 

system development”, “nervous system development”, “skeletal muscle tissue development”, and “regulation of 

cell migration” (Supp. Fig. 3A). Notably, PA genes enriched for terms including “chondrocyte differentiation”, 

whereas PP genes only enriched for “proteinaceous extracellular matrix”, which is indicative of chondrogenesis 

occurring in the PA region but not yet as robustly in the PP region at E11.543 (Supp. Fig. 3A). In addition, we 

found enrichment for “hedgehog receptor activity” and other pathways downstream of Shh signaling in the DP 

enriched genes (Supp. Fig. 3A). 

We then employed the same analysis on the E11.5 mutant forelimb to test the hypothesis that its spatial 

transcriptome was perturbed. We previously showed that the expression of select genes of the core limb 

patterning network was spatially maintained in the E11.5 U11-null limb. Thus, we were first able to validate our 

dissection integrity by benchmarking the RNAseq data with expression of known-truths used for the WT 

spatialPlot, aside from Hand2, which was enriched in the mutant DP domain rather than posterior domain (Fig. 

3B). Nonetheless, we found Prdm1 was enriched in the mutant posterior domain, which has been previously 

shown to be expressed in the posterior WT forelimb at E11.5 by WISH44 (note: Prdm1 was enriched in WT 

posterior by FC, but not by ANOVA with BH-adjustment (P=0.06), likely reflecting a false negative due to our 
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stringent thresholding) (Fig. 3B). Moreover, we found similar biological pathway enrichments as observed for the 

WT upon submitting spatially restricted genes in the mutant forelimb to DAVID (Supp. Fig. 3B). Thus, the mutant 

spatialPlot confirmed that the core limb patterning network had proceeded sufficiently by E11.5 to establish 

fundamental gene expression separation, such as positioning Shh in the DP domain (Fig. 3B).  

We next sought to determine how well the total mutant spatial transcriptome reflected that of the WT. For 

this, we treated the genes found to be enriched in each WT microdomain as “expected” genes, and genes found 

to be enriched in each mutant microdomain as “observed” genes (Fig. 3C). We then identified the number of 

enriched genes in each microdomain that were found in the WT only (expected yet unobserved), in the mutant 

only (unexpected yet observed), and in both (expected and observed) (Fig. 3C). Subsequently, we used these 

numbers to calculate the percentage of genes that were expected and observed out of the total expected genes 

for each microdomain (Fig. 3C). In addition, we calculated the percentage of genes that were expected and 

observed out of the total observed genes for each microdomain (Fig. 3C). The former analysis allowed us to 

determine the proportion of genes within a mutant microdomain that matched the WT spatial transcriptome, 

whereas the latter allowed us to determine the abundance of genes within a mutant microdomain that were 

uniquely enriched in the mutant. For example, whereas the distally enriched genes in the mutant represented 

67% of expected genes, we found that this was only 39% of the total observed distally enriched genes (Fig. 3D-

E). Thus, there was an abundance of unexpected yet observed genes enriched distally in the mutant (Fig. 3E). 

In contrast, we found that while proximally enriched genes in the mutant forelimb represented only 35% of 

expected proximally restricted genes, this number nonetheless corresponded to 75.5% of all observed proximally 

restricted genes (Fig. 3D-E). Thus, there was an abundance of expected yet unobserved genes proximally in the 

mutant. Of note is that three genes were identified to be enriched posteriorly in both the WT and mutant forelimb, 

yet none of these were shared (Fig. 3D-E).  

We next used DAVID to identify biological pathways that were present among genes either unexpected 

yet observed or expected and unobserved for each mutant microdomain. Of genes unexpected yet observed, 

only those found distally had biological enrichment, yielding GO terms including “embryonic limb 

morphogenesis”, “proximal/distal pattern formation”, and “anterior/posterior pattern formation” emerged (Fig. 3F). 

On the other hand, expected and unobserved genes among the mutant PA, proximal, and posterior 
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microdomains enriched for many terms of differentiation, including “proteinaceous extracellular matrix” and 

“collagen trimer” (Fig. 3G). This suggested to us that the spatial transcriptome of the E11.5 mutant forelimb failed 

to appropriately separate its early limb patterning program from its subsequent differentiation program. 

Next, we aimed to decipher the exact spatial changes underlying the mutant forelimb’s disrupted spatial 

transcriptome. Thus, we extracted all spatially restricted genes found in the WT forelimb and identified their 

expression patterns in the mutant forelimb. Subsequently, we generated a new spatialPlot, from which we 

determined whether each WT spatially enriched gene showed the same spatial expression pattern in the mutant 

forelimb (Fig. 3H). If it did, we deemed this gene concordant; however, if it was enriched in a different region, or 

not enriched in any region, it was deemed discordant (Fig. 3H). Our analysis identified a dramatic spatial bias in 

discordant gene expression, with 73 proximally restricted genes in the WT showing no spatial enrichment in the 

mutant transcriptome (Fig. 3I). We then aimed to determine whether the 5 MIGs with uniquely upregulated minor 

intron retention or AS events occurring in the mutant proximal microdomains might underlie this discordance 

(PA+PP in Fig. 2F, J). Thus, we submitted these 78 genes to STRING and identified the largest network 

generated, which connected 24 proximally discordant genes with one MIG, Raf1, that encodes the Raf-1 

serine/threonine kinase (Supp. Fig. 4A). The importance of Raf1 in this network is underscored by the fact that 

mutations in it have been linked to Noonan Syndrome, which is characterized by short stature45. This phenotype 

is not surprising considering that this network contains multiple genes essential for skeletogenesis, including 

Shox246–50 and Col2a151–53 (Supp. Fig. 4A). Indeed, loss of Col2a1 in mice results in severe skeletal dysplasia51. 

Moreover, Shox2-null mice show dramatic reduction in stylopod length, as well as deficits in the migration of 

axonal projections and muscle precursors into the proximal forelimb, suggesting that it integrates the 

development of multiple systems during limb organogenesis46–50. Altogether, disrupted splicing of transcripts 

emanating from Raf1 could perturb the appropriate development of the skeletal, nervous, and muscular systems. 

Equally important to genes dis-enriched in the mutant transcriptome are those that are uniquely enriched. 

Thus, we performed the same analysis as described above in reverse, wherein we extracted all spatially 

restricted genes found in the mutant forelimb, identified their expression patterns in the WT transcriptome, and 

generated a novel spatial plot to determine concordance and discordance (Fig. 3J). Again, we found a substantial 

spatial bias in discordance such that 39 genes distally enriched in the mutant transcriptome were not spatially 
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enriched in the WT transcriptome (Fig. 3K). In turn, we submitted these genes, along with the 40 MIGs with 

uniquely upregulated minor intron retention or AS events found in the mutant distal microdomains (DA+DP in 

Fig. 2F, J) to STRING. This approach generated a tight-knit network containing 10 mis-spliced MIGs interacting 

with 11 distally discordant genes (Supp. Fig. 4B). Interestingly, this network contains two genes, Etv4 and Dusp6, 

essential for limb development due to their regulation of Fgf signaling and, in turn, Shh activity, indicating that 

distally mis-spliced MIGs are implicated in regulating the transcriptional integrity of distal limb patterning 

networks54,55 (Supp. Fig. 4B). 

