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Abstract

Genome-wide association study (GWAS) is a fundamental step for understanding
the genetic link to traits (phenotypes) of interest, such as disease, BMI and height.
Typically, GWAS estimates the effect of SNP on the phenotype using a linear model by
coding SNP as working code, {0, 1, 2}, according to the minor allele frequency. Looking
inside the linear model, we find that the coding strategy of SNP plays a key role in
detecting SNPs contributed to the phenotype. Specifically, a partial mismatch between
the order of the working code and that of the underlying true code will lead to false
negatives, which has been ignored for a long time. Motivated by this phenomenon,
we propose an indicator of possible false negatives and several non-parametric GWAS
methods independent of coding strategy. Results from both simulations and real data
analysis show the advantages of new methods in identifying significant loci, indicating
their important complementary role in GWAS.
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1 Background

With the innovation of high throughput genotyping technologies of single nueleotide polymorphism
(SNP), genome-wide association studies (GWAS) have witnessed considerable progress in the
identification of significant genetic factors. Since the first GWAS published, more than 50,000
associations have been reported between SNPs and diverse traits or diseases of humans,
animals, and plants (Tam et al., 2019). GWAS has been widely used for its high efficacy
in scenarios of disease susceptibility (Bouaziz et al., 2011), disease biomarkers identification
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(Bossé and Amos, 2018), risk prediction (Ji et al., 2021), and therapy optimization (Prokop
et al., 2018).

The most common analysis in GWAS is single marker regression, putting SNPs as independent
variables and phenotypes as dependent variables to identify significant loci (Dehghan, 2018).
Given the nature of phenotypes and the purpose of GWAS, a linear, logistic, or Cox regression
model is used to evaluate the impact of SNP on the phenotype. However, the majority of SNPs
labor in non-coding regions, making it difficult to understand the biological mechanism of how
genetic factors influence phenotypes (Giambartolomei et al., 2018). One popular approach
to facilitate the understanding is to integrate molecular traits as mediators, such as gene
expression (eQTL), DNA methylation (mQTL), and histone modification levels (haQTL),
collectively known as xQTL (Ng et al., 2017). By jointly analyzing the results of GWAS and
xQTL, researchers have found that variants, which drive the associations in GWAS and affect
xQTL expressions at the same time, shed light on the machinery of gene regulation (Fromer
et al., 2016; Hannon et al., 2017).

In line with a pattern of polygenic inheritance, more and more SNPs have been identified
by performing GWAS with an increasing sample size or meta-analyses of summary statistics
from a surging number of studies (Yang et al., 2012). However, the need of large sample size
is a primary limitation, since it is costly to collect or not feasible for many species, such as
animals and plants (Tam et al., 2019). Therefore, new approaches are strongly in need to
achieve higher power than GWAS with the same sample size, so as to pinpoint more significant
loci. To facilitate numerical analysis, SNPs are typically coded as {0, 1, 2} according to allele
frequency, say, major allele as 0, heterozygote as 1, and minor allele as 2, and then a linear
model is used to evaluate the effect of SNP on the phenotype. There are two major concerns
about this approach. First, it assumes that SNPs follow an additive model. However, this
may not be held under many circumstances. Although additive model has reasonable power to
detect both additive and dominant effects, it may be underpowered to detect SNPs following
recessive model or other genetic mode (Bush and Moore, 2012). Second, the coding strategy
of SNPs implicitly introduces some numerical assumptions to SNPs, and may lead to a low
power in some cases, which has been ignored for a long time. In this paper, we focus on
this concern to consider the impact of coding strategy of SNPs on the power of GWAS and
propose alternative methods to increase the power.

To understand when and how the coding strategy leads to power loss, we analyze the
classical linear model theoretically and find that a partial mismatch between the order of
working code and that of the underlying true code will result in possible false negatives. Thus,
we propose non-parametric methods that do not depend on the coding strategy of SNPs for
both continuous and binary traits. Simulations are given to evaluate the performance of
different methods under different cases, and to better understand our theoretical analysis.
After that, we illustrate the benefits of non-parametric GWAS in seven real datasets covering
human, plants, and animals. In the analysis, we identify many significant SNPs and genes
neglected by GWAS, and some of these loci were verified to have strong association with
the corresponding traits in the literature. Importantly, we discover that different methods
have diverse performance on the same dataset, which might confuse users. Along this line,
discussion on how to select statistical methods for GWAS is taken to make clear the confusion.
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2 Results

2.1 GWAS based on linear model may have false negatives

Typically, GWAS for finding SNPs related to the trait Y is to test whether β = 0 or not in
the following linear model between SNP (G) and Y :

Y = α + βG+ η, (2.1)

where α is the background effect, β is the genetic effect, and η is the noise term assumed to
be normal with mean 0.

Taking the working code for G as ci = i for i = 0, 1, 2, β is estimated as,

β̂ =
(µ̂1 − µ̂0)(r0r1 + 2r0r2) + (µ̂2 − µ̂1)(r1r2 + 2r0r2)

s2
g

, (2.2)

where µ̂i is the conditional sample means of Y given G = ci, ri = ni/n is the ratio of sample
size for G = ci over the total sample size n, and s2

g is the sample variance of G.

Now, we define the true code as the code giving µ̂0 < µ̂1 < µ̂2. That is, the genotype
coded as “0” has weakest effect on the phenotype, and that coded as “2” has the strongest
effect. This is the basic assumption underlying GWAS. However, the working code may
be different from the true code and gives different order of µ̂i(i = 0, 1, 2) (see Table 1),
which also can be explained by a general model (2.3) with details given in Methods. This
phenomenon may introduce a critical problem to the estimation of β. Generally, according

Table 1: Possible order of µ̂i(i = 0, 1, 2) with working code ci = i(i = 0, 1, 2).
C1: µ̂0 < µ̂1 < µ̂2 C2: µ̂1 < µ̂0 < µ̂2 C3: µ̂2 < µ̂0 < µ̂1

C4: µ̂0 < µ̂2 < µ̂1 C5: µ̂1 < µ̂2 < µ̂0 C6: µ̂2 < µ̂1 < µ̂0

to equation (2.2), if the working code gives ∆ = (µ̂1 − µ̂0)(µ̂2 − µ̂1) > 0, then the effect of
SNP on the trait is not affected by the working code. Otherwise, we may have false negatives
due to the coding strategy of SNP. In detail, when ∆ < 0, which means the information from
the group mean difference may cancel out and lead to β̂ ≈ 0 even if the true β is not 0, and
thus reports a false negative. Typically, when n1 = n2 = n3, µ̂0 ≈ µ̂2 gives β̂ ≈ 0, despite
of µ̂1. Thus, ∆ < 0 is a signal for possible false negatives. Results in Simulations confirm
this statement, further evidenced by results in Real Data Analysis. In summary, when the
order of working code and that of true code are partially mismatched, GWAS may have
a lower power to detect meaningful SNPs.

