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A Deep Denoising Sound Coding Strategy for
Cochlear Implants

Tom Gajecki, Yichi Zhang and Waldo Nogueira

Abstract—Cochlear implants (CIs) have proven to be successful
at restoring the sensation of hearing in people who suffer from
profound sensorineural hearing loss. CI users generally achieve
good speech understanding in quiet acoustic conditions. However,
their hearing ability degrades drastically in noisy backgrounds.
To address this problem, current CI systems are delivered with
front-end speech enhancement processors that can be beneficial
for the listener, however, these perform well only in certain noisy
environments, leaving quite some room for improvement in more
challenging conditions. In this work, we propose substituting the
CI sound coding strategy with a deep neural network (DNN)
that performs end-to-end processing by taking the raw audio as
input and providing a denoised electrodogram, i.e., the electrical
stimulation patterns that are applied to the electrodes across
time. We specifically design a DNN to emulate a common
CI sound coding strategy; the advanced combination encoder
(ACE). The DNN is designed not only to faithfully emulate the
coding of acoustic signals that ACE would perform but also to
remove unwanted interfering noises, when present, without sac-
rificing processing latency. The models were optimized using CI-
specific loss functions and evaluated using objective instrumental
measures and listening tests in CI participants. Results show
that the proposed models achieve higher signal-to-noise ratio
improvement and objective intelligibility scores when compared
to the baseline models. Furthermore, the proposed deep learning-
based sound coding strategy improved speech intelligibility in
eight CI users.

Index Terms—Cochlear implants, Deep neural networks, End-
to-end, Speech enhancement

I. INTRODUCTION

A cochlear implant (CI) is a surgically implanted neuropros-
thetic device that restores the sensation of hearing in people
who suffer from profound sensorineural hearing loss. The CI
sound coding strategy is responsible for computing the electric
stimulation current levels from the audio captured by the
CI sound processor microphone. There are several CI sound
coding strategies used in the industry [1], a widely used sound
coding strategy is the continuous interleaved sampling (CIS)
[2]. CIS uses a filter bank that decomposes the incoming sound
into different analysis sub-band signals, which are used to
modulate electric pulses that stimulate the auditory nerve. The
set of pulses is sent to the available electrodes to stimulate the
auditory nerve across time in an interleaved way. Other strate-
gies perform band selection that pick the most perceptually
relevant bands for stimulation. Band selection reduces power
consumption without compromising speech intelligibility, the
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reason why is also widely used in the CI industry. Common
criteria to select relevant bands are based on magnitude,
used in the advanced combination encoder (ACE) [3], or on
psychoacoustic masking, used in the PACE/MP3000 sound
coding strategy [4]. When these CI sound coding strategies are
used, electrodes located near the base of the cochlea represent
higher frequencies, whereas those located in the most apical
region transmit low-frequency information. In this work, we
focus specifically on the ACE sound coding strategy, although
the presented approach could be generalized to any available
sound coding strategy, as all of them generate electrodograms
(i.e., the normalized amplitudes that are subsequently mapped
to the current levels that each electrode will deliver to the
auditory nerve over time).
In general, a CI with its corresponding sound coding strategy

can help the user to understand speech in quiet conditions,
however, it fails to do so when loud interfering signals (i.e.,
at low signal-to-noise ratios; SNRs), such as noise or other
talkers, are present [5]. In order to overcome the limitations of
CIs in noisy conditions, many speech enhancement techniques
have been proposed to improve speech intelligibility, such as
spectral contrast enhancement [6], [7], spectral subtraction
[8], Wiener filtering [9] and time-frequency masking [10].
However, recently the community is leaning towards more
modern data-driven approaches, such as deep learning mod-
els, to perform single-channel speech enhancement [11]–[14].
These more recent source separation and speech enhancement
methods commonly use time-frequency representations of the
incoming input signals to perform feature extraction [15], [16].
These approaches can yield quite good performance but bypass
potential rich sources of information, such as phase infor-
mation, limiting speech separation performance. To overcome
this problem, end-to-end deep learning-based approaches that
directly work in the time domain have been recently proposed.
For example, [17] proposed a fully-convolutional time-domain
audio separation network (Conv-TasNet), a deep learning
framework for end-to-end time-domain speech separation. This
framework addresses the shortcomings of separation in the
frequency domain, achieves state-of-the-art performance, and
is suitable for low-latency applications. Thus, approaches that
perform end-to-end processing are getting more and more
attention in the community, which makes them an attractive
solution to reduce interfering noise for CI processing. A front-
end approach, however, may not fully exploit the CI processing
characteristics.
In order to optimize speech enhancement for CIs, it may be

