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Fig. 2. Visual representations of the logarithmic growth function output in each electrode over time (electrodograms; pj) corresponding to the clean, noisy,
and processed noisy speech signals processed by the different algorithms. Electrode numbers increase as the mapped frequencies decrease.

to be included in the residual path of Deep ACE 1.0 to perform
dimensionality reduction (see Figure 1).

C. Audio material

In this work, a total of three different speech datasets and
three noise types were used to assess the models’ performance
and generalization abilities. As a preprocessing stage, all sam-
ples were set to mono files and resampled to 16 kHz. Speech
and noise signals were mixed at SNR values ranging from -5
to 15 dB, in 5 dB steps. The corresponding electrodograms
were obtained using the ACE strategy with 1000 pulses per
second (pps).

1) Speech material:

a) LibriVoxDeEn corpus [29]: This speech data was orig-
inally designed for end-to-end speech translation, however, in
this study, we mix the speech material with noise to train
our models for speech denoising. The speech data used from
this corpus consisted of fluent spoken sentences with a total
duration of 18 hours. The quality of audio and sentence
alignments was checked by a manual evaluation, showing that
speech alignment is in general very high.

b) HSM corpus [30]: Tt consists of 30 lists of 20 (German)
everyday sentences (106 words per list). All sentences are
spoken once by a male and a female speaker, yielding 600
speech files for each gender.

c¢) TIMIT corpus [31]: Tt contains broadband recordings
of 630 people speaking the eight major dialects of American
English, each reading ten phonetically-rich sentences. In this

work, files from 112 male and 56 female speakers in the test
set were selected.

2) Noise material:

a) Environmental noises; DEMAND [32]: The environ-
mental noises recorded for this dataset are divided into six
categories; four are indoor noises and the other two are out-
door recordings. The indoor environments are further divided
into domestic, office, public, and transportation; the open-air
environments are divided into streets and nature.

b) Synthetic noises; SSN [33] and ICRA [34]: In order
to assess with which kind of noises the networks performed
the best, we included synthetic stationary speech-shaped noise
(SSN) and non-stationary modulated seven-speaker babble
noise (ICRA).

3) Training, evaluation and testing datasets: The speech was
obtained from the LibriVoxDeEn corpus and noise from the
DEMAND dataset for training the models. Specifically, 30
male (M) and female (F) speakers were randomly selected
from the speech corpus, and from each of the noise categories
in the DEMAND noise dataset, two random environments
were randomly selected. For validation, 20% of the training
data was used. For the testing, the rest of the data described
in section II-C was used. A detailed description of how the
different datasets were created for each of the experiments
is shown in Table I. The clean speech was also included as
test data to investigate whether the here presented model can
achieve performance close to ACE in quiet conditions without
introducing artifacts.
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TABLE I TABLE II
DATASETS USED TO TRAIN, VALIDATE AND TEST THE MODELS LISTENER DEMOGRAPHICS AND ETIOLOGY
Use Speech # Speakers ~ Duration Noise ID Age Gender Tested side SSN SNR ICRA7 SNR
Training LibriVox 30M/30F 18 h. DM BIO1 70 M R 0 5
Test set 1 LibriVox 3M/3F 4.5 h. DM/SSN/ICRA7 BIO2 40 M R 0 5
Test set 2 TIMIT 112M/56F 4.2 h. DM/SSN/ICRA7 BIO3 74 M R 0 0
Test set 3 HSM IM/1F 1.5 h. DM/SSN/ICRA7 BI04 70 M R 5 5
Behavioral test HSM M 6.5 h. SSN/ICRA7 BIOS 36 F R 0 0
BIO6 62 M R 5 5
D. Evaluation BIO7 86 M R 10 10
BIOS 57 F R 5 5

1) Objective evaluation: To assess objectively the perfor-
mance of each of the tested algorithms we will compute
the amount of noise reduction, electrode-wise correlation
coefficients between the denoised and clean signals, and a
speech intelligibility index based on the STOI. Note that in this
work we investigate end-to-end CI processing, so all of these
objective measures will be computed from the electrodogram
(p;,) domain.