Motivated by these facts, we introduce non-parametric GWAS by considering the following
general model:

Y = α + f(G) + η. (2.3)
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That means, the genetic effect is not directly put on the trait Y , but through an unknown
function f . The linear model is a special case of this general model by taking f(x) = βx.
The biological implication is that the genetic effect of each SNP is unknown in practice.

To get rid of the coding strategy of SNPs, we propose several non-parametric GWAS
methods: W-GWAS, Ca-GWAS, Chi-GWAS, KS-GWAS, Co-GWAS, and HC-GWAS for
continuous phenotypes and Chi2-GWAS for binary traits. A brief description of these methods
is shown in Table 2 with details provided in Methods. In summary, W-GWAS and Ca-GWAS
both utilize pairwise Wilcoxon rank-sum test, and the only difference is that the p-value from
W-GWAS is Bonferroni corrected while p-value in Ca-GWAS is a combined p-value of p-
values from pairwise comparison. Chi-GWAS uses the the sum of squared differences of
group means, whose limit distribution follows a Chi-squared distribution. Just as its name,
KS-GWAS makes use of pairwise KS test. Co-GWAS is based on the comparison between
conditional distributions to test whether these distributions under different SNPs are the
same or not. Finally, HC-GWAS integrates all the former methods by p-value combination,
following the idea proposed by Li et al. (2022). For the binary scenario, Chi2-GWAS is based
on the adjusted Chi-squared test.

Table 2: Description of non-parametric GWAS methods

Type Method Description

Continuous

W-GWAS based on pairwise mean test with Bonferroni adjusted p-value

Ca-GWAS
based on pairwise mean test with p-value
combined by Cauchy transformation

Chi-GWAS sum of squared differences of group means
KS-GWAS pairwise KS test with adjusted p-values
Co-GWAS based on comparison between conditional distributions
HC-GWAS integrating five methods by p-value combination

Binary Chi2-GWAS based on adjusted Chi-squared test

2.2 Simulations

In this section, simulations are taken to evaluate the power of non-parametric GWAS methods
and compare them with GWAS. When the phenotype is continuous, we compare six non-
parametric GWAS methods (W-GWAS, Ca-GWAS, Chi-GWAS, KS-GWAS, Co-GWAS, and
HC-GWAS) with three different versions of GWAS: (1) GWAS with default code {0, 1, 2} given
according to minor allele frequency; (2) GWAS with working code having the same order of
the true genetic code, called GWAS1; and (3) GWAS with true code, called GWAS2. The
design of these different versions is to evaluate the impact of coding strategy on the power of
GWAS. Similarly, for binary phenotypes, Chi2-GWAS is also compared with GWAS, GWAS1,
and GWAS2.

The aim of simulation is to (a) provide numerical evidence on the possibility of false
negatives from GWAS and (b) show advantages and disadvantages of different methods.
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According to the analysis given before and in Methods, we focus on three different situations:
(S1) the order of working code is the same as that of true code (Example A); (S2) these two
orders are partially mismatched (Examples B and C); and (S3) they are fully unmatched
(Example D); Details of these simulation examples are given in Methods. The power of
different methods is estimated from 200 independent repetitions under significance level 0.05.
Simulation results are presented in Figure 1 (examples with continuous phenotypes) and
Figure 2 (examples with binary phenotypes).

For both cases of phenotypes, GWAS2, GWAS with true genetic code, performs the best
among these methods. When the order of two codes are partially matched, as in Example
B and C, GWAS, with default working code {0, 1, 2}, always has the worst performance. It
suggests that traditional GWAS has a low power to identify true loci whose genetic mode do
not follow the default additive model. Moreover, GWAS1, whose working code has the same
order as the true genetic code, sometimes has a comparable performance with GWAS2, as
shown in Example A, B, and D. Nevertheless, when γ in Example C is close to -0.3, GWAS1
gives a very low power which even drops below 0.1. Note that the behavior of GWAS and
GWAS1 are different in Example C. GWAS has the lowest power when γ ≈ 0, corresponding
to the case µ̂2 ≈ µ̂0 leading to β̂ ≈ 0. Differently, GWAS1 has the lowest power when γ ≈ −0.3
and the information of β̂ only comes from µ̂1 − µ̂0, which is also small in this example, and
thus leads to a lower power compared with other methods. Finally, the behavior of GWAS2
and non-parametric GWAS in this example are similar, as they all have a relatively lower
power when γ ≈ −0.3. The result illustrates that if we have a good guess on the genetic
mode, we may gain some power sometimes but may also have a lower power at other times.
All these findings are consistent with our theoretical analysis.

Non-parametric methods demonstrate quite high power in all examples, showing their
stability in identifying correlated SNPs with genetic mode in either order. Especially, they
outperform GWAS in cases with partial mismatch (Examples B and C for both types of
phenotype). Among these methods, W-GWAS and Ca-GWAS have comparable performance
as their underlying algorithms are similar. HC-GWAS behaves normally without extreme
conditions and its power is in the medium. Therefore, HC-GWAS could be deemed as a
good representative for all the other non-parametric methods. In the binary scenario, the
performance of Chi2-GWAS is in accordance with that of non-parametric GWAS methods in
the continuous examples.

In summary, consistent with our theoretical analysis, the coding strategy is important
to the performance of GWAS. When the order of working code and that of true code are
partially mismatched, the performance of GWAS is disappointed. However, even if we set
SNPs in the correct order, we may also have a lower power under certain circumstances, not
to mention that we do not know the true genetic code in real problems. Nevertheless, we still
have to admit that GWAS outperforms non-parametric methods in some cases. Accordingly,
we suggest to use non-parametric methods as a complement to the traditional GWAS to
avoid high false negatives and detect SNPs truly contributed to the response. According to
our results, HC-GWAS is recommended as a summary statistic of other 5 non-parametric
methods for continuous phenotypes.
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Figure 1: Power of different methods in continuous examples. A) Case S1 that the order
of working code is the same as that of true code; B-C) Case S2 that these two orders are
partially mismatched; D) Case S3 that they are fully unmatched. The results show that if
we know exactly the true genetic code, GWAS is the best method to use. However, it is
usually unknown to us in real problems. Thus, we suggest to use non-parametric methods as
a complement to the traditional GWAS to avoid high false negatives.
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Figure 2: Power of different methods in binary examples. A) Case S1 that the order of
working code is the same as that of true code; B-C) Case S2 that these two orders are
partially mismatched; D) Case S3 that they are fully unmatched. The results are in line with
that of continuous examples.