beneficial to design algorithms that consider the CI processing
scheme. Thus, there has been some work done specifically
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for CIs, where DNNs are included in the CI signal path
[14], [18]. These approaches reduce noise, for example, by
directly applying masks in the filter bank used by the CI sound
coding strategy. Recently, inspired by the aforementioned
Conv-TasNet, [19] proposed a deep learning-based end-to-
end CI sound coding strategy; termed Deep ACE. Deep ACE
estimates denoised CI electrodograms from raw audio data to
improve speech intelligibility in CI users. Note that in this
context, end-to-end implies a domain transformation (audio-
to-electrodogram) designed to leverage the simplicity of the
output to improve noise reduction for CIs. This may be of
high importance due to the fact that electrodograms discard
input phase information and also contain a high degree of
redundancy in the signal. Deep ACE is designed to take
advantage of such signal representation in order to extract
global patterns from its characteristics, identifying which of
them are the ones more likely to be embedding speech content.
In this work, we present an extensive empirical study of Deep

ACE. We also introduce an improved version of it that uses
CI-specific loss functions to enhance CI-specific hearing by
penalizing wrong band selection. With this, we aim at achiev-
ing better noise reduction performance, to improve speech
understanding in noisy conditions for CI users. Furthermore,
we improve the generalization ability of the presented models.
The models were evaluated using objective measures and
behaviorally using listening tests in CI users to assess the
potential benefits of Deep ACE with respect to the baseline
algorithms and the clinical ACE sound coding strategy.

II. METHODS & MATERIALS

A. Advanced combination encoder cochlear implant sound
coding strategy

The acoustic signal is first captured by the CI microphone
and sampled at 16 kHz. Then, a filter bank implemented as
a 128-point fast Fourier transform (FFT), commonly with a
32-point hop size, is applied, introducing a 2 ms algorithmic
latency (this will depend on the channel stimulation rate;
CSR). Next, an estimation of the desired envelope is calculated
for each spectral band Ek, (k = 1, ...,M). Each spectral band
is mapped to an electrode and represents one channel. The
total number of channels/electrodes is denoted by M . In this
study, the band selection block sets N = 8 out of M = 22
envelopes by selecting the ones with the largest amplitudes; let
A0 be the set of available envelopes and Z̃N the set containing
the N selected bands. The first element of Z̃N will be selected
as follows:

Z̃1 := {ã(z) ∈ A0 : ã(z) ≥ a(z) ∈ A0}. (1)

Now let be A1 := A0\Z̃1, where the “·\·” operator represents
the subtraction of the elements belonging to the group on the
right side from the group on the left side. The ith band will be
added to the set of selected bands by choosing the one with
the highest amplitude from the remaining elements of the set
Ai like so:

Z̃i+1 := {ã(z) ∈ Ai : ã(z) ≥ a(z) ∈ Ai}, (2)
i = {0, ..., N − 1}.

After eight iterations we obtain Z̃8 which will contain the
desired bands. Note that the elements of Z̃N cannot have the
same value, that is, for any two elements zi and zj ∈ Z̃N ,
zi ̸= zj . The selected bands are subsequently non-linearly
compressed by a loudness growth function (LGF) given by:

pk = log(1+ρ((Ek − s)/(m− s))/log(1+ρ)), s ≤ Ek ≤ m.
(3)

The output of the LGF (pk) represents the normalized
stimulation patterns used to stimulate the auditory nerve and
constitute the electrodogram. For values of Ek below base
level s, pk is set to zero, and for values of Ek above saturation
level m, pk is set to one. For a detailed description of the
parameters s, m and ρ, refer to [20]. Finally, the last stage
of the sound coding strategy maps pk into the subject’s
dynamic range between threshold levels (THLs) and most
comfortable levels (MCLs) for electrical stimulation. The N
selected electrodes are stimulated sequentially for each audio
frame, representing one stimulation cycle. The number of
cycles per second thus determines the CSR. A block diagram
representing the previously described processes is shown in
Figure 1a; ACE.