 

Single cell RNAseq reveals developmental delay of chondroprogenitors in the U11-null forelimb. 

 

 One possibility underlying the molecular failure of the U11-null forelimb to separate its proximal 

differentiation program from its distal patterning program is that it contains altered abundances of progenitor cell 

populations governing these processes. To test this, we performed single cell RNAseq on pooled (N=6) E11.5 

WT and mutant forelimbs. We captured 24,516 high-quality WT cells (median genes/cell: 2,621; median 

transcripts/cell: 8,056.5) and 31,038 high-quality mutant cells (median genes/cell: 1,934, median transcripts/cell: 

5,250) (Supp. Fig. 5). UMAP-mediated clustering of the WT cells yielded 16 distinct populations: nine clusters of 

endogenous limb mesenchymal cells (ELM; Prrx1+, Sox9+; clusters 0-8; 21,497 cells), two clusters of muscle 

progenitors (Myod1+; clusters 9-10; 1,794 cells), one skin cluster (Krt14+; cluster 12; 325 cells), one vasculature 

cluster (Cdh5+; cluster 13; 209 cells), two blood clusters (Hbb-a1+, Lst1+; clusters 11, 14; 626 cells), and one 

cluster of neural endothelial cells (Phactr1+; cluster 15; 65 cells)56 (Fig. 4A-B). Separate yet identical analysis of 

the mutant cells yielded 15 clusters: eight clusters of ELM (clusters 0-3, 5-8; 25,134 cells), two clusters of muscle 

progenitors (clusters 4, 9; 3,802 cells), one cluster of skin progenitors (cluster 11; 535 cells), one cluster of 

vasculature cells (cluster 12; 442 cells), two clusters of blood cells (clusters 10, 13; 1,039 cells), and one cluster 

of neural endothelial cells (cluster 14; 86 cells) (Fig. 4C-D). We next sought to determine whether the 

abundances of these broad cell classes were maintained in the U11-null forelimb. Whereas we found that 87.7% 

of the WT cells were classified as ELM, only 81.0% of mutant cells were ELM (FC=0.92) (Fig. 4E-F). In turn, the 

mutant forelimb showed increased abundances of all non-ELM cell types, with the greatest increase being 
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observed for vasculature (0.9% vs 1.4%; FC=1.67) and muscle progenitors (7.3% vs 12.3%; FC=1.67) (Fig. 4E-

F). This decrease in mutant ELM is in line with significantly elevated apoptosis at this time point (Fig. 2A). 

Whereas we found equal numbers of non-ELM clusters with similar transcriptional markers, we found 

that the mutant forelimb lacked two ELM clusters identified in the WT and contained one unique ELM cluster 

(Fig. 4B, D). Thus, we sought to integrate the two ELM datasets such that we could interrogate their cellular 

distribution simultaneously and, in turn, directly determine changes in cell-type abundances. UMAP-mediated 

clustering of integrated WT and mutant ELM yielded 13 clusters, of which cells from both the WT and mutant 

forelimb were present in each cluster (Fig. 5A). As our current and previous data show that the molecular and 

cellular response to U11 loss is spatially heterogenous11, we hypothesized that changes in ELM cell type 

abundances would be spatially heterogenous. We therefore aimed to determine the relative position and 

differentiation state of each WT and mutant ELM cell. To determine cell position, we leveraged our microdomain 

RNAseq data, wherein we were able to define signature genes for each microdomain (Supp. Fig. 6). By using 

the top eight identified signature genes for each microdomain as modules with Seurat’s addModuleScore, we 

could determine the similarity of every cell to the four microdomains (Fig. 5B). Utilizing a strategy similar to our 

spatialPlot, we binned every cell into one of nine spatial locations (DA, DP, PA, PP, proximal, distal, anterior, 

posterior, or center) based on the difference between their scores along the proximo-distal axis (distal score – 

proximal score) and antero-posterior axis (anterior score – posterior score) (Fig. 5C). We then projected this into 

a spatialPlot and superimposed cluster identity for both the WT and mutant forelimb (Fig. 5D-E). The integrity of 

our binning strategy was confirmed through expression of known regional markers in their corresponding domain. 

For example, Asb4 expression was specific to cells binned in PA, anterior, and DA microdomains42 (Supp. Fig. 

7). Similarly, Pax1, a known marker of the PA microdomain36, was uniquely expressed by cells only binned in 

the PA microdomain (Supp. Fig. 7). Finally, Pmaip1, a gene with novel spatial expression found through our 

microdomain analysis, was exclusively expressed by cells in the DA and distal microdomains (Supp. Fig. 7). 

After determining each cell’s approximate spatial location, we approximated each cell’s differentiation state using 

previously reported gene expression markers (limb progenitor cell (LPC): Pdgfra+, Sox9-, Col2a1-; 

osteochondroprogenitor (OCP): Sox9+, Col2a1-; early-stage chondroblast (CB) Col2a1+, low; late-stage CB: 

Col2a1+, high)57 (Fig. 5F-G). 
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Having approximated each cell’s position and differentiation state, we next aimed to merge these two 

features in order to determine the relative composition of cells within each WT and mutant microdomain. For 

this, we quantified the percentage of cells from each cluster that were binned into a specific microdomain and 

subsequently determined whether this distribution was maintained in the mutant. For example, WT DA cells were 

predominantly from clusters 0 (early-stage CBs) and 5 (OCPs) (Fig. 5H). Using a 5% cut-off, we found that the 

mutant DA showed a decrease in the number of cells from both of these clusters with a concomitant increase in 

the number of cells from cluster 8 (OCPs), which were almost entirely absent in the WT (Fig. 5H-I). Further 

analysis of the top transcriptional markers of cluster 8 unsurprisingly revealed that this population of cells were 

undergoing p53-mediated apoptosis, given their expression of Pmaip1, Ccng1, Cdkn2a, and Phlda3 (Supp. Fig. 

8A). The WT cells of this cluster expressed Pmaip1, but did not express the other markers (Supp. Fig. 8A). This 

agrees with our discovery through our spatialPlot analysis that Pmaip1 is a novel marker of the DA microdomain, 

which we confirmed through WISH (Fig. 3A; Supp. Fig. 8B).  

Ultimately, performing this analysis for all microdomains revealed regionally-biased cell type alterations 

in the mutant forelimb (Fig. 5J). For example, cells from cluster 8 (dying OCPs) were over-represented in the 

mutant center, anterior, DA, distal, and DP microdomains, whereas cells from cluster 4 (late-stage CBs) were 

over-represented in the WT (and therefore depleted in the Mut) center, distal, DP, and posterior microdomains 

(Fig. 5J). From this approach, we noticed that most clusters over-represented in the WT forelimb reflected cells 

of later chondrogenic differentiation (Fig. 5G, J). Thus, we determined the relative composition of cells along the 

chondrogenic differentiation state, regardless of cluster identity, for both the WT and mutant forelimb (Fig. 5K). 

