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Core Ideas 14 

• An R-based workflow that performs gene co-expression analysis was developed.  15 

• The workflow is based on tidyverse packages and graph theory.  16 

• The workflow is highly customizable, detects tight gene co-expression modules, and gen-17 

erates publication quality figures.  18 

• Two plant gene expression datasets were used to benchmark the workflow. 19 

 20 

Abbreviations 21 

• ANCOVA: analysis of covariance    22 

• ANOVA: analysis of variance  23 
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• FPKM: fragments per kilobase exon model per million mapped fragments 24 

• LCM: laser capture micro-dissection  25 

• msq: mean sum of squares 26 

• PCA: principal component analysis 27 

• sd: standard deviation 28 

• TPM: transcripts per million 29 

• WGCNA: weighted gene co-expression network analysis  30 

 31 

Abstract  32 

     Gene co-expression analysis is an effective method to detect groups (or modules) of co-ex-33 

pressed genes that display similar expression patterns, which may function in the same biological 34 

processes. Here, we present `Simple Tidy GeneCoEx`, a gene co-expression analysis workflow 35 

written in the R programming language. The workflow is highly customizable across multiple 36 

stages of the pipeline including gene selection, edge selection, clustering resolution, and data vis-37 

ualization. Powered by the tidyverse package ecosystem and network analysis functions provided 38 

by the igraph package, the workflow detects gene co-expression modules whose members are 39 

highly interconnected. Step-by-step instructions with two use case examples as well as source code 40 

are available at https://github.com/cxli233/SimpleTidy_GeneCoEx.    41 

  42 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2022. ; https://doi.org/10.1101/2022.11.11.516131doi: bioRxiv preprint 

https://github.com/cxli233/SimpleTidy_GeneCoEx
https://doi.org/10.1101/2022.11.11.516131
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

1. Introduction 43 

     Transcriptomic analyses have become routine for studying plant biology. A challenge for plant 44 

biologists is interpreting omics data to derive biological insights. A valuable and powerful tool for 45 

gene expression analyses is gene co-expression. When multiple treatments (time points, develop-46 

mental stages, cell types, genotypes, and perturbations) are included in a gene expression study, it 47 

is possible to detect groups of genes, or gene co-expression modules, with similar expression pro-48 

files across a range of treatment conditions or through a developmental timepoints. Under the 49 

‘guilt-by-association’ assumption, genes with expression patterns similar to previously character-50 

ized genes with known roles in a biological process (bait genes) are deduced to function in the 51 

same biological process. In addition, candidate genes of interest can be detected in modules with 52 

interesting expression patterns, which can then be subjected to further forward or reverse genetics 53 

studies. Gene co-expression analyses have been successfully applied to identify genes implicated 54 

in development, stress responses, primary metabolism, and specialized metabolism across a wide 55 

range of plant species including crops and medicinal plants (Burlat et al. 2004; Anderson et al. 56 

2017; Gomez-Cano et al. 2022; Moghaddam et al. 2021).  57 

     Due to its general ease of use, open-source nature, and availability of general and domain-58 

specific packages, the R programming language for statistical computing has become the program-59 

ming language of choice for gene expression and computational biology analyses (Tippmann 60 

2015). Within the R programming environment, the tidyverse ecosystem is a collection of pack-61 

ages built upon a common programming style, grammar, and data structures (Wickham et al. 2019). 62 

A key underlying concept of the tidyverse ecosystem is ‘tidy data frames’ which are data frames 63 

with observations as rows and variables as columns. The ‘tidy’ nature of data frames greatly facil-64 

itates grouping, filtering, joining, reshaping, summarizing, and visualizing data using tidyverse 65 
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functions. Since gene expression matrixes are also tabular in nature, gene co-expression analyses 66 

can be done in a tidyverse-compatible manner. Tidy data frames can be seamlessly integrated with 67 

igraph (Csárdi and Nepusz 2006), a powerful network analysis package in R, as igraph contains 68 

methods that converts data frames into network objects. In graph theory, a network is considered 69 

a graph, a mathematical structure used to model pairwise relationships. Thus, the pairwise corre-70 

lations among genes can be modeled by a graph in which genes are nodes and correlations are 71 

edges. Further, gene co-expression modules can be detected by graph-based clustering. Here, we 72 

developed a gene co-expression workflow `Simple Tidy GeneCoEx` using tidyverse and igraph 73 

functions. The workflow is highly customizable across multiple stages of the pipeline, including 74 

gene selection, edge selection, clustering resolution, and data visualization. Step-by-step instruc-75 

tions for two benchmarked use cases are available at https://github.com/cxli233/SimpleTidy_Gen-76 

eCoEx.    77 

 78 

2. Methods  79 

2.1 Overview  80 

     A straightforward pipeline was designed with plant molecular biologists and geneticists in mind: 81 