B. Speech enhancement algorithms

1) Wiener filter (baseline 1): Here, we use a classic front-end
signal processing method based on Wiener filtering, a widely
used technique for speech denoising that relies on a priori SNR
estimation [21] (Figure 1b; Wiener+ACE). Different variations
of this algorithm are used in commercially available single-
channel noise reduction systems included in CIs [22], [23].
Therefore, this classic algorithm is an appropriate baseline to
use when developing new speech enhancement methods in the
context of CIs [18].
2) Conv-TasNet (baseline 2): The DNN-based baseline sys-

tem used in this study is the well-known conv-TasNet (which
we will refer to as TasNet for simplicity) [17]. This system
performs end-to-end audio speech enhancement and feeds the
denoised signal to ACE, where further processing is performed
to obtain the electrodograms (Figure 1c; TasNet + ACE). The
TasNet structure has proven to be highly successful for single-
speaker speech enhancement tasks, improving state-of-the-art
algorithms, and obtaining the highest gains with modulated
noise sources [24].
3) Deep ACE 1.0: This architecture is an optimization of the

previously developed Deep ACE strategy described in [19].
Deep ACE 1.0 takes the raw audio input captured by the
microphone and estimates the output of the LGF (Figure 1d;
Deep ACE 1.0). By predicting the electrodogram pk ∈ [0, 1],
the strategy is not only independent of individual CI fitting
parameters, but it also retains the 2 ms total algorithmic delay
introduced by the standard ACE strategy. The enhancer module
in Deep ACE is similar to the one in TasNet+ACE, differing
only in the activation function used in the encoder and in the
output dimensionality of the decoder (for more details refer
to [19]). The code for training and evaluating Deep ACE 1.0
can be found online1.

1https://github.com/APGDHZ/DeepACE
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Fig. 1. Block diagrams of the four different signal processing systems. In c)
and d) L refers to the length of the filters used in the encoder and decoder
and M to the number of available electrodes for CI stimulation. Output white
circles indicate the CI external emitting coil.

4) Deep ACE 2.0: This architecture is an optimization of
the previously developed Deep ACE strategy described in
[19]. Specifically, in this model, we introduce a deep envelope
detector (DED) in the residual path of Deep ACE 1.0, which
takes the role of the envelope detection block in the original
ACE (see the blue block in Figure 1e; Deep ACE 2.0).
This module is designed to perform dimensionality reduction
between the encoder and the decoder modules in order to
match the number of bands to be stimulated and also to extract
other valuable features contained in the encoded signal. This
operation is required for implementation reasons, specifically
for the used loss function (see Section II-B6, eq. 8). For
example, an input signal encoded using D filters (i.e., channels
used for the input 1-D convolutions), will be reduced to
M channels by the DED. This dimensionality reduction is
performed by means of three stacked 1-D convolution layers.
The code for training and evaluating Deep ACE 2.0 can be
found online2.
5) Model training setup: The deep learning models were

trained for a maximum of 100 epochs on batches of two
4-second-long audio segments captured by a single CI. The
initial learning rate was set to 1e-3. The learning rate was
halved if the accuracy of the validation set did not improve
during 3 consecutive epochs, early stopping with 5-epoch
patience was applied as a regularization method, and only
the best-performing model was saved. For optimization, Adam
[25] was used to optimize the desired cost function, which
depended on the algorithm’s training.
6) Model training objectives: In the case of the TasNet+ACE

algorithm, the optimizer was used to maximize the scale-

2https://github.com/APGDHZ/DeepACE2.0

invariant (SI) SNR [26] at the output of the TasNet. The SI-
SNR between a given signal with T samples, x ∈ R1×T and
its estimate x̂ ∈ R1×T is defined as:

SI–SNR(x, x̂) = 10 · log10

(
||γx||2

||γx− x̂||2

)
, γ =

x̂⊤x

||x||2
. (4)

In the case of both variations of the Deep ACE models, the
decoder module will estimate the output at the LGF of ACE.
For each of the Deep ACE variants, we will use a different
cost function, which will be based on the mean-squared error
(MSE) between the predicted and target signals, as in [19].
The MSE across electrodes between an F -frame target signal,
p ∈ RM×F and its estimate p̂ ∈ RM×F , is defined as:

MSE(p, p̂) =
1

M

M∑
k=1

(pk − p̂k)
2. (5)

In Deep ACE 1.0 we extend the loss function used in [19]
with an additional additive term. Specifically, inspired by the
fact that CI users are sensitive to wrong band selection [27],
we combine the MSE defined in 5 with a punishment term for
incorrectly selected frequency bands, which we will refer to
as weighted-MSE (wMSE), defined as:

wMSE(p, p̂)=
1

M
(
∑

k∈Z̃N

(pk−p̂k)
2
+w·

∑
k∈Z̃N

(pk−p̂k)
2
), (6)

where Z̃N is the set of bands with non-zero values, Z̃N is
the set of the remaining bands, and w is the weighting mul-
tiplicative factor, empirically determined through experiments
and set to w = 10. The theoretical basis for this modification
comes from experiments [28], which shows that CI users are
more sensitive to distortion of the band selection compared to
distortion of the signal envelopes. That is, CI users can tolerate
large distortions in speech segments if the band selection is
not corrupted.
With Deep ACE 2.0, we also aim at penalizing wrong band

selection with a second loss function. However, in this case,
the second loss function targeted the output of the mask
estimation in the networks, and was used to minimize the
binary cross entropy (BCE; computed in nats) between the
predicted mask and the generated ideal binary mask as follows:

BCE=− 1

M

M∑
k=1

ek·log(P (ek))+(1− ek)·log(1−P (ek)), (7)

where ek ∈ {0, 1} indicates if electrode k is being stimulated
(ek = 1) or not (ek = 0), and P (ek) is the predicted
probability that electrode k is being stimulated. The two loss
functions (eq. 5 and eq. 7) were combined using weighting
factors as follows:

L = wMSE · MSE + wBCE · BCE. (8)

The weighting factors wMSE and wBCE were set by em-
pirical testing to 15, and 1, respectively. Note that this loss
function required that the estimated mask had the same di-
mensionality as the LGF output, the reason why a DED had
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Fig. 2. Visual representations of the logarithmic growth function output in each electrode over time (electrodograms; pk) corresponding to the clean, noisy,
and processed noisy speech signals processed by the different algorithms. Electrode numbers increase as the mapped frequencies decrease.

to be included in the residual path of Deep ACE 1.0 to perform
dimensionality reduction (see Figure 1).

C. Audio material

In this work, a total of three different speech datasets and
three noise types were used to assess the models’ performance
and generalization abilities. As a preprocessing stage, all sam-
ples were set to mono files and resampled to 16 kHz. Speech
and noise signals were mixed at SNR values ranging from -5
to 15 dB, in 5 dB steps. The corresponding electrodograms
were obtained using the ACE strategy with 1000 pulses per
second (pps).
1) Speech material:
a) LibriVoxDeEn corpus [29]: This speech data was orig-

inally designed for end-to-end speech translation, however, in
this study, we mix the speech material with noise to train
our models for speech denoising. The speech data used from
this corpus consisted of fluent spoken sentences with a total
duration of 18 hours. The quality of audio and sentence
alignments was checked by a manual evaluation, showing that
speech alignment is in general very high.

b) HSM corpus [30]: It consists of 30 lists of 20 (German)
everyday sentences (106 words per list). All sentences are
spoken once by a male and a female speaker, yielding 600
speech files for each gender.

c) TIMIT corpus [31]: It contains broadband recordings
of 630 people speaking the eight major dialects of American
English, each reading ten phonetically-rich sentences. In this

work, files from 112 male and 56 female speakers in the test
set were selected.

2) Noise material:

a) Environmental noises; DEMAND [32]: The environ-
mental noises recorded for this dataset are divided into six
categories; four are indoor noises and the other two are out-
door recordings. The indoor environments are further divided
into domestic, office, public, and transportation; the open-air
environments are divided into streets and nature.

b) Synthetic noises; SSN [33] and ICRA [34]: In order
to assess with which kind of noises the networks performed
the best, we included synthetic stationary speech-shaped noise
(SSN) and non-stationary modulated seven-speaker babble
noise (ICRA).