Whereas the number of LPCs was approximately equivalent, we found a dramatic increase in the number of 

OCPs with a concomitant decrease in the number of early- and late-stage chondroblasts in the mutant forelimb, 

which we interpreted as cellular developmental delay (Fig. 5L-M). Referring back to the spatial location of these 

cells, we found that developmental delay of osteochondroprogenitors was most likely due to cell abundance 

changes occurring distally and posteriorly, which aligns with the biased distribution of cell death (Fig. 2A, 5J). 

Together, the integration of our analyses has allowed us to decipher the impact of molecular heterogeneity on 

cellular heterogeneity.   
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Development of pre-chondrocytes, myoblasts, and axonal branches is delayed in the U11-null forelimb. 

 

Regionally distinct splicing alterations are directly connected to discordant gene expression patterns in 

the U11-null limb, which together could compromise proper limb formation. Indeed, we discovered 

developmental delay of limb progenitor cells in regard to their ability to progress through the chondrogenesis 

differentiation program (Fig. 5L-M). Thus, we sought to determine how these molecular and cellular deficits might 

culminate in perturbed development for three major systems of the limb: the endogenous limb skeletal system 

and the non-endogenous, invasive muscular and nervous systems43. For this, we performed IF for Sox9, Myod1, 

and Neurofilament-M, which mark chondroprogenitors, myoblasts, and migrating axons, respectively58,59, on 

serial sections collected from WT and mutant E10.5, E11.5, and E12.5 forelimb buds (Fig. 6; Supp. Fig. 9; Supp. 

Fig. 10; Supp. Fig. 11). We then compiled the staining patterns across each section collected from each individual 

limb to render a 3-dimensionsal reconstruction for each system (Fig. 6; Supp. Fig. 9; Supp. Fig. 10; Supp. Fig. 

11).  

We first assessed the patterning and differentiation integrity of the endogenous skeletal program in the 

U11-null forelimb. Consistent with previous findings, 3D reconstructions of the WT Sox9 profile showed that it is 

expressed throughout the limbs and somites at E10.560 (Fig. 6A; Supp. Fig. 9). By E11.5, the WT Sox9 

expression expands proximo-distally with increased limb outgrowth, and bifurcation of the of the zeugopod can 

be seen (3/3 reconstructions) (Fig. 6A; Supp. Fig. 9). At this time, the mutant limb shows decreased expansion 

of Sox9 expression in the distal direction, and simultaneously fails to undergo zeugopod bifurcation (2/3 

reconstructions) (Fig. 6A; Supp. Fig. 9). At E12.5, the WT shows a distinct scapula, stylopod, bifurcated 

zeugopod, and autopod with five digits (Fig. 6A; Supp. Fig. 9). In contrast, the mutant forelimb contains a 

dysplastic scapula, rudimentary stylopod, a single zeugopodial element (whose posterior location suggests ulnar 

identity), and an autopodial anlage that lacks any distinct digital condensations (2/3 reconstructions) (Fig. 6A; 

Supp. Fig. 9). In addition, the length between the distal-most Sox9 expression and the apical ectodermal ridge 

is greater in the mutant than in the WT, suggesting that distal limb progenitor cells fail to differentiate into 

chondroprogenitors (Fig. 6A; Supp. Fig. 9). 

The migration of muscle progenitors and axons depends crucially on proper patterning and differentiation 

of the skeletal precursors47,61–63. Given that inhibition of the minor spliceosome disrupts endogenous 
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chondroprogenitor development, we hypothesized that migration of both systems would be impaired. We first 

tested this hypothesis by assessing the spatiotemporal distribution of myoblasts in the WT and U11-null forelimbs 

(Fig. 6B; Supp. Fig. 10). In agreement with previous publications, we found that Myod1+ muscle progenitors are 

restricted to the dermomyotome in the WT at E10.564, which was also observed in the mutant (Fig. 6B; Supp. 

Fig. 10). At E11.5, the WT shows substantial migration of muscle precursors into the proximal portion of the limb 

bud, which form into two distinct dorsal and ventral muscle masses (Fig. 6B; Supp. Fig. 10). Notably, the mutant 

forelimb does show appropriate expansion of Myod1+ cells into the proximal limb field; however, we observed a 

dramatic decrease in the distal expansion of the dorsal muscle mass (Fig. 6B; Supp. Fig. 10). By E12.5, the WT 

limb shows increased distal migration of myoblasts, which have begun separating into three distinct primordial 

muscle blocks (Fig. 6B; Supp. Fig. 10). In contrast, muscle patterning along all three axes of limb development 

appears disorganized and no clear muscle blocks can be identified in the E12.5 mutant forelimb (Fig. 6B; Supp. 

Fig. 10).   

We further interrogated our hypothesis by determining the spatiotemporal distribution of migrating axons 

in the WT and mutant forelimb (Fig. 6C; Supp. Fig. 11). Axonal projection number, location, and morphology 

within the developing limb have previously been defined47,59. In line with previous reports, we found that the 

E10.5 WT forelimb contains a plexus of axons in the proximal limb47,59 (Fig. 6C; Supp. Fig. 11). This axonal 

plexus was observed in the E10.5 mutant forelimb at the appropriate position, although it appeared hypoplastic 

(Fig. 6C; Supp. Fig. 11). By E11.5, the WT forelimb contains 3 main branches invading the proximal limb field, 

including the radial, ulnar, and medial projections (Fig. 6C; Supp. Fig. 11). Although all three axonal projections 

could be detected in the E11.5 mutant forelimb, we found that the ulnar nerve showed failed proximo-distal 

elongation and the medial nerve showed a decrease in density (Fig. 6C; Supp. Fig. 11). At E12.5, all three 

branches become further elaborated, with the radial, medial, and ulnar nerves greatly increasing their distal 

migration into the WT limb (Fig. 6C; Supp. Fig. 11). In contrast, in the U11-null forelimb, the three branches 

become increasingly disordered, with the medial and radial nerves showing anterior displacement and the ulnar 

nerve appearing coiled rather than being linear (Fig. 6C; Supp. Fig. 11). Taken together, as the mutant forelimb 

develops, all three systems show increasingly aberrant patterning with simultaneously perturbed distalization 

(Fig. 6; Supp. Fig. 9; Supp. Fig. 10; Supp. Fig. 11). 
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Discussion 
 

 Growth and patterning of the developing limb is an orchestrated process built from multiple morphogen 

gradients that influence cell proliferation and fate20,35. Evolutionary-mediated and experimentally-induced 

alterations to these networks have revealed that the developing limb bud is plastic as it can produce vastly 

diverse bauplans1,2. However, a macroscopic assessment of these structures suggests that the developmental 

robustness of the limb is preferentially biased for proximo-distal segmentation, as most species display a tripartite 

limb containing a stylopod, zeugopod, and autopod independent of changes in the number of skeletal elements 

within each of these units1,2. The molecular processes governing this phenomenon remain underexplored.  