(i) import gene expression matrix, (ii) filter for genes that are expressed, exhibit high variance, 82 

and/or high F statistics, (iii) produce correlation matrix and filter edges, (iv) detect gene co-ex-83 

pression modules, and (vi) plot/export results. The workflow is executed by calling tidyverse 84 

(Wickham et al. 2019) and igraph (Csárdi and Nepusz 2006) functions.  85 

 86 

2.2 Test Datasets  87 

     The workflow has been tested on two distinct datasets: tomato fruit developmental series (Shi-88 

nozaki et al. 2018) and tepary bean heat stress time course (Moghaddam et al. 2021). The tomato 89 
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fruit developmental series dataset contains six hand dissected tissues and five laser capture micro-90 

dissected (LCM) tissues across 11 developmental stages, ranging from anthesis to red ripe (i.e., 91 

fully ripe tomato fruits). For simplicity of demonstration, only hand dissected samples (n = 84 92 

unique tissue by developmental stage combinations) were analyzed by this workflow, as it has 93 

been noted that the LCM samples were lower input, constructed by a different library preparation 94 

kit, and had globally distinct expression pattern relative to hand dissected samples (Shinozaki et 95 

al. 2018). The tepary bean stress time course experiment contains two treatments (control vs. heat) 96 

and five time points over a 24-hr period (1, 3, 6, 12, and 24 hours post stress), an experiment with 97 

a strong diurnal component (Moghaddam et al. 2021). All treatment by time point combinations 98 

(n = 10 combinations) were used in the test analyses. These datasets were chosen because of their 99 

multifactorial experimental designs and distinct biological questions (development and stress) that 100 

were investigated.  101 

2.3 Required inputs  102 

     The workflow requires three inputs: (1) gene expression matrix, (2) library metadata, and (3) 103 

bait genes. A variety of software can be used to generate gene expression matrices, such as Cuf-104 

flinks (Trapnell et al. 2012), kallisto (Bray et al. 2016), and STAR (Dobin et al. 2013). The required 105 

format is that each row is a gene, and each column is a biological sample. Values in the gene co-106 

expression matrix should be depth and normalized gene expression estimates, in units of transcripts 107 

per million (TPM) or fragments per kilobase of exon model per million mapped fragments (FPKM). 108 

A metadata table is required for the workflow, in which each row corresponds to a sample (i.e., 109 

sequencing library), and columns correspond to biological and technical aspects of the libraries. 110 

Finally, a table of bait genes is used to guide the pipeline, since oftentimes users have prior 111 

knowledge of genes involved in the biological processes being studied. The required format is that 112 
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each row is a gene. Additional information about bait genes such as functional annotations and 113 

genomic locations can be recorded as columns in the bait gene table. Before starting the workflow, 114 

exploratory analyses, such as principal component analysis (PCA) are encouraged to examine the 115 

major drivers of variance among samples.  116 

2.4 Gene selection 117 

     Gene selection prior to co-expression analysis is optional. However, since the workflow con-118 

structs all pairwise correlations among genes, the number of correlations scales with the square of 119 

number of genes in the analyses. Thus, pre-filtering genes can significantly speed up the workflow. 120 

Gene selection can be performed using one or more of the following methods: expression threshold, 121 

variance threshold, and F statistics threshold.  122 

     Gene selection based on expression value is the most conceptually simple. It asks if a given 123 

gene is expressed among the samples being analyzed, given an expression threshold E and preva-124 

lence threshold NP. A simple method is to subset genes with expression values > E in at least NP 125 

libraries, where the values for E and NP can be determined by the users based on the dataset. A 126 

recommendation for selecting a prevalence threshold is to use the lowest level of replication across 127 

treatments. For example, across all treatments in a study, if the treatment with the least number of 128 

biological replicates has three replicates, then a recommended prevalence cutoff is NP = 3.  