a) SNRi: To assess the amount of noise reduction per-
formed by each of the tested algorithms we compute the SNR
improvement. This measure is computed in the electrodogram
domain and compares the original input SNR to the one
obtained after denoising. This improvement is given by:

M

> ope PR — PRI
M
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where p, represents the LGF output of band k and the
superscripts n, ¢, and d denote the noisy, clean, and denoised
electrodograms, respectively.

b) LCC: To characterize potential distortions and artifacts
introduced by the tested algorithms, the linear correlation
coefficients (LCC) between the clean ACE electrodograms
(p},) and the denoised electrodograms (pﬁ) were computed.
This channel-wise calculation allowed for the evaluation of
the distortions introduced as a function of the electrode band.
The LCCy, for band k is computed as follows:

SNRi = 10 - log, 9)

cov (p§, pé
LCCk _ (pk7pk)7
Op; " Ipi

(10)

where cov(X,Y) is the covariance between X and Y, and
o is the covariance of the values of denoised and clean
electrodogram divided by the product of standard deviations
of the values of them.

c) STOI: To estimate the speech intelligibility performance
expected from each of the algorithms, the STOI score [35]
was used. Although this metric is based on measurements
done in normal hearing listeners, it has also been used in CI
studies as a reference and can serve as a useful reference to
compare relative speech enhancement performance between
algorithms. The STOI score ranges from O to 1, where the
higher score represents a predicted higher speech performance.
In this work, the perceived intelligibility was estimated using
the clean unprocessed speech as a reference and the vocoded
denoised speech as the processed signal. The vocoded speech
was obtained from the electrodograms (p,,), which were used
to modulate noise in the corresponding frequency bands. Each
noise band was recombined to create the time domain vocoded
speech.

2) Behavioral evaluation:

a) Participant demographics: Eight postlingually deafened
CI users participated in this listening test. All participants were
native German speakers and had been implanted for several
years. They were invited to come to the German Hearing
Center of the Hannover Medical School (MHH) for a 3-hours
test and the travel cost were all covered. The experiment was
granted ethical approval by the MHH ethics commission. A
synopsis of the patient-related data is shown in Table II.

b) Experimental setup: The test material was processed
to obtain all electrodograms. The channel stimulation rate
used in this work to train and evaluate the models was 1000
pps. Stimuli were delivered to the participants’ CI via direct
stimulation through the RF GeneratorXS interface (Cochlear
Ltd.) with MATLAB via the Nucleus Implant Communicator
V.3 (Cochlear Ltd.).

During the test, the participants were asked to sit in a quiet
room and remove their own implants, the stimulation was
delivered to the implanted receiving coil. The speech material
was entirely based on the HSM sentence corpus (see Table
I). Subjects were asked to repeat the presented sentence out
loud as accurately as possible. All the correctly repeated words
were marked, and for each test list, there was a final score
that represented the percentage of understood words (word
recognition score; WRS). Each listening condition was tested
twice with different sentence lists, and the lists were never
repeated. All the conditions were blinded to the subjects.

III. RESULTS

1) Objective instrumental results:

a) SNRi: Figure 3 illustrates the SNR improvement ob-
tained with each of the algorithms. The results of TIMIT
and LibriVoxDeEn corpora were also investigated and similar
trends were observed across both datasets. The two Deep
ACE algorithms achieved steady improvement in the testing
datasets.

It can also be seen that the two Deep ACE models out-
performed TasNet+ACE and Wiener+ACE in almost every
condition, especially in low SNR environments. However, note
that higher SNR improvement does not necessarily imply that
the speech will be more clearly perceived, as some of the
speech content may have been removed or greatly attenuated.
For example, Figure 2 shows that the Deep ACE 1.0 model
achieved the best noise reduction performance for unseen
noise. However, some of the bands that originally contained
part of the speech signal no longer do, which could potentially
affect speech understanding. The Deep ACE 2.0 model, on
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SNR improvement for the different algorithms
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Fig. 3. SNR improvement in dB for the tested algorithms in SSN and ICRA7
noise for the different SNRs using the HSM dataset. The black horizontal bars
within each of the boxes represent the median for each condition, the circle-
shaped marks indicate the mean improvement, the top and bottom extremes
of the boxes indicate the 75% and 25% quartiles, respectively, and whiskers
indicate the variability outside the upper and lower quartiles.
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Fig. 4. Linear correlation coefficients between processed and clean elec-
trodograms across bands of different algorithms in SSN and ICRA7 noises
using the HSM dataset. Shaded areas represent the standard deviation. Higher
electrode numbers represent lower frequencies.