We reasoned that human disorders wherein individuals show micromelia (an abnormal reduction in limb 

size) without alteration in their limb pattern, such as MOPD112,13, RS15, and LWS14, offer a unique opportunity to 

explore the developmental robustness of the limb at a molecular level. Thus, we used our U11 cKO mouse65 to 

inhibit the minor spliceosome in the developing limbs, which we have previously shown to result in similar yet 

more severe micromelia as observed in minor spliceosomopathies11,16. Using this system, we discovered that 

minor spliceosome inhibition results in transcriptomic stalling, as genes that should be downregulated across 

time were unchanged in the mutant forelimb (Fig. 1A-H). We captured transcriptional stalling between E10.5 and 

E11.5, which is when cell cycle defects and cell death are precipitating in the mutant forelimb11 (Fig. 2A). Thus, 

it is unclear whether transcriptional stalling contributes to or is a result of these cellular deficits. In addition, it 

remains unexplored whether transcriptional stalling is a general outcome of global LPC depletion or specific to 

minor spliceosome inhibition. Multiple MIGs regulate chromatin architecture and transcription24; thus, their mis-

splicing in our system may uniquely drive transcriptional stalling. However, it is equally likely that progression of 

the limb transcriptional program is tied to appropriate establishment of LPC proliferation and morphogen 

signaling. In this case, transcriptional stalling might reflect a holding period for the limb to buffer developmental 

insults. Favoring the latter, transcriptional stalling in the mutant forelimb affected numerous Hox genes, which 

are non-MIGs crucial for proper limb development19 (Fig. 1G, H). Using Hoxa11 as an exemplar, we found this 

molecular perturbation to be regionally specific and was sufficient to disrupt its encoded protein function (Fig. 1I-

L). Interestingly, one of the over-bound peaks in the Hoxa11 dataset corresponds to the Prrx1 promoter. For this, 
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there are two possibilities: 1) our use of the Prrx1-Cre17 mouse line provides three promoters for Hoxa11 to bind; 

or 2) over-bound Hoxa11 at the Prrx1 promoter is biologically relevant. We favor the latter possibility because 

Prrx1 is a marker of early LPCs17, which agrees with transcriptional stalling of the E11.5 mutant forelimb. In 

contrast, under-bound promoters included Noc2l, a histone deacetylase inhibitor known to regulate p53-

mediated apoptosis23. Noc2l prevents p53 from binding to its target promoters, effectively inhibiting apoptosis23. 

This suggests that reduced transcriptional activation of Noc2l could allow p53 to activate its downstream 

effectors, an idea supported by increased levels of apoptosis in the mutant forelimb11 (Fig. 2A). Investigations of 

temporal transcriptional dynamics in other models of limb development defects is thus warranted to determine if 

transcriptional stalling is a conserved phenomenon. 

The developing limb is intricately organized with spatially distinct cell populations governing growth, 

patterning, and differentiation20,35. We have previously found that cellular consequences of minor spliceosome 

inhibition preferentially affect distal posterior LPCs11 (Fig. 2A). Thus, we devised our microdomain method to 

spatially profile the molecular changes occurring within the mutant forelimb (Fig. 2B). This approach uncovered 

intra-tissue specific mis-splicing of MIGs in the mutant forelimb, which importantly expands our appreciation for 

splicing heterogeneity beyond the previously known inter-tissue specific differences24 (Fig. 2B-L). This data can 

be leveraged toward resolving why distal posterior LPCs are more susceptible to apoptosis upon U11 loss11, as 

rapid cell death might be facilitated by unique mis-splicing events in this microdomain. In turn, these findings can 

be broadly extended toward resolving the paradoxical, tissue-specific pathology of spliceosomopathies66,67.  

Here, our spatial transcriptomics analysis suggested a failure of the mutant forelimb to separate its distal 

patterning program from its proximal differentiation program, which is likely an extension of transcriptional stalling 

(Fig. 3A-G). As transcriptional profiles reflect cell identities, this perturbation led us to suspect that the 

progression of LPCs along the chondroprogenitor trajectory was disrupted. Indeed, through single cell RNAseq, 

we found that the mutant forelimb displayed developmental delay of chondroprogenitors as reflected by an 

accumulation of OCPs and a subsequent depletion of early- and late-stage CBs (Fig. 5L-M). Importantly, 

integration of our spatial transcriptomic data with our single cell RNAseq data allowed us to map the relative 

spatial position of each cell, revealing that most cell type abundance alterations were occurring distally and 
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posteriorly (Fig. 5J). It remains unclear whether this is due to cell death cues, unique mis-splicing events, or 

other molecular perturbations in this region serving to repress the developmental trajectory of OCPs. 

Altered regional transcription and cell-type abundances prompted us to investigate the 3D patterning of 

multiple systems of the developing mutant forelimb. We discovered that the micromelic phenotype of the mutant 

forelimb11 precipitates as early as E12.5, where developmental delay of chondroprogenitors severely perturbs 

patterning of the anterior zeugopod and the autopod (Fig. 6A). Notably, the absence of the anterior zeugopod 

and the presence of an autopodial anlage emphasizes the aforementioned biological phenomenon; upon 

depletion of LPCs, the mutant forelimb displays a developmental bias towards proximo-distal segmentation in 

lieu of antero-posterior bifurcation (Fig. 6A). Moreover, the lack of an anterior zeugopodial element was 

perplexing as the most notable cell type abundance changes affecting chondroblast production were distal 

posteriorly concentrated (Fig. 5J). How the mutant forelimb develops a posterior zeugopod upon massive 

apoptosis and chondroblast depletion remains unclear (Fig. 2A, 5J).  

As the endogenous limb mesenchyme must coordinate the migration and patterning of muscle and 

nervous tissue during development43,59, we suspected that the ultimate culmination of developmental delay would 

be disrupted development of these non-endogenous systems. Indeed, we found perturbed patterning of both 

myoblasts and axonal branches (Fig. 6B, C). One of the primary limitations for our microdomain analysis is that 

it omits differences along the dorsoventral axis, which are equally crucial for limb development and patterning68 

(Fig. 2B). This deficit is particularly challenging to overcome in a reproducible manner given how narrow the 

dorsoventral axis is at the embryonic stages interrogated. Devising a method to surmount this limitation would 

prove valuable, as our analyses revealed a major deficit in migrating myoblasts to form dorsal muscle masses 

(Fig. 6B; Supp. Fig. 10). As most of these cells do not express Prrx1, their perturbed migration and patterning is 

a secondary outcome of a failure of the U11-null limb to establish an appropriate spatial cell-signaling program17. 