2.3 Real Data Analysis

To explore in reality the aforementioned problem that GWAS might lose power in SNPs with
partial mismatch, we compare the performance of GWAS and non-parametric GWAS in seven
real datasets of different species including cucumber, cotton, sheep, pig, mouse, chicken, and
human. Table 3 gives summary information of them with details provided in Methods. For
continuous phenotypes, we utilize GWAS and 6 non-parametric methods to identify significant
SNPs and genes. For binary traits, GWAS and Chi2-GWAS are implemented. Furthermore,
pathway enrichment analysis is conducted if possible.

2.3.1 Real data examples provide empirical evidence on the drawback of GWAS

GWAS and all the non-parametric methods are used to identify significant SNPs for different
traits in different datasets (Table 3). Figure 3 shows a general relationship between the
numbers of significant SNPs detected by GWAS and non-parametric GWAS in these datasets.
More detailed relationship is shown in Figure 4 and Figure S1. Generally, GWAS may identify
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Table 3: Summary information for datasets used in this study.

Species Sample size SNPs (after QC) Trait

Human (Sudlow et al., 2015) 20,000 784,256 Body mass indexc

Cucumber (Wang et al., 2018) 836 23,552
Days to flowerc

Gummy stem blightc

Cotton (Fang et al., 2017) 258 1,871,401
Boll weightc

Seed indexc

Fiber strengthc

Pig (Zhuang et al., 2019b) 2,150 36,740 Loin muscle depthc

Sheep (Esmaeili-Fard et al., 2021) 91 45,342 Progeny birth weightc

Mouse (Parker et al., 2016) 1,150 92,734 Abnormal boneb

Chicken (Jiang et al., 2018) 163 47,728 Hypoxia adaptabilityb

c: continuous phenotype; b: binary phenotype.

the most significant SNPs but neglect some loci deemed to be significant by other methods.
Also, there are cases when GWAS only detects a small part of the significant SNPs. To provide
evidence on the potential importance of SNPs detected by different methods, Table 4 shows
part of the significant SNPs reported to be correlated with the trait of interest in literature
but only detected by GWAS or one of these non-parametric methods.

It is important to seek for the reason why GWAS misses so many SNPs. Given the
working code {0, 1, 2}, the empirical conditional means of phenotype are derived from µ̂i =
1
n

∑n
j=1 yjI(SNP = i), for i = 0, 1, 2, where n is the sample size and I(A) is the indicator

function taking value 1 when A is true, otherwise 0. As shown in Table 1, there are 6
possible orders between µ̂0, µ̂1 and µ̂2, say C1-C6. Among these orders, C1 and C6 give
∆ = (µ̂1 − µ̂0)(µ̂2 − µ̂1) > 0, and C2-C5 give ∆ < 0. To verify our analysis that GWAS is
more likely to lose SNPs with ∆ < 0, we classify the significant SNPs detected (or ignored)
by GWAS into 6 classes according to the order of corresponding µ̂0, µ̂1 and µ̂2, and get the
distribution of SNP numbers in each class. Results in Figure 5 and Figure S2 show that
GWAS tends to miss most of significant SNPs with ∆ < 0, consistent with our theoretical
analysis.

2.3.2 Different methods perform diversely on the same dataset

Results in Figure 3, 4 and Figure S1 reveal another important phenomenon that different
methods have diverse performance and almost all of these significant SNPs are only detected
by part of these methods, which is further evidenced by manhattan plots in Figure 6A and
Figure S3-S9. In general, there are some SNPs reported to be correlated with the trait of
interest but only detected by a fraction of these methods (Table 4). For example, for days to
flower of cucumber, there are 5 SNPs with candidate genes known to be related to this trait,
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Figure 3: Percentage of significant SNPs detected by GWAS and non-parametric GWAS
(nGWAS) in different datasets. A) Days to flower of cucumber; B) Gummy stem blight of
cucumber; C) Boll weight of cotton; D) Seed index of cotton; E) Fiber strength of cotton; F)
Progeny birth weight of sheep; G) Loin muscle depth of pig; H) Abnormal bone of Carworth
Farms White (CFW) mouse; I) Hypoxia adaptability of chicken; J) Body mass index of
human.

but ignored by GWAS. Among these five loci, three are only detected by KS-GWAS, one by
Chi-GWAS, and one by Co-GWAS (Figure 4A and Table 4). This shows the potential effect
of different methods.

To further demonstrate the value of these methods, we go into details of these five
candidate genes for days to flower. Among them, LOC101214996 and LOC101203410 are
closely related to flowering, for instance, LOC101214996 encoding protein cup-shaped cotyledon
3 is required for the cotyledon separation process as well as the floral organ fusion (Lee
et al., 2015), and LOC101203410 encoding WUSCHEL-related homeobox 13 is a potential
transcription factor integrating cytokinin signaling to trigger floral induction (Li et al., 2019).
Differently, LOC101219392 encoding thaumatin-like protein affects days to flower during
plant growth and development (Iqbal et al., 2020). Light is known to be a key factor for
flowering, therefore, genes (LOC101203816 and LOC101216738) correlated with light would
exert effect on this trait as well. Specifically, Abbas and Chattopadhyay (2014) found that
calmodulin-7 (LOC101203816) promotes photomorphogenic growth and light-regulated gene
expression. Transcription factor PIF3 (LOC101216738) is essential for the response to various
environmental signals including light and temperatures (Jiang et al., 2017).
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Figure 4: Relationship between significant SNPs detected by different methods in four
datasets. A) Days to flower of cucumber; B) Hypoxia adaptability of chicken; C) Seed
index of cotton; D) Abnormal bone of Carworth Farms White (CFW) mouse.
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Figure 5: Number of significant SNPs identified by GWAS or non-parametric GWAS under
different order of conditional empirical means in different datasets. The pie chart shows the
percentages of significant SNPs with ∆ > 0 and ∆ < 0. A-B) Results for days to flower
of cucumber from GWAS (A) and non-parametric GWAS (B). C-D) Results for hypoxia
adaptability of chicken from GWAS (C) and non-parametric GWAS (D).
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Table 4: Informtion of significant SNPs detected by only one method
Species Trait Method Position of SNP Correlated genes reported in literature