3) Training, evaluation and testing datasets: The speech was
obtained from the LibriVoxDeEn corpus and noise from the
DEMAND dataset for training the models. Specifically, 30
male (M) and female (F) speakers were randomly selected
from the speech corpus, and from each of the noise categories
in the DEMAND noise dataset, two random environments
were randomly selected. For validation, 20% of the training
data was used. For the testing, the rest of the data described
in section II-C was used. A detailed description of how the
different datasets were created for each of the experiments
is shown in Table I. The clean speech was also included as
test data to investigate whether the here presented model can
achieve performance close to ACE in quiet conditions without
introducing artifacts.
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TABLE I
DATASETS USED TO TRAIN, VALIDATE AND TEST THE MODELS

Use Speech # Speakers Duration Noise
Training LibriVox 30M/30F 18 h. DM

Test set 1 LibriVox 3M/3F 4.5 h. DM/SSN/ICRA7
Test set 2 TIMIT 112M/56F 4.2 h. DM/SSN/ICRA7
Test set 3 HSM 1M/1F 1.5 h. DM/SSN/ICRA7

Behavioral test HSM 1M 6.5 h. SSN/ICRA7

D. Evaluation

1) Objective evaluation: To assess objectively the perfor-
mance of each of the tested algorithms we will compute
the amount of noise reduction, electrode-wise correlation
coefficients between the denoised and clean signals, and a
speech intelligibility index based on the STOI. Note that in this
work we investigate end-to-end CI processing, so all of these
objective measures will be computed from the electrodogram
(pk) domain.

a) SNRi: To assess the amount of noise reduction per-
formed by each of the tested algorithms we compute the SNR
improvement. This measure is computed in the electrodogram
domain and compares the original input SNR to the one
obtained after denoising. This improvement is given by:

SNRi = 10 · log10

(∑M
k=1 ||pn

k − pc
k||2∑M

k=1 ||pd
k − pc

k||2

)
, (9)

where pk represents the LGF output of band k and the
superscripts n, c, and d denote the noisy, clean, and denoised
electrodograms, respectively.

b) LCC: To characterize potential distortions and artifacts
introduced by the tested algorithms, the linear correlation
coefficients (LCC) between the clean ACE electrodograms
(pc

k) and the denoised electrodograms (pd
k) were computed.

This channel-wise calculation allowed for the evaluation of
the distortions introduced as a function of the electrode band.
The LCCk for band k is computed as follows:

LCCk =
cov

(
pc
k,p

d
k

)
σpc

k
· σpd

k

, (10)

where cov(X,Y ) is the covariance between X and Y , and
σ is the covariance of the values of denoised and clean
electrodogram divided by the product of standard deviations
of the values of them.

c) STOI: To estimate the speech intelligibility performance
expected from each of the algorithms, the STOI score [35]
was used. Although this metric is based on measurements
done in normal hearing listeners, it has also been used in CI
studies as a reference and can serve as a useful reference to
compare relative speech enhancement performance between
algorithms. The STOI score ranges from 0 to 1, where the
higher score represents a predicted higher speech performance.
In this work, the perceived intelligibility was estimated using
the clean unprocessed speech as a reference and the vocoded
denoised speech as the processed signal. The vocoded speech
was obtained from the electrodograms (pk), which were used
to modulate noise in the corresponding frequency bands. Each
noise band was recombined to create the time domain vocoded
speech.

TABLE II
LISTENER DEMOGRAPHICS AND ETIOLOGY

ID Age Gender Tested side SSN SNR ICRA7 SNR
BI01 70 M R 0 5
BI02 40 M R 0 5
BI03 74 M R 0 0
BI04 70 M R 5 5
BI05 36 F R 0 0
BI06 62 M R 5 5
BI07 86 M R 10 10
BI08 57 F R 5 5

2) Behavioral evaluation:
a) Participant demographics: Eight postlingually deafened

CI users participated in this listening test. All participants were
native German speakers and had been implanted for several
years. They were invited to come to the German Hearing
Center of the Hannover Medical School (MHH) for a 3-hours
test and the travel cost were all covered. The experiment was
granted ethical approval by the MHH ethics commission. A
synopsis of the patient-related data is shown in Table II.

b) Experimental setup: The test material was processed
to obtain all electrodograms. The channel stimulation rate
used in this work to train and evaluate the models was 1000
pps. Stimuli were delivered to the participants’ CI via direct
stimulation through the RF GeneratorXS interface (Cochlear
Ltd.) with MATLAB via the Nucleus Implant Communicator
V.3 (Cochlear Ltd.).
During the test, the participants were asked to sit in a quiet

room and remove their own implants, the stimulation was
delivered to the implanted receiving coil. The speech material
was entirely based on the HSM sentence corpus (see Table
I). Subjects were asked to repeat the presented sentence out
loud as accurately as possible. All the correctly repeated words
were marked, and for each test list, there was a final score
that represented the percentage of understood words (word
recognition score; WRS). Each listening condition was tested
twice with different sentence lists, and the lists were never
repeated. All the conditions were blinded to the subjects.