Interestingly, the substantial defect in distal outgrowth for the ulnar nerve, as well as the anterior displacement 

for the medial and radial nerves, suggests that cell death may serve as a repulsive cue for axonal migration (Fig. 

2A, 6C; Supp. Fig. 11). Future experiments leveraging ablation of p53 (to block LPC apoptosis) in the U11-null 

forelimb would help resolve primary phenotypes occurring from mis-splicing of MIGs and secondary phenotypes 

resulting from cell death69. Nonetheless, our systems analysis reveals that the minor spliceosome is required not 
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only for the proper development of endogenous limb progenitors, but also to generate the molecular framework 

from which the entire limb will be constructed (Fig. 6; Supp. Fig. 9; Supp. Fig. 10; Supp. Fig. 11).  

Altogether, our data reveals that upon minor spliceosome inhibition, the developing limb undergoes 

transcriptomic stalling leading to cellular developmental delay. We posit that this mechanism, which may be a 

general phenomenon triggered by LPC depletion, affords the limb the opportunity to pause its development in 

order to buffer organogenetic insults. When left unresolved, as is the case for our system, these deficits culminate 

in failed formation for both endogenous and non-endogenous systems. 
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Methods 
 

Animal husbandry 

Mouse care and experimental use was carried out along guidelines established by the University of 

Connecticut’s Institutional Animal Care and Use Committee. This study employed the Rnu11 conditional 

knockout mouse generated by Baumgartner et al.65 crossed with Prrx1-Cre17, which was originally reported in 

Drake et al.11 Wild-type (WT) animals were either Rnu11WT/Flx::Prrx1-Cre- or Rnu11Flx/Flx::Prrx1-Cre-. Mutant 

animals were Rnu11Flx/Flx::Prrx1-Cre+. Male and female embryos were used equally. Embryonic staging was 

carried out such that E0.5 was considered to be noon after a morning vaginal plug was observed. Each mutant 

embryo used in this study had a comparably staged littermate control.  

 

Bioinformatics analysis & data accessibility 

 

 Total RNAseq 

Total RNAseq was performed on E10.5 and E11.5 WT and mutant forelimb and hindlimb (N=3 for each 

sample). RNA extraction was done using TRIzol (Thermo Fisher Scientific, 15596018) per the manufacturer’s 

instructions. RNA sample preparation and sequencing were executed by the University of Connecticut’s Center 

for Genome Innovation. Library prep was done through Illumina TruSeq Stranded Total RNA Library Sample 

Prep Kit (RS-122-2201) with RiboZero for ribosomal RNA depletion. Sequencing was performed using Illumina 

NextSeq 500. Reads were mapped to mm10 using Hisat270. Gene expression calls were determined through 

IsoEM234. Differential gene expression was determined using IsoDE234. DAVID was employed for functional 

enrichment analysis of gene sets with significance determined by Benjamini-Hochberg adjusted P-value<0.05. 
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Bulk RNAseq data used in this manuscript can be accessed through NCBI’s Gene Expression Omnibus Series 

accession number GSE146424. 

 

 PCA 

Principal component analysis was performed on log-normalized TPM values through ClustVis71 using 

default settings. 

 

CUT&RUN 

Embryos were harvested at E11.5 and N=3 WT and mutant forelimbs (pooled left and right) were 

dissociated into single cell suspensions using collagenase (Sigma C9697; 50mg/mL) at 37°C for 15 minutes 

followed by gentle pipette mixing. Samples were processed using the EpiCypher CUTANATM CUT&RUN Kit 

(SKU: 14-1048) per the manufacturer’s instructions with 0.5 µg/100 µl anti-Hoxa11 (Sigma-Aldrich SAB1304728) 

or anti-IgG (CUTANATM SKU: 13-0042). Libraries were prepped using NEBNext UltraTM II DNA Library Prep Kit 

for Illumina per manufacturer’s instructions. Sequencing was conducted through the University of Connecticut’s 

Institute for Genome Innovation using Illumina NovaSeq SP 200 cycle for paired-end, 100 bp reads at 8-10 

million read depth per sample. For computational analysis, adapters and bad-quality bases were removed with 

Cutadapt 3.5; reads with poor mapping quality (below 30 or unpaired) were removed with fastx; reads were 

mapped to mm10 using Bowtie2 (-I 0 -X 1000 –dovetail –very-sensitive); PCR duplicates were removed with 

Picard 2.9.2; coverage was identified with MACS2 (--format BED –keep-dup all –bdg –nomodel –extsize 200 –

shift -100); Hoxa11 binding heatmaps were generated using deepTools plotHeatmap (--binSize 20 –

normalizeUsing BPM –scaleFactorsMethod None –smoothLength 60 –extendReads 150 –centerReads) and 

were normalized using appropriate sample control IgG binding profiles; MOTIF enrichment was identified using 

HOMER 4.10; and differential binding analysis was conducted using DiffBind 2.14 using default conditions via 

DESeq2. The data presented in this manuscript is currently in process of submission to NCBI’s Gene Expression 

Omnibus. Reviewer access token will be granted upon request. 

 

 Microdomain RNAseq 
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Total RNAseq was performed on N=3 E11.5 WT and mutant proximal anterior, proximal posterior, distal 

anterior, and distal posterior forelimb microdomains, of which left and right microdomains were pooled for each 

individual N. TRIzol-based RNA extraction was employed using instructions provided by the manufacturer. 

Through the University of Connecticut’s Center for Genome Innovation, RNA samples underwent library 

preparation using the Illumina TruSeq Stranded Total RNA Library Sample Prep Kit, were ribo-depleted using 

RiboZero, and were sequenced using Illumina NovaSeq 6000. Reads were mapped to mm10 using Hisat270. 

Differential gene expression was determined using IsoEM2 and IsoDE234. Minor intron retention and alternative 

splicing analyses were conducted as reported in Olthof et al.24 DAVID was used to identify biological pathway 

enrichment, with only KEGG pathways and GO terms having Benjamini-Hochberg-adjusted P-value<0.05 

included for analysis. STRING was used to determine gene connectivity networks. The data presented in this 

manuscript is currently in process of submission to NCBI’s Gene Expression Omnibus. Reviewer access token 

will be granted upon request. 

 

 Untargeted Protein Identification and Label-free Quantification via Tandem Mass Spectrometry 

Submitted samples were dried to completion and resuspended in 23 μL of lysis buffer (50 mM ammonium 

bicarbonate, 5% SDS) prior to preparation with S-Trap columns (ProtiFi, LLC) using a modified commercial 

protocol.  Samples were first reduced with 120 mM dithiothreitol for 1 hr at room temperature, then alkylated with 

500 mM iodoacetamide for 30 min in the dark at room temperature, then acidified to a final concentration of 2.5% 

phosphoric acid, and finally diluted 6-fold with 0.1 M triethylammonium bicarbonate (TEAB) in 90% methanol 

(MeOH).  Diluted samples were loaded on a Micro S-Trap (ProtiFi part #02-micro-80), washed per commercial 

protocol with 0.1 M TEAB in 90% MeOH, and incubated with sequencing grade, modified porcine trypsin 

(Promega #V5113) at 1:10 (w/w) enzyme:sample overnight at 25°C.  Peptides were eluted with successive 

washes of 50 mM TEAB, 0.2% formic acid in H2O, and 0.2% formic acid in acetonitrile, pooled, and dried.  