the contrary, could not remove all the noise but retained more
speech information.

b) LCC: A band-wise linear correlation was used to as-
sess the similarity between the original clean and processed
electrodograms with the different algorithms. Figure 4 shows
the obtained LCCs as a function of the correlated band. It
can be seen that the Wiener+ACE condition shows the lowest
correlation for the lower frequency bands and that Deep ACE
2.0 shows, in general, the highest LCCs.

c) STOI: Figure 5 illustrates the STOI scores obtained by
the tested algorithms in different speech and noise conditions.
All four algorithms showed improvement with respect to
ACE. Three deep learning-based algorithms outperformed the
Wiener+ACE. Among them, the here proposed Deep ACE

STOI score for the different algorithms
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Fig. 5. STOI scores obtained by the tested algorithms in SSN and ICRA7
noise for the different SNRs using the HSM dataset. The black horizontal bars
within each of the boxes represent the median for each condition, the circle-
shaped marks indicate the mean improvement, the top and bottom extremes
of the boxes indicate the 75% and 25% quartiles, respectively, and whiskers
indicate the variability outside the upper and lower quartiles.

Word recognition score in quiet

N.S.
100
75
S
% 50
=z
25
07
S & & & & & & & &
R R R M O I R
Subject ID

Algorithm [0 ACE B Deep ACE 2.0

Fig. 6. Mean individual and group mean percentage of correctly understood
words by subject for the HSM sentence test in quiet. Error bars indicate the
standard deviation.

1.0 and 2.0 models were better than TasNet+ACE and they
achieved similar performance. The same trend could be seen
for TIMIT and LibriVoxDeEn corpora. In general, the STOI
scores were consistent with the previous SNR improvement.
As for clean speech (without background noise), the mean
STOI scores of the HSM corpus obtained by ACE, Tas-
Net+ACE, and the proposed Deep ACE 1.0 and 2.0 were
0.807, 0.789, 0.796, and 0.803, respectively.

2) Behavioral results: Figure 6 shows the WRS in quiet
measured in eight CI subjects. The unprocessed ACE and Deep
ACE 2.0 were evaluated for this condition to test whether
the latter introduced any artifacts that could compromise
the integrity of the clean speech signals. Results show no
significant differences between the WRS obtained with ACE
and Deep ACE 2.0, implying that Deep ACE 2.0 was able to
properly code the incoming clean speech.
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Word recognition score in noise
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Fig. 7. Mean individual and group mean percentage of correctly understood words by subject for the HSM sentence test in noise for SSN and ICRA7 noises

for all tested conditions. Error bars indicate the standard deviation.

Figure 7 shows the WRS in noise measured using the
different algorithms for SSN and ICRA7 background noises.
All three noise reduction algorithms were able to substantially
improve speech intelligibility in both tested noises when
compared to the unprocessed ACE. Among them, the Deep
ACE 2.0 significantly outperformed the other two, achieving
a mean improvement of about 20%.

In order to compare the WRS obtained with each of the
three algorithms, the benefit in WRS with respect to ACE
was computed (WRS = WRSycnoised. — WRS4cE). Figure
8 shows the benefit in speech understanding processed by
different algorithms in SSN and ICRA7 noises. The statistical
analysis reveals that Deep ACE 2.0 obtains significantly higher
scores than the other algorithms in SSN. However, for the
ICRA7 noise condition, Deep ACE 2.0 showed a significant
benefit in WRS only when compared to the Wiener+ACE,
although a trend towards higher scores is observed.