Cucumber
Days to flowerc

KS-GWAS Chr 1: 4505049 LOC101219392 (Iqbal et al., 2020)
KS-GWAS Chr 1: 26750022 LOC101203816 (Abbas and Chattopadhyay, 2014)
Chi-GWAS Chr 2: 3727436 LOC101216738 (Jiang et al., 2017)
Co-GWAS Chr 3: 382644 LOC101203410 (Li et al., 2019)
Chi-GWAS Chr 6: 21388796 LOC101209768 (Pu et al., 2019)
KS-GWAS Chr 7: 16329522 LOC101214996 (Lee et al., 2015)

Gummy stem bightc HC-GWAS Chr 4: 26107720 LOC101222727 (Golisz et al., 2021)

Cotton

Boll weightc HC-GWAS Chr A05: 12969661 LOC121229363 (Gangadhar et al., 2014)

Seed indexc HC-GWAS Chr D04: 49669442 LOC107899606 (Chen et al., 2012)
GWAS Chr D11: 55006355 LOC107961898 (Sun et al., 2019)

Fiber strengthc HC-GWAS Chr D10: 32645176 LOC107915002 (Kampire et al., 2021)

Sheep Progeny birth weightc

HC-GWAS Chr 2: 165586312 ZEB2 (Martnez et al., 2017)
HC-GWAS Chr 3: 153337815 GRIP1 (Dria et al., 2020)
HC-GWAS Chr 9: 61882588 TRPS1 (Assalin et al., 2019)
HC-GWAS Chr 21: 42666037 IGHMBP2 (Yuan et al., 2017)
GWAS Chr 6: 37816398 LAP3 (La et al., 2019)
GWAS Chr 7: 47758046 RORA (Everson et al., 2018)
GWAS Chr 20: 36210221 CDKAL1 (Sun et al., 2015)

Pig Loin muscle depthc HC-GWAS Chr 1: 27040882 IFNGR1 (Xing et al., 2010)
HC-GWAS Chr 16: 64358026 EBF1 (Pagani et al., 2021)

Mouse Abnormal boneb
Chi2-GWAS Chr 5: 23992700 RINT1 (Cousin et al., 2019)
Chi2-GWAS Chr 11: 95870853 Igf2bp1 (Wang et al., 2020; Zhang et al., 2020)
Chi2-GWAS Chr 11: 96183647 Hoxb6 (Kappen, 2016)

Chicken Hypoxia adaptability b Chi2-GWAS Chr 5: 34968530 NPAS3 (Chen et al., 2019)
Chi2-GWAS Chr 20: 6048446 EYA2 (Liang et al., 2017)

Human Body mass indexc HC-GWAS rs58407391 NXPH1 (Oelsner et al., 2017)

c: continuous phenotype; b: binary phenotype.

Finally, taking the p-values from GWAS and non-parametric GWAS as input, gene association
analyses are performed using MAGMA to test the correlation between genes and the trait of
interest. Results in Figure 6B show that 13 significant genes are found by non-parametric
methods but ignored by GWAS, where LOC101219392 and LOC101216738 are reported
again, giving additional evidence to their correlations with the trait. Notably, LOC101209768
encoding tyrosine-protein phosphatase DSP1 is newly spotted. The lack of this gene would
result in pleiotropic developmental defects including impaired pollen development, and thus
it is related to flowering (Pu et al., 2019).

In summary, all of these methods are useful to detect part of the significant SNPs, but
none of them are the best among all cases (Figure 4, 5, S1-S9). Hence, as suggested by
the results shown in Simulation, we combine the power of different GWAS methods into
HC-GWAS to give generally acceptable results.

2.3.3 HC-GWAS spots new SNPs ignored by GWAS

Applying HC-GWAS and GWAS to seven datasets with continuous traits, new loci identified
by HC-GWAS but neglected by GWAS are found in every dataset. These results manifest
the advantages of HC-GWAS in the discovery of relevant genetic factors. The information of
part of the significant SNPs with corresponding genes is summarized in Table 4.

Firstly, we pay attention to the genetic link to loin muscle depth (LMD) of pig (Figure 7A).

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2022. ; https://doi.org/10.1101/2022.11.11.516099doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.11.516099
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

3

6

9

12

1 2 3 4 5 6 7

Chromosome

−lo
g1
0(
P)

GWAS

0

3

6

9

12

1 2 3 4 5 6 7

Chromosome

−lo
g1
0(
P)

Chi−GWAS

0

3

6

9

12

1 2 3 4 5 6 7

Chromosome

−lo
g1
0(
P)

KS−GWAS

0

3

6

9

12

1 2 3 4 5 6 7

Chromosome

−lo
g1
0(
P)

Co−GWAS

0

3

6

9

12

1 2 3 4 5 6 7

Chromosome

−lo
g1
0(
P)

W−GWAS

0

3

6

9

12

1 2 3 4 5 6 7

Chromosome

−lo
g1
0(
P)

Ca−GWAS

A

B

Chr 1: 4505049

Chr 1: 26750022
Chr 7: 16329522

Chr 3: 382644

Chr 2: 3727436

0
3.25

6.5

9.75
13

Chr 1

Chr 2

Chr 3

Chr 4

Ch
r 5

Ch
r 6

Chr 7

0
2.25

4.5

6.75
9

Chr 1

Chr 2

Chr 3

Chr 4

Ch
r 5

Ch
r 6

Chr 7

0
2.5

5

7.5
10

Chr 1

Chr 2

Chr 3

Chr 4

Ch
r 5

Ch
r 6

Chr 7

0
3

6

9
12 Chr 1

Chr 2

Chr 3

Chr 4

Ch
r 5

Ch
r 6

Chr 7

GWAS

Chi-GWAS

KS-GWAS

Co-GWAS

LOC101216738

LOC101219392

LOC101212894

LOC101213081

LOC101214890

LOC101221217
LOC101219278LOC101203865

LOC101207000

LOC101217825

LOC101209768

LOC101215656

LOC101220626

Figure 6: Results for days to flower of cucumber from GWAS and non-parametric GWAS.
A) Mahanttan plot of 6 GWAS methods. The red horizontal line marks the genome-wide
significance threshold adjusted by Bonferroni method. The red highlighted points stand
for significant SNPs with candidate genes. B) Results from MAGMA analysis. In the
figure, seven cucumber chromosomes (Chr 1-7) are marked by different colors, and the points
represent genes in the chromosome, with significant ones colored in red. The annotated loci
represent the significant genes neglected by GWAS. Among them, the blue ones were reported
in the literature and red ones are also identified by non-parametric GWAS (A).
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LMD is an important feature of growth, affected by both nutrition and growth environment
(Zhuang et al., 2019a). GWAS pinpoints 13 significant SNPs and HC-GWAS discovers 5
SNPs (Figure S1). However, 3 of these 5 SNPs are ignored by GWAS (Figure S1), and
the mapped candidate gene IFNGR1 was deemed to be related to LMD, since its mRNA
expression expresses differently in the muscle of adults pigs and piglets (Xing et al., 2010).
Moreover, MAGMA analysis identifies a new gene (EBF1) correlated with LMD (Figure 7B),
which was reported to be crucial to muscle cell maturation (Pagani et al., 2021).
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Figure 7: Results for loin muscle depth of pig from GWAS and HC-GWAS. A) Mahanttan
plot of GWAS and HC-GWAS. The red horizontal line marks the genome-wide significance
threshold adjusted by Bonferroni method. The red highlighted points stand for significant
SNPs with candidate genes. B) Results from MAGMA analysis. In the figure, eighteen pig
chromosomes (Chr 1-18) are marked by different colors, and the points represent genes in the
chromosome, with significant ones colored in red. The annotated loci represent the significant
genes neglected by GWAS. Among them, the blue ones were reported in the literature.