Peptides were then desalted by reverse-phase chromatography using Pierce peptide desalting spin columns 

(Thermo Fisher part #89852).  Final resuspension was done with Solvent A (0.1% formic acid in Fisher Optima 

LC/MS grade water) and samples were quantified by A280 absorbance.  Total injection amount by mass was 

normalized across all samples. 
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Samples were analyzed using a Thermo Scientific Ultimate 3000 RSLCnano ultra-high performance 

liquid chromatography (UPLC) system coupled to a high-resolution Thermo Scientific Eclipse Tribrid Orbitrap 

mass spectrometer. Each sample was injected onto a nanoEase M/Z Peptide BEH C18 column (1.7 μm, 75 μm 

x 250 mm, Waters Corporation) and separated by reversed-phase UPLC using a gradient of 4-30% Solvent B 

(0.1% formic acid in Fisher Optima LC/MS grade acetonitrile) over a 150-min gradient at 300 nL/min flow, 

followed by a ramp of 30-90% Solvent B over 30 min, for a 180-min total gradient.  Peptides were eluted directly 

into the Eclipse using positive mode nanoflow electrospray ionization with a capillary voltage of 2200 V. MS1 

scans were acquired at 120,000 resolution, with an AGC target of 4e5, maximum ion time set to Auto, RF lens 

setting of 30%, and a scan range of 300-1800 m/z.  Data-dependent MS2 scans were acquired in the ion trap 

using a Rapid scan rate, for any ions over 5.0e3 intensity threshold, with AGC target set to Standard, maximum 

ion time set to Auto, mass range set to Normal, scan range set to Auto, isolation window set to 1.6 m/z, and a 

fixed cycle time of 3 sec.  CID fragmentation was applied with 35% energy and an activation time of 10 ms.  

Dynamic exclusion was set to exclude for 30 sec after 1 observation, and charge states of 2-8 were included. 

Peptides were identified using MaxQuant software (v1.6.10.43) and its embedded Andromeda search 

engine, and quantified using label-free quantification72. The raw data were searched against both the complete 

UniProt Mus Musculus reference proteome (identifier UP000000589, accessed 01/12/2022) and the MaxQuant 

contaminants database. Minimum peptide length was set to 5 residues.  Variable modifications allowed oxidation 

of Met, acetylation of protein N-termini, deamidation of Asn/Gln, and peptide N-terminal Gln to pyroGlu 

conversion. Carbamidomethylation of Cys was set as a fixed modification.  Protease specificity was set to 

trypsin/P with a maximum of 2 missed cleavages. All results were filtered to a 1% false discovery rate at the 

peptide and protein levels using the target-decoy approach; all other parameters were kept at default values. 

MaxQuant output files were imported into Scaffold (v5.1.2, Proteome Software, Inc.) for data visualization and 

subsequent analyses. 

 

Differential Protein Expression Analysis 

Average Precursor Identity (API) was used for differential protein expression analysis. Samples 

containing replicates with missing protein expression values were imputed by averaging the API values of all 
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three replicates. A minimum of two replicates with API values > 1e5 were required for a protein to be considered 

expressed in a sample. Student’s two-tailed T-test with Benjamini-Hochberg adjustment was run on log-

transformed API values between appropriate WT and mutant sample pairs to determine differential protein 

expression with P<0.05 used as cut-off for significance.   

 

spatialPlot 

Regional gene expression was determined for each N by averaging proximal (PA, PP), distal (DA, DP), 

anterior (PA, DA), or posterior (PP, DP) microdomain transcript per million (TPM) values. Subsequently, log 2 

fold change (log2FC) values were determined for each axis (distal/proximal; anterior/posterior) and plotted, with 

log2FC ≥ 1 or ≤ -1 used as cut-off for enrichment in each domain. In addition, microdomain gene expression 

values were compared all-to-all using ANOVA with post-hoc Tukey’s test and Benjamini-Hochberg P-value 

adjustment. The following criteria were used to define significant enrichment for each region: PA enriched = PA 

TPM significantly greater than PP, DA, and DP TPM; PP enriched = PP TPM significantly greater than PA, DA, 

and DP TPM; DA enriched = DA TPM significantly greater than PA, PP, and DP TPM; DP enriched = DP TPM 

significantly greater than PA, PP, and DA TPM; proximally enriched  = PA TPM significantly greater than DA and 

DP TPM, and PP TPM significantly greater than DA and DP TPM; distally enriched = DA TPM significantly 

greater than PA and PP TPM, and DP TPM significantly greater than PA and PP TPM; anteriorly enriched = PA 

TPM significantly greater than PP and DP TPM, and DA TPM significantly greater than PP and DP TPM; 

posteriorly enriched = PP TPM significantly greater than PA and DA TPM, and DP TPM significantly greater than 

PA and DA TPM. A gene had to meet both the log2FC threshold and statistical significance by ANOVA to be 

determined spatially restricted in spatialPlot (note: muted color dots in Fig. 3A-B show genes that meet the 

log2FC thresholding but were not significantly enriched by ANOVA).   

 

 Single Cell RNAseq 

Forelimbs dissected from N=6 E11.5 WT and mutant embryos were pooled into two batches, with each 

batch containing one limb from each embryo (i.e., WT 1 left forelimb in WT batch 1, WT 1 right forelimb in WT 

batch 2). Left and right forelimbs were intermixed for each batch. Single cell suspensions were generated using 
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collagenase (Sigma C9697; 50mg/mL) at 37°C for 15 minutes followed by gentle pipette mixing. Single cell 

capture and library preparation was carried out through the University of Connecticut’s Center for Genome 

Innovation. Each sample was processed with 10x Genomics NextGem v3.1 kit, per the manufacturer's 

instructions. Samples were sequenced on a NovaSeq SP100 cycle v1.5. Resulting .bcl files were converted to 

fastq files and mapping was performed using cellranger mkfastq and cellranger count, respectively. WT and 

mutant batches were then merged using cellranger aggr with default settings. Output data was analyzed using 

Seurat73 with filtering criteria as reported by Kelly et al.56, wherein cells expressing less than 200 genes, more 

than 6000 genes, or containing >10% mitochondrial reads were removed from analysis. Gene expression counts 

were then log normalized and the top 1000 variable features were determined using vst. Principal component 

analysis (PCA) was run on the top 20 significant dimensions and cluster identification was generated through 

UMAP using default settings (resolution=0.5). The top gene expression markers for each cluster were extracted 

using Seurat’s FindAllMarkers73 with default parameters. Cluster labeling was facilitated by using markers 

reported in Kelly et al.56 and Reinhardt et al.57 Endogenous limb mesenchyme cell populations were regressed 

for cell cycle score post-integration.  