IV. DISCUSSION

Here we propose an end-to-end speech coding and denoising
strategy for ClIs. The vast majority of speech enhancement
algorithms for CI users rely on front-end processing, for this
reason, in this work we investigate end-to-end CI deep learning
models that merge the preprocessing denoising stage with the
CI sound coding strategy. This approach takes advantage of
the simplicity of the output to be predicted, the electrodogram,
which does not contain any phase information and may poten-
tially facilitate noise reduction for CIs by removing unwanted
redundancies in the input signal. Merging the noise reduction
algorithm with the CI sound coding strategy also has the
benefit of reducing processing latency, when compared to other
front-end approaches. For example, when a front-end TasNet
denoising block would introduce 4 ms of latency, whereas the
here presented Deep ACE models introduce only 2 ms. This
may be crucial for devices such as CIs that need to transmit

Word recognition score benefit
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Fig. 8. Violin plots showing the WRS improvement by processing the noisy
signals with the different algorithms compared to ACE. The black horizontal
bars within each of the boxes represent the median for each condition, the
diamond-shaped marks indicate the mean improvement, the top and bottom
extremes of the boxes indicate the 75% and 25% quartiles, respectively, and
whiskers indicate the variability outside the upper and lower quartiles.

signals with minimal latency. Besides, the Deep ACE 2.0 has a
low computational complexity with 552k parameters in total,
which makes it possible to deploy the model for real-time
applications.

This study extends previous preliminary work [19], where
Deep ACE was introduced for the first time, by optimizing its
architecture, improving its speech enhancement performance,
and improving its generalization capabilities. Specifically,
Deep ACE 1.0 and 2.0 were optimized by adjusting the hyper-
parameters, the topology (in the case of Deep ACE 2.0), and
loss functions that targeted erroneous band selection, based
on some hearing perception aspects of CI users. Although
the implemented loss functions for the Deep ACE 1.0 and
2.0 models relied on the same idea of penalizing the non-
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stimulating channels, Deep ACE 2.0 seemed to achieve a
smoother noise reduction by preserving some noisy residuals.

The objective results indicate that in contrast to [19], the two
proposed end-to-end CI speech enhancement models outper-
form both front-end baseline algorithms, in terms of SNR im-
provement and predicted speech intelligibility. Specifically, we
observe that Deep ACE 2.0 obtained the highest performance
whereas the Wiener+ACE obtains the poorest. The objective
results also show that the trained models are resistant to unseen
data, that is, they are capable of generalizing to new noise and
speech signals. This is also an improvement achieved in this
study with respect to [19], where part of the testing material
was also included in the training set.

The behavioral speech tests show that the proposed end-
to-end deep learning coding strategy Deep ACE 2.0 can be
used to code clean speech, as shown in Figure 6, where no
significant differences in speech understanding were observed
between the original clean ACE and clean Deep ACE 2.0.
Furthermore, speech understanding in noise measured in this
study is consistent with the objective measures. That is, from
Figure 9 we expected no significant differences in speech
performance between TasNet+ACE and Wiener+ACE when
using SSN background noise, but to see a significant improve-
ment with the TasNet+ACE with respect to Wiener+ACE when
using ICRA7 modulated noise, which happens to be the case
(see Figure 8). However, it is important to point out that all
tested algorithms tested behaviorally outperform the baseline
ACE sound coding strategy for both SSN and ICRA7 noises.
Although the observed improvement using the Wiener+ACE
using ICRA7 background noise was not observed in [19], it
is still consistent with other previous studies [9]. Also, this
benefit in non-stationary noise may be related to the fact that
this condition was tested mostly at positive SNRs (Table II).

V. CONCLUSIONS

In this work, an end-to-end deep learning speech denoising
and coding strategy to enhance the speech intelligibility of CI
users was presented. The inspiration is the recently proposed
Deep ACE, which effectively reduces the noise. In this context,
two new implementations were proposed to optimize the Deep
ACE for the better hearing performance of CI users. These two
models were then evaluated using objective instrumental mea-
sures and the better-performing model was behaviorally tested
by means of listening tests with CI users. The performance
was compared to the ACE and two front-end baseline models,
namely Wiener+ACE and TasNet+ACE. Results showed that
the optimized Deep ACE 1.0 and 2.0 models outperformed the
other baseline models, and brought great and steady objective
improvement. Furthermore, the results show that Deep ACE
2.0 also gave a behavioral benefit in WRS when compared to
the baseline models. Based on these findings, the present study
suggests that Deep ACE 2.0 has the potential as a method to
improve speech understanding under noisy conditions for CIs.
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