We next perform GWAS for the body mass index (BMI) of human. BMI is a universe
standard to measure body shape and fitness. As illustrated in Figure S10, both GWAS and
HC-GWAS correctly identify FTO on chromosome 16, the symbolic gene with regards to
BMI, which proves their effectiveness. In addition, GWAS identifies 20 relevant SNPs, while
HC-GWAS finds 45 within which 31 are new to GWAS (Figure S1). Among these new SNPs,
rs58407391 resides in the gene NXPH1 that has prior known association with obesity (Oelsner
et al., 2017). Thus, HC-GWAS successfully identifies this correlated gene for BMI, but GWAS
fails.

For cucumber, gummy stem blight (GSB) is a serious fungal disease affecting the cultivation
of cucurbitaceous vegetable crops worldwide (Stewart et al., 2015). It is caused by 3 Stagonosporopsis
species, and the occurence of GSB is intensified by warm and humid environments that
facilitate disease development (Gimode et al., 2021). GWAS finds 6 significant SNPs, while
HC-GWAS finds 5 loci which are all new to GWAS (Figure S1). For all of these SNPs,
the order of working code and that of conditional means are partially mismatched (Figure
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S2), demonstrating the large possibility of GWAS to lose these SNPs. Among them, the
mapped gene LOC101222727, encoding small nuclear ribonucleoprotein SmD3a (Figure S10),
was found to contribute to the plant immune response via the regulation of mRNA splicing
of key pathogenesis factors (Golisz et al., 2021). Thus, this could be a new candidate gene
for GSB resistance.

HC-GWAS also spots new SNPs ignored by GWAS for three important traits of cotton
(Figure S10). Upland cotton is the most important natural fiber worldwide, and its phenotype
seed index (SI) is widely used as an indicator of compost maturity, influenced by drought
stress and cold environment (Chen et al., 2016; Yang et al., 2021). We perform both GWAS
and non-parametric GWAS to identify significant loci, and they report exclusive SNPs and
genes. GWAS identifies 277 associated SNPs, while HC-GWAS detects 37 (Figure 4C). 21
of them are only found by HC-GWAS including the gene LOC107899606. This gene encodes
glutathione S-transferase U17 and was reported to play a negative role in plants drought and
salt stress tolerance (Chen et al., 2012).

Boll weight (BW) is a major trait for cotton as it is key to cotton yield formation
(Munir et al., 2016). Kuai et al. (2014) have discovered that sucrose transformation rate
directly influences BW in cotton. GWAS finds no significant SNPs, but with the help of HC-
GWAS, we identify 2 new loci (Figure S1). After careful analysis, we spot a candidate gene
LOC121229363 with significant loci in its region. This gene encodes myo-inositol oxygenase
and participates in various sugar metabolism and sugar sensing pathways (Gangadhar et al.,
2014). Thus, this gene is very likely to be associated with BW.

Cotton fibers are developed epidermal cells of the seed coat with large amounts of cellulose
and minor lignin-like components, while fiber strength (FS) well characterizes fiber qualities
(Gao et al., 2019; Zhao et al., 2020). Among the 4 SNPs only detected by HC-GWAS (Figure
S1), one of them has a counterpart gene LOC107915002 encoding 7-hydroxymethyl chlorophyll
a reductase (HCAR). HCAR was revealed to regulate cell death and defense response against
pathogen and oxidative and high light-induced damage to cells, which affects fiber length and
strength (Kampire et al., 2021).

For sheep, progeny birth weight (PBW) means the weight of newborn lambs. On the SNP
level, GWAS discovers 294 correlated SNPs, and HC-GWAS identifies 554 SNPs, out of which
365 SNPs are neglected by GWAS (Figure S1). On the gene level, by closely looking into
the corresponding genes of each significant SNP, 4 candidate genes are found as illustrated
in Figure 8A. Among them, ZEB2 was found to be influential to animals’ growth and weight
traits (Martnez et al., 2017). Differently, GRIP1, TRPS1, and IGHMBP2 play a major role in
syndromes with low birth weight. To be more specific, GRIP1 was indicated to influence 12q14
microdeletion syndrome, manifesting as low birth weight and developmental delay (Dria et al.,
2020). Higher expression of TRPS1 produced by gestational protein restriction consequently
causes low birth weight in their offspring (Assalin et al., 2019). Novel IGHMBP2 variants
bring clinical diversity including a patient with SMARD1, characterized by low birth weight
(Yuan et al., 2017). Furthermore, MAGMA analysis shows that there are 133 significant genes
detected only by HC-GWAS including previously mentioned genes GRIP1 and IGHMBP2
(Figure 8B), which evidences the advantages of HC-GWAS. We further perform a KEGG
pathway enrichment analysis of significant genes identified by HC-GWAS (Figure 8C). Among
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them, circadian entrainment pathway shows importance to PBW, since maternal circadian
rhythm entrains fetal circadian rhythms that may subsequently affect infant outcomes (Kaur
et al., 2020).