 

Integration of Spatial Transcriptomics with Single Cell RNAseq 

Signature genes were determined as described in Supplementary Figure 6. The top 8 signature genes 

for each microdomain were then used for input lists into Ucell’s_addModuleScore function to add a similarity 

score for each microdomain to every cell. Regional module scores were then generated by averaging the two 

corresponding microdomain scores for said region (i.e., average of DA & PA = anterior score). Subsequently, 

the difference between the distal and proximal scores as well as between the anterior and posterior scores was 

calculated. A difference threshold of 0.05 (a value slightly larger than the standard deviation of each difference 

dataset) was used to define the 9 spatial bins (Fig. 5D-E). Validation of this binning method is shown in 

Supplementary Figure 7.  

Percent composition of each cluster for each microdomain was calculated by dividing the number of cells 

binned in a specific spatial location and cluster by the total number of cells binned in said spatial location (ex: 

the number of cluster 2 cells in DA divided by the total number of DA-binned cells). 
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RT-PCR 

cDNA was synthesized from RNA extracted from N=3 WT and mutant microdomains, which was then 

pooled for RT-PCR. Forward and reverse primers were designed two exons upstream and two exons 

downstream the minor intron in the MIG of interest, respectively (sequences in Table 1). Differentially spliced 

transcripts identified in our RNAseq analysis were confirmed by their predicted molecular weight through agarose 

gel electrophoresis. 

 

Immunofluorescence and 3D reconstructions 

WT and U11-null forelimbs were collected at E10.5, E11.5, and E12.5 and prepared for mounting and 

sectioning by incubating in 4% PFA/PBS overnight at 4°C. The tissue was then washed twice with PBS and 

incubated in 30% sucrose/PBS overnight at 4°C. Following a final overnight incubation with a 1:1 ration of OCT 

and 30% sucrose/PBS, limbs were mounted in OCT and stored at -80°C until sectioning. Thirty minutes prior to 

sectioning, the tissue was stored at -20°C. Serial cryosections of 25 µm thickness were collected for N=1 WT 

and U11-null limb bud per slide set. Immunofluorescence was performed as previously described11. Primary 

antibodies were diluted to 1:500 (mouse anti-Myod1, BD pharmaceuticals, 554130; rabbit anti-Sox9, Millipore, 

AB5535), 1:300 (rabbit anti-cleaved caspase 3, Cell Signaling, #9665S), or 1:200 (rabbit anti-Neurofilament-M, 

Millipore, AB1987). Both left and right limbs were sectioned and reconstructed for each timepoint and each 

antibody. Serial sections were then imaged on the Keyence BZ-X710 at 10x with automatic settings for signal 

intensity and image stitching. Serial images were then imported into Reconstruct into individual series for WT 

and U11-null images. Images were calibrated by drawing a single trace the length of a 50 µm scale bar. These 

images were then manually aligned to one another and signal for either CC3 (N=1), Sox9 (N=3), Myod1 (N=3), 

or Neurofilament-M (N=2) was traced in addition to the outline of the limb bud. 3D objects were then 

reconstructed by generating a boissonnat surface from the individual traces using the original settings from 

Reconstruct74.  

 

Whole mount in situ hybridization 
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Whole mount in situ hybridization was performed as described in Drake et al.11 The following sequences 

were used as primers to generate probes: Hoxa11 – forward 5’ – GGTTCAGATCTCCGTGGTTAAG – 3’; reverse 

5’ – GGCTCTTAGAAGATTGCCAGAA – 3’; Pmaip1 – forward 5’ – CAGGGTTCCTTTCCTCTGTGTAGC – 3’; 

reverse 5’ – TCCCATCACTTCTGGTAGGCATCA – 3’. 
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Figures 
 

 

Figure 1. U11 loss results in transcriptomic stalling that affects Hox gene expression. (A) Bar-chart 

showing number of upregulated and downregulated protein-coding genes in the embryonic day (E) 10.5 and 

E11.5 mutant forelimb when compared to its appropriate WT control. (B) Scatterplot showing the differential 

expression of the 988 upregulated protein-coding genes in the E11.5 mutant forelimb from (A) when compared 

in the WT forelimb (FL) from E10.5 to E11.5. (C) Dendrogram showing the relationship of the subset of 

upregulated genes in the E11.5 mutant (Mut) forelimb from (A) that are upregulated in the WT forelimb at E10.5 

when compared to the E11.5 WT forelimb (dark blue dots in B). (D) Schematics showing the expression patterns 
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of genes stalled in the mutant forelimb. Dashed line shows cutoff for expression. (E) DAVID enrichment for genes 

that fail to be turned off and genes that fail to be turned down in the mutant forelimb. BH-adj.=Benjamini-

Hochberg adjusted. (F) Principal component analysis (PCA) for genes that fail to be turned off in the mutant 

forelimb. (G) Schematic showing differential expression of Hox genes in the E11.5 mutant forelimb compared to 

the E11.5 WT forelimb. NonDE=non-differentially expressed. (H) PCA for all expressed Hox genes in the E10.5 

and E11.5 WT and mutant forelimb. Ellipses in PCAs show 95% confidence intervals. (I) Heat-map showing 

Hoxa11 chromatin-binding profile from -2 kb to 2 kb of transcription start sites (black triangles) in E11.5 WT and 

mutant forelimb through CUT&RUN. (J) Top three shared Hoxa11 binding targets and their motifs between the 

E11.5 WT and mutant forelimb. (K) Number of differentially bound peaks in the mutant forelimb at E11.5. (L) 

Whole mount in situ hybridization for Hoxa11 in E11.5 WT and mutant forelimb. Red line shows distal most 

signal. Black arrowheads show regions of expanded Hoxa11 expression in mutant forelimb. Scale bar shows 50 

µm. Supplemental information for data shown in this figure can be found in Data File 1.   
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Figure 2. U11 loss results in spatially heterogenous mis-splicing of minor introns. (A) Three-dimensional 

reconstruction of CC3+ cells in the E11.5 WT and mutant (Mut) forelimb determined through serial 
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immunofluorescence. Prox=proximal, Dist=distal, Ant=anterior, Pos=posterior, D=dorsal, V=ventral. (B) 

Schematic showing micro-dissection workflow. FL=forelimb; PA=proximal anterior; PP=proximal posterior; 