III. RESULTS

1) Objective instrumental results:
a) SNRi: Figure 3 illustrates the SNR improvement ob-

tained with each of the algorithms. The results of TIMIT
and LibriVoxDeEn corpora were also investigated and similar
trends were observed across both datasets. The two Deep
ACE algorithms achieved steady improvement in the testing
datasets.
It can also be seen that the two Deep ACE models out-

performed TasNet+ACE and Wiener+ACE in almost every
condition, especially in low SNR environments. However, note
that higher SNR improvement does not necessarily imply that
the speech will be more clearly perceived, as some of the
speech content may have been removed or greatly attenuated.
For example, Figure 2 shows that the Deep ACE 1.0 model
achieved the best noise reduction performance for unseen
noise. However, some of the bands that originally contained
part of the speech signal no longer do, which could potentially
affect speech understanding. The Deep ACE 2.0 model, on
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the contrary, could not remove all the noise but retained more
speech information.

b) LCC: A band-wise linear correlation was used to as-
sess the similarity between the original clean and processed
electrodograms with the different algorithms. Figure 4 shows
the obtained LCCs as a function of the correlated band. It
can be seen that the Wiener+ACE condition shows the lowest
correlation for the lower frequency bands and that Deep ACE
2.0 shows, in general, the highest LCCs.

c) STOI: Figure 5 illustrates the STOI scores obtained by
the tested algorithms in different speech and noise conditions.
All four algorithms showed improvement with respect to
ACE. Three deep learning-based algorithms outperformed the
Wiener+ACE. Among them, the here proposed Deep ACE
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standard deviation.

1.0 and 2.0 models were better than TasNet+ACE and they
achieved similar performance. The same trend could be seen
for TIMIT and LibriVoxDeEn corpora. In general, the STOI
scores were consistent with the previous SNR improvement.
As for clean speech (without background noise), the mean
STOI scores of the HSM corpus obtained by ACE, Tas-
Net+ACE, and the proposed Deep ACE 1.0 and 2.0 were
0.807, 0.789, 0.796, and 0.803, respectively.
2) Behavioral results: Figure 6 shows the WRS in quiet

measured in eight CI subjects. The unprocessed ACE and Deep
ACE 2.0 were evaluated for this condition to test whether
the latter introduced any artifacts that could compromise
the integrity of the clean speech signals. Results show no
significant differences between the WRS obtained with ACE
and Deep ACE 2.0, implying that Deep ACE 2.0 was able to
properly code the incoming clean speech.
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Figure 7 shows the WRS in noise measured using the
different algorithms for SSN and ICRA7 background noises.
All three noise reduction algorithms were able to substantially
improve speech intelligibility in both tested noises when
compared to the unprocessed ACE. Among them, the Deep
ACE 2.0 significantly outperformed the other two, achieving
a mean improvement of about 20%.
In order to compare the WRS obtained with each of the

three algorithms, the benefit in WRS with respect to ACE
was computed (δWRS = WRSdenoised. − WRSACE). Figure
8 shows the benefit in speech understanding processed by
different algorithms in SSN and ICRA7 noises. The statistical
analysis reveals that Deep ACE 2.0 obtains significantly higher
scores than the other algorithms in SSN. However, for the
ICRA7 noise condition, Deep ACE 2.0 showed a significant
benefit in WRS only when compared to the Wiener+ACE,
although a trend towards higher scores is observed.