2.3.4 Chi2-GWAS spotted ignored SNPs for binary traits

In this section, we present the merits of non-parametric GWAS for binary traits, Chi2-GWAS,
over GWAS (based on logistic regression) in two real data sets. Firstly, we study the genetic
link to abnormal bone, which refers to bone health, of Carworth Farms White (CFW) mouse.
Case indicates abnormal bone, such as white and swollen bones, while control is healthy-
looking bone. Both GWAS and Chi2-GWAS identify a series of related SNPs on chromosome
11 (Figure 4D and Figure 9A). Totally, GWAS finds 107 SNPs and Chi2-GWAS finds 96, but
there are 15 SNPs only detected by Chi2-GWAS. Among the corresponding genes of these
SNPs, Igf2bp1 is associated with bone growth and skeletal muscle development (Wang et al.,
2020; Zhang et al., 2020). Moreover, MAGMA analysis illuminates two new genes RINT1 and
Hoxb6 only identified by Chi2-GWAS (Figure 9B). Bi-allelic RINT1 alterations would cause
a multisystem disorder including skeletal abnormalities (Cousin et al., 2019). Kappen (2016)
has proved that Hoxb6 takes control of multiple independent aspects of skeletal pattern. In
addition, GO pathway enrichment analysis is performed for significant genes identified by
Chi2-GWAS (Figure 9C). Embryonic skeletal system morphogenesis and embryonic skeletal
system development pathways are shown to be significantly correlated with bone health (Yang,
2009). Thus, the pathway enrichment analysis supports the reliability of non-parametric
GWAS methods.

We also perform GWAS for hypoxia adaptability of Tibetan chicken who has adapted
to the hypoxic and high-altitude environment for hundreds of years. Here, the hatchability
under hypoxic conditions is taken as the categorical phenotype, with surviving chicks as cases
and dead embryos as controls. GWAS spots 12 relevant SNPs. Chi2-GWAS discovers 20,
and 13 of them are new to GWAS (Figure 4B). After close examination of the counterpart
genes of these 13 SNPs, NPAS3 and EYA2 are found to be related to the trait (Figure S10).
The mutants of NPAS3 homolog modulate synaptic responses in reaction to the reduction
of internal oxygen levels and thus it is raised under hypoxia (Chen et al., 2019). EYA2 is
regulated by epidermal growth factor receptor (EGFR) through HIF1α, which affects tumor
microenvironment characterized by hypoxia (Liang et al., 2017).

3 Discussion and Conclusion

Usually, GWAS examines the effect of SNPs on the phenotype through a simple linear or
logistic regression model. However, they ignore that SNPs may follow other genetic mode in
practice and the coding strategy introduces unreliable numerical assumptions to SNPs. After
careful theoretical analysis, we find that a partial mismatch between the order of the working
code and that of the underlying true code will fail to detect true SNPs and thus cause high
false negatives, which also can be explained by a general model. Here, we propose several
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Figure 8: Results for progeny birth weight of sheep from GWAS and HC-GWAS. A)
Manhattan plot of GWAS and HC-GWAS. The red horizontal line marks the genome-wide
significance threshold adjusted by Bonferroni method. The red highlighted points stand for
the significant SNPs with candidate genes. B) Results from MAGMA analysis. In the figure,
twenty-six sheep chromosomes (Chr 1-26) are marked by different colors, and the points
represent genes in the chromosome, with significant ones colored in red. The annotated loci
represent the significant genes neglected by GWAS. Among them, red ones are also identified
by non-parametric GWAS (A). C) KEGG pathway enrichment analysis for significant genes
detected by HC-GWAS.
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Figure 9: Results for abnormal bone of CFW mouse from GWAS and Chi2-GWAS. A)
Mahanttan plot of GWAS and Chi2-GWAS. The red horizontal line marks the genome-wide
significance threshold adjusted by Bonferroni method. The red highlighted points stand for
significant SNPs with candidate genes. B) Results from MAGMA analysis. In the figure,
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reported in the literature. C) GO pathway enrichment analysis for significant genes identified
by Chi2-GWAS.
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non-parametric GWAS methods for both continuous and binary traits, and compare their
power with that of GWAS in both simulated datasets and real data sets. Results show the
advantages of non-parametric GWAS methods, especially in cases with partially mismatched
orders between the working code and that of the conditional means of phenotype.

Despite the advantages of non-parametric methods in the scenario of partially mismatched
orders, GWAS still outperforms non-parametric GWAS in other situations when the orders
of working code and true code are fully matched or fully unmatched, as shown in results from
simulation and real data analysis. On one hand, GWAS identifies more significant loci than
non-parametric methods in nearly half of the datasets (Figrue 3), such as days to flower of
cucumber, SI of cotton, and LMD of pig. On the other hand, GWAS sometimes discovers
significant loci neglected by non-parametric methods. For example, for PBW of sheep, there
are 3 genes, LAP3, RORA, and CDKAL1 only identified by GWAS. Importantly, they were
all confirmed to be associated with lower birth weight (Everson et al., 2018; La et al., 2019;
Sun et al., 2015). Similar phenomenon is also found for SI of cotton that 261 important SNPs
including LOC107961898 are detected only by GWAS. LOC107961898 encoding violaxanthin
de-epoxidase, chloroplastic demonstrates a positive role in both drought and salt tolerance,
and thus affects SI (Sun et al., 2019), but it is ignored by HC-GWAS. All of these imply that
GWAS has its advantages over non-parametric methods. These advantages may come from
the fact that parametric method has a higher efficiency than non-parametric methods when
the assumed model is true. To sum up, we suggest to utilize non-parametric methods as a
complement instead of a substitute to GWAS to identify more associated loci. Furthermore,
there is still an urgent need for better methods which can achieve high power under all
circumstances, and this could be a future direction for GWAS.

Methods

Notations

Before presenting the methods, we introduce some notations for convenience. Let G be the
SNP under study, C = {ci : i = 0, 1, 2} be its genetic code and Y be the quantitative trait
of interest. Usually, ci is taken as ci = i for i = 0, 1, 2 according to minor allele frequency,
we call it default code. Denote {(yi, gi) : i = 1, 2, · · · , n} as n i.i.d samples of (Y,G), and
define nj =

∑n
i=1 I(gi = cj) and rj = nj/n for j = 0, 1, 2 as the number and proportion of

samples whose genetic code is cj, where I(A) is the indicator function, equals 1 when A is true,
otherwise 0. In addition, let µ̂i = 1

ni

∑n
k=1 ykI(gk = ci) for i = 0, 1, 2 be the conditional sample

means of Y given G = ci. Finally, define ȳ = 1
n

∑n
i=1 yi, ḡ = 1

n

∑n
i=1 gi = 1

n
(n0c0 +n1c1 +n2c2),

and s2
g = 1

n

∑n
i=1(gi − ḡ)2.
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Analysis on linear model and general model

Typically, GWAS is based on the following linear model for quantitative trait of interest Y :

Y = α + βG+ η, (3.1)

where α is background effect, β is the genetic effect, and η is the noise term assumed to be
normal with mean 0. According to this model, finding SNPs related to the trait Y is to test
whether β = 0 or not. By simple calculation, we get the least square estimator of β as

β̂ =

∑n
i=1(yi − ȳ)(gi − ḡ)

ns2
g

=
S01 + S02 + S12

s2
g

, (3.2)

where Sij for i, j = 0, 1, 2 is given by

Sij = rirj(ci − cj)(µ̂i − µ̂j). (3.3)

Sij can be viewed as the difference between group i and j, and the information of β comes
from all of these difference.