DA=distal anterior; DP=distal posterior. (C) Differential expression (log2 fold-change) of Rnu11 in mutant (mut) 

microdomains when compared to corresponding WT counterpart as determined by RNAseq. Dashed line shows 

cut-off for significance. (D) Box plot showing 10th to 90th percentile mis-splicing index for 385 minor introns 

showing varying levels of minor intron retention in all eight samples. Samples with different letters have 

significantly different median MSIs (P<0.05) as determined by all-to-all Kruskal-Wallis test with post-hoc Dunn’s 

test. (E) Bar chart showing number of MIGs with significantly elevated minor intron retention in each mutant 

microdomain when compared to its appropriate WT counterpart. (F) Overlap analysis for MIGs with elevated 

minor intron retention in each mutant microdomain. (G) Gene ontology (GO) terms identified for MIGs with 

significantly upregulated minor intron retention (UpRet) in each individual mutant microdomain (left) with each 

microdomain showing enrichment for a given term listed (right). (H) Bar chart showing number of detected 

alternative splicing (AS) events in each mutant microdomain. (I) Bar chart showing number of AS events 

significantly upregulated in each mutant microdomain when compared to its appropriate WT counterpart. (J) 

Overlap analysis for MIGs with upregulated AS in each mutant microdomain. (K) GO terms enriched by MIGs 

with significantly upregulated AS (UpAS) in each individual mutant microdomain (left) with each microdomain 

showing enrichment for a given term listed (right). (L) RT-PCR validations of AS events detected to be 

significantly increased in mutant microdomains for Fam92a, Hnrnpm, Exosc1, and Cdk5. Red line shows minor 

intron. Black lines show major introns. Light blue box shows 5’ upstream exon. Brown box shows 3’ downstream 

exon. Black arrows show primer location for each interrogated MIG. Predicted spliced products shown adjacent 

to their corresponding gel band. (M) Venn-diagrams (not to scale) showing the number of detected proteins in 

each WT and mutant microdomain. (N) Bar-chart showing the number of differentially expressed proteins in each 

mutant microdomain when compared to its appropriate WT counterpart. (O) Overlap analysis for downregulated 

MIG-encoded proteins in each mutant microdomain. Supplemental information for data shown in this figure can 

be found in Data File 2.   
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Figure 3. U11 loss results in failure to separate proximal differentiation genes from distal patterning 

genes. (A-B) spatialPlot for expressed protein-coding genes in E11.5 WT (A) and mutant (B) forelimb. Dashed 

lines show cut-off for spatial enrichment. Labeled genes show known-truths. (C) Schematic showing 

mathematical workflow for determining percentage of expected yet unobserved genes and observed yet 

unexpected genes in the mutant spatialPlot. (D) Wrapped-around bar chart showing percentage of mutant 

spatially enriched genes that were expected and observed out of all expected genes (based on their spatial 

enrichment in WT) for each region. (E) Wrapped-around bar-chart showing percentage of mutant spatially 

enriched genes that were expected and observed out of all observed genes (based on their spatial enrichment 

in mutant) for each region. (F-G) Gene ontology (GO) enrichment for unexpected yet observed genes (F) and 

expected yet unobserved genes (G) with corresponding domain in which those genes were found to be spatially 

enriched. Prox=proximal; dis=distal; ant=anterior; post=posterior; PA=proximal anterior; PP=proximal posterior; 

DA=distal anterior; DP=distal posterior. (H) spatialPlot generated by graphing WT spatially enriched genes using 

their expression values in the mutant forelimb (top), with concordance, i.e., correct matching of spatial 

enrichment in both WT and mutant transcriptome, superimposed (bottom). (I) Bar chart depicting patterns of 

expression discordance, showing only those with more than one gene. Simplified limb bud schematics shown 

below depict respective category of regional enrichment. Blue boxes show expression enrichment, light yellow 

boxes show lack of expression enrichment. NE=not enriched in any region. (J) spatialPlot generated by graphing 

Mut spatially enriched genes using their expression values in the WT limb (top), with concordance superimposed 

(bottom). (K) Bar chart depicting patterns of expression discordance, showing only those with more than one 

gene. Prox=proximal; Dis=distal; Ant=anterior; Post=posterior; PA=proximal anterior; PP=proximal posterior; 

DA=distal anterior; DP=distal posterior. Supplemental information for data shown in this figure can be found in 

Data File 3.   

  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2022. ; https://doi.org/10.1101/2022.11.10.516037doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.10.516037
http://creativecommons.org/licenses/by-nd/4.0/


35 
 

 

Figure 4. Altered cell type abundances in the U11-null forelimb. (A-D) UMAP showing the sixteen identified 

WT (A) and fifteen identified mutant (C) cell clusters at E11.5, with violin plots showing gene expression profiles 

used for WT (B) and mutant (D) cluster classification. Mutant clusters (C-D) were matched back to their closest 

WT counterpart (A-B) using the top 20 identified transcriptional markers for each cell population. (E) Pie chart 

showing the distribution of all identified cells in the WT (left) and mutant (right) forelimb. Similar cell types were 

grouped into broader classes. (F) Bar chart showing the fold-change for the abundance of each broad cell class 

in the mutant forelimb relative to the WT forelimb. Values were calculated by dividing the percentage abundance 
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in the mutant by the percentage abundance in the WT. Dashed line shows fold-change=1. ELM=endogenous 

limb mesenchyme; Vasc.=vasculature; Neur.=neural endothelial cells, *=identified only in mutant.  
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Figure 5. Spatially heterogeneous changes in cell type abundance in mutant forelimb. (A) UMAP of 

integrated WT and mutant (Mut) endogenous limb mesenchymal cells split by their genotypic origin. (B) 

Schematic showing workflow for deciphering scRNAseq spatial distribution using microdomain RNAseq data. 

(C) Bar chart showing number of ELM cells from scRNAseq binned into each microdomain. (D-E) Spatial 

distribution of all (D) WT and (E) Mut cells. (F) Schematic showing classification scheme for 

osteochondroprogenitor differentiation state. (G) Violin plot showing expression of Pdgfra, Sox9, and Col2a1 for 

each cluster with classified differentiation state (DS) beneath. (H-I) Bar chart showing the (H) raw percent 

composition of each cluster within the DA microdomain for WT and mutant with (I) percentage change for each 

cluster in the mutant. Dashed line in (I) shows cut-off for over-representation (OR).  (J) Overall summary of cell 

type abundance changes in each microdomain of the mutant forelimb. (K) UMAPs showing LPCs, OCPs, eCBs, 

and lCBs in the WT and Mut datasets. (L) Pie-chart showing cell type composition of the WT and Mut forelimb 

based on DS. (M) Bar chart showing change in cell type abundance based on DS in the Mut forelimb.  
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Figure 6. U11 loss results in aberrant chondrogenesis, myogenesis, and axonogenesis. (A-C) Three-

dimensionally reconstructed immunofluorescence staining patterns for Sox9 (A), Myod1 (B), and Neurofilament-

M (C) in WT and mutant (Mut) forelimbs at E10.5, E11.5, and E12.5. Arrowhead in B shows lack of Mut dorsal 

muscle mass. Reconstructions are scaled between equivalent WT and Mut pairs, but not between time points or 

target system. S=stylopod, Z=zeugopod, A=autopod, R=radius, U=ulna, 1-5=digits (A), 1-3=muscle masses (B), 

Prox=proximal, Dist=distal, D=dorsal, V=ventral, Ant=anterior, Pos=posterior. 
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