IV. DISCUSSION

Here we propose an end-to-end speech coding and denoising
strategy for CIs. The vast majority of speech enhancement
algorithms for CI users rely on front-end processing, for this
reason, in this work we investigate end-to-end CI deep learning
models that merge the preprocessing denoising stage with the
CI sound coding strategy. This approach takes advantage of
the simplicity of the output to be predicted, the electrodogram,
which does not contain any phase information and may poten-
tially facilitate noise reduction for CIs by removing unwanted
redundancies in the input signal. Merging the noise reduction
algorithm with the CI sound coding strategy also has the
benefit of reducing processing latency, when compared to other
front-end approaches. For example, when a front-end TasNet
denoising block would introduce 4 ms of latency, whereas the
here presented Deep ACE models introduce only 2 ms. This
may be crucial for devices such as CIs that need to transmit
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Fig. 8. Violin plots showing the WRS improvement by processing the noisy
signals with the different algorithms compared to ACE. The black horizontal
bars within each of the boxes represent the median for each condition, the
diamond-shaped marks indicate the mean improvement, the top and bottom
extremes of the boxes indicate the 75% and 25% quartiles, respectively, and
whiskers indicate the variability outside the upper and lower quartiles.

signals with minimal latency. Besides, the Deep ACE 2.0 has a
low computational complexity with 552k parameters in total,
which makes it possible to deploy the model for real-time
applications.

This study extends previous preliminary work [19], where
Deep ACE was introduced for the first time, by optimizing its
architecture, improving its speech enhancement performance,
and improving its generalization capabilities. Specifically,
Deep ACE 1.0 and 2.0 were optimized by adjusting the hyper-
parameters, the topology (in the case of Deep ACE 2.0), and
loss functions that targeted erroneous band selection, based
on some hearing perception aspects of CI users. Although
the implemented loss functions for the Deep ACE 1.0 and
2.0 models relied on the same idea of penalizing the non-
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stimulating channels, Deep ACE 2.0 seemed to achieve a
smoother noise reduction by preserving some noisy residuals.
The objective results indicate that in contrast to [19], the two

proposed end-to-end CI speech enhancement models outper-
form both front-end baseline algorithms, in terms of SNR im-
provement and predicted speech intelligibility. Specifically, we
observe that Deep ACE 2.0 obtained the highest performance
whereas the Wiener+ACE obtains the poorest. The objective
results also show that the trained models are resistant to unseen
data, that is, they are capable of generalizing to new noise and
speech signals. This is also an improvement achieved in this
study with respect to [19], where part of the testing material
was also included in the training set.
The behavioral speech tests show that the proposed end-

to-end deep learning coding strategy Deep ACE 2.0 can be
used to code clean speech, as shown in Figure 6, where no
significant differences in speech understanding were observed
between the original clean ACE and clean Deep ACE 2.0.
Furthermore, speech understanding in noise measured in this
study is consistent with the objective measures. That is, from
Figure 9 we expected no significant differences in speech
performance between TasNet+ACE and Wiener+ACE when
using SSN background noise, but to see a significant improve-
ment with the TasNet+ACE with respect to Wiener+ACE when
using ICRA7 modulated noise, which happens to be the case
(see Figure 8). However, it is important to point out that all
tested algorithms tested behaviorally outperform the baseline
ACE sound coding strategy for both SSN and ICRA7 noises.
Although the observed improvement using the Wiener+ACE
using ICRA7 background noise was not observed in [19], it
is still consistent with other previous studies [9]. Also, this
benefit in non-stationary noise may be related to the fact that
this condition was tested mostly at positive SNRs (Table II).

V. CONCLUSIONS

In this work, an end-to-end deep learning speech denoising
and coding strategy to enhance the speech intelligibility of CI
users was presented. The inspiration is the recently proposed
Deep ACE, which effectively reduces the noise. In this context,
two new implementations were proposed to optimize the Deep
ACE for the better hearing performance of CI users. These two
models were then evaluated using objective instrumental mea-
sures and the better-performing model was behaviorally tested
by means of listening tests with CI users. The performance
was compared to the ACE and two front-end baseline models,
namely Wiener+ACE and TasNet+ACE. Results showed that
the optimized Deep ACE 1.0 and 2.0 models outperformed the
other baseline models, and brought great and steady objective
improvement. Furthermore, the results show that Deep ACE
2.0 also gave a behavioral benefit in WRS when compared to
the baseline models. Based on these findings, the present study
suggests that Deep ACE 2.0 has the potential as a method to
improve speech understanding under noisy conditions for CIs.
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