Furthermore, we introduce a general model:

Y = α + f(G) + η. (3.4)

That means, the genetic effect is not directly put on the trait Y , but through an unknown
function f . The linear model is a special model of this general model by taking f(x) = βx.

Now, we take the working code as ci = i for i = 0, 1, 2, and then β in model (3.1) is
estimated by using data from model (3.4) as,

β̂ =
(µ̂1 − µ̂0)(r0r1 + 2r0r2) + (µ̂2 − µ̂1)(r1r2 + 2r0r2)

s2
g

. (3.5)

Assuming the linear model (3.1) is true, then the default code gives the order µ̂0 < µ̂1 < µ̂2,
which means ∆ = (µ̂1 − µ̂0)(µ̂2 − µ̂1) > 0, i.e, it works good for this setting. However, when
this model is miss-specified, say, the SNP affect the traits via an unknown function f as
in model (3.4), it may lead to false negatives, if we still use default code as working code.
Indeed, the unknown function f can change the order of the default code (see Table 5). We
can summarize these six cases into three types: (S1) the order of the two codes are perfectly
matched (Case C1); (S2) the order of the two codes are partially mismatched (Case C2-C5);
(S3) the order of the two codes are fully unmatched (Case C6).

For case (S1) and (S3), we all have ∆ = (µ̂1 − µ̂0)(µ̂2 − µ̂1) > 0. Comparing with S1,
S3 simply gives an opposite conclusion on the effect of G, that is, a positive (negative) effect
is reported mistakenly as negative (positive) effect, which is a minor problem that can be
corrected by looking inside the data. However, case (S2) gives ∆ < 0, which means the
information from the group mean difference, µ̂1 − µ̂0 and µ̂2 − µ̂1, may cancel out and leads
to β̂ ≈ 0 even if the true β is not 0, and thus reports a false negative. Typically, when
n1 = n2 = n3, µ̂0 ≈ µ̂2 gives β̂ ≈ 0, despite of µ̂1. Thus, ∆ < 0 is a signal for a possible
false negative. In summary, when the order of working code and that of true code are
partially mismatched, GWAS may have a lower power to detect meaningful SNPs.
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Table 5: Order of mapped genetic codes compared with that of working codes
Order of working codes: c0 < c1 < c2

C1: f(c0) < f(c1) < f(c2) C2: f(c1) < f(c0) < f(c2) C3: f(c2) < f(c0) < f(c1)
C4: f(c0) < f(c2) < f(c1) C5: f(c1) < f(c2) < f(c0) C6: f(c2) < f(c1) < f(c0)

Non-parametric GWAS methods

To get rid of the working code of SNP, we propose the following non-parametric GWAS
methods from different views of the problem.

Methods based on testing equality of conditional means of phenotypes given the
SNP

First, we consider the case that the phenotype is continuous. On one hand, GWAS may look
as the problem of testing the equality of conditional means of phenotypes given the SNP, i.e.,
testing the following null hypothesis

H0 : µ0 = µ1 = µ2 = µ,

where µj = E(Y |SNP = j), j = 0, 1, 2.

W-GWAS and Ca-GWAS. It is natural to use the pairwise mean test, such as t-test
and Wilcoxon rank-sum test (Datta and Satten, 2005), to compare these conditional means.
Here we recommend to use Wilcoxon rank-sum test due to the fact that data are always
noisy to contain some outliers. We will get three p-values from pairwise comparison, say,
p1, p2 and p3. One way is to report the minimal p-value after Bonferroni correction, and the
resultant method is called W-GWAS. Another way is to report a combined p-value by using
the Cauchy combination (Liu and Xie, 2020), and the method is called Ca-GWAS.

Cauchy combination. Assume pi, i = 1, 2, · · · , n are p-values with any dependence
structure, define

T =
1

n

n∑
i=1

wi tan((0.5− pi)π),

Liu and Xie (2020) show that limt→∞
P (T>t)
P (ζ>t)

= 1, where wi’s are weights such that
∑n

i=1 wi = 1
and ζ follows the standard Cauchy distribution. Thus, the p-value of T0, the observed value
of T , can be estimated by P (ζ > T0).

Chi-GWAS. Also, we may define the test statistic for H0 as the sum of squared pairwise
difference of conditional means, i.e., Ts = (µ̂0−µ̂1)2+(µ̂0−µ̂2)2+(µ̂1−µ̂2)2, where µ̂j, j = 0, 1, 2
are the estimators of µj. This method is called Chi-GWAS. Under the null hypothesis,
µ̂i − µ̂j for i 6= j are asymptotically normal distributed, thus, Ts can be written in a form
as W

∑2
k=0wkSk, where W is the variance of components of Ts,

∑2
k=0 wk = 1, and Sk is

a Chi-squared random variable with degree of freedom 1. Hence, we can estimate the limit
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distribution of Ts by αχ2
β, where α and β can be estimated by matching the mean and variance

of αχ2
β to that of Ts. Details are given in supplementary material Section 1.

Methods based on testing equality of conditional distributions of phenotypes given
the SNP

On the other hand, we may take GWAS as testing the equality of conditional distributions of
phenotype Y given SNP, that is, testing the null hypothesis

H ′0 : F0 = F1 = F2,

where Fj(y) = P(Y ≤ y|SNP = j), j = 0, 1, 2, are the conditional distribution of Y given
SNP.

KS-GWAS. Kolmogorov-Smirnov (KS) (Frank and Massey, 1951) test is the first choice
for comparing two distributions. Thus, our first method in this category is based on pairwise
KS test, called (KS-GWAS), to report a minimal p-value after Bonferroni correction.

Co-GWAS. Another powerful test statistic for this problem defined by Cui et al. (2015)
is

Tc =
1

n

2∑
i=0

n∑
j=1

p̂i[F̂i(Yj)− F̂ (Yj)]
2,

where p̂i = 1
n

∑n
j=1 I(Gj = i) with I(·) being the indicator function, F̂ (y) = 1

n

∑n
j=1 I(Yj 6 y),

and F̂i(y) = 1
n

∑n
j=1 I(Yj 6 y,Gj = i). GWAS based on this statistic is called Co-GWAS.

Cui et al. (2015) showed that it has a higher power on detecting associations between a
categorical variable and a continuous variable, which exactly is our case. The drawback of
Tc is that we can not get its asymptotic distribution, thus, the only way to get the p-value is
permutation, which may take some time.

Harmonic mean combination and HC-GWAS. Wilson (2019) proposed to combine
positively correlated p-values, p1, p2, · · · , pk, as T =

∑k
i=1 wi/

∑k
i=1 wi/pi, where wi’s are

weights such that
∑n

i=1 wi = 1. This method is shown to work better than Cauchy combination
when p-values are positively correlated (Li et al., 2022). It is easy to see that p-values from
different GWAS methods are positively correlated, thus, we use this method to combine
power of different GWAS methods, which is called HC-GWAS. The p-value of HC-GWAS
is obtained using R package “harmonicmeanp”.

Method for binary phenotype

Now, we consider the case where the phenotype is binary. For this case, we transform the
problem of detecting the association between a SNP and the phenotype to the problem of
two-sample distribution test. That is, we test the null hypothesis,

H ′′0 : F = G,
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where F is the distribution of SNP given Y = 0 and G is the distribution of SNP given Y = 1.

Chi2-GWAS. Assume that X = (x1, ..., xm) and Y = (y1, ..., yn) are m and n samples
independently sampled from F and G respectively. To test H ′′0 , we construct an adjusted

Chi-squared test statistic as T =
∑2

k=0
(Um,i−mĉi)2

mĉi
+

(Vn,i−nĉi)2
nĉi

, ĉ = Um+Vn
m+n

, where Um =

(Um,0, Um,1, Um,2) with Um,i =
∑m

k=1 I(xk = i) and Vn = (Vn,0, Vn,1, Vn,2) with Vn,i =
∑n

k=1 I(yk =
i), for i = 0, 1, 2. It is shown in supplementary material Section 2 that T → χ2

2 as the sample
size growing to infinity. Due to the name of the statistic, we call the corresponding GWAS
method as Chi2-GWAS.

Simulation designs

In our simulation, we take the default working code as ci = i for i = 0, 1, 2, sample size as
n0 = n1 = n2 = 200 and 4 different f(G) as shown below, covering all possible relationships
(cases S1-S3) between working code and true code. For continuous examples, Y is generated
from model (3.1), that is, Y = f(G)+ tη, η ∼ N(0, 1), with t ranging from 1 to 3. The binary
traits are generated by first applying the logistic transformation to Y in continuous examples,
and then taking the transformed values above 0.5 as 1 and others as 0.

Example A (Case S1) f(c0) = 0, f(c1) = 1 and f(c2) = 2.

Example B (Case S2) f(c0) = 0, f(c1) = −0.3 and f(c2) = 0.05.

Example C (Case S2) f(c0) = 0, f(c1) = −0.3 and f(c2) = γ. In this example, we fix
t = 1, and take γ ranging from -1 to 1.

Example D (Case S3) f(c0) = 2, f(c1) = 1 and f(c2) = 0.

GWAS data sets

All the real data used in this study can be accessed from public websites. The human data
can be obtained upon application to the UK Biobank project (Sudlow et al., 2015). Here, we
randomly select 20,000 people from the UK Biobank cohort as our dataset. The cucumber data
were downloaded from http://cucurbitgenomics.org/ftp/GBS_SNP/cucumber/ (Wang et al.,
2018), which contains 836 cucumber accessions (Cucumis sativus L.) with 23,552 SNPs. The
cotton data were downloaded from http://mascotton.njau.edu.cn/Data/GWAS_research.htm

(Fang et al., 2017), containing 1,871,401 SNPs from 258 upland cotton (Gossypium hirsutum)
accessions after quality control. The mouse data were downloaded from https://datadryad.

org/stash/dataset/doi:10.5061/dryad.2rs41 (Parker et al., 2016), with 1150 male CFW
mice (Mus musculus) phenotyped, and we filter 92,734 SNPs for GWAS. The pig data
were downloaded from https://doi.org/10.6084/m9.figshare.8019551.v1 (Zhuang et al.,
2019b), containing 2150 Canadian origin Duroc pig populations (Sus scrofa) with 36,740
informative SNPs. The sheep data were downloaded from https://doi.org/10.6084/m9.

figshare.11859996.v1 (Esmaeili-Fard et al., 2021), comprised of 91 sheep panel (Ovis aries)
with 45,342 SNPs. The chicken data were downloaded from https://www.animalgenome.org/
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repository/pub/CAU2018.0208/ (Jiang et al., 2018). GWAS is performed using 163 chickens
(Gallus gallus), with 47,728 valid SNPs filtered after quality control.

GWAS analysis

SNPs are filtered based on missing data rate and minor allele frequencies (MAF) with PLINK
(Purcell et al., 2007). Then, imputation is performed by Beagle with default parameters
(Browning et al., 2018). To avoid confounding caused by population structure and kinship
in GWAS, continuous phenotypes are adjusted for the first two principal components from
the PCA analysis performed by PLINK (Bani-Fatemi et al., 2016). P-values are corrected by
Bonferroni method.

MAGMA analysis

A gene-based association analysis is conducted using the Multi-marker Analysis of GenoMic
Annotation (MAGMA) (de Leeuw et al., 2015), which utilizes a multiple regression method to
identify multi-marker aggregated effects that account for SNP p-values and linkage disequilibrium
(LD) between SNPs. The analyzed SNP set of each gene is based on whether the SNP locates
in the gene body region or within extended +/− 20 kb downstream or upstream of the gene.
P-values are corrected by Bonferroni method.

Acknowledgment

This work is partially supported by Key R&D Program of Zhejiang (2021C03G2013079), and
the Program of China National Tobacco Corporation (110202101032(JY-09)). In addition,
we thank the participants of the included cohorts and of UK Biobank for making this work
possible (UKB application 41376).

References

N. Abbas and S. Chattopadhyay. Cam7 and hy5 genetically interact to regulate root growth
and abscisic acid responses. Plant Signaling & Behavior, 9(9):e29763, 2014.

H.B. Assalin, J. Gontijo, and P.A. Boer. mirnas, target genes expression and morphological
analysis on the heart in gestational protein-restricted offspring. PloS one, 14(4):e0210454,
2019.

A. Bani-Fatemi, A. Graff, C. Zai, J. Strauss, and V.D. Luca. Gwas analysis of suicide attempt
in schizophrenia: main genetic effect and interaction with early life trauma. Neuroscience
Letters, 622:102–106, 2016.

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2022. ; https://doi.org/10.1101/2022.11.11.516099doi: bioRxiv preprint 

https://www.animalgenome.org/repository/pub/CAU2018.0208/
https://www.animalgenome.org/repository/pub/CAU2018.0208/
https://doi.org/10.1101/2022.11.11.516099
http://creativecommons.org/licenses/by-nc-nd/4.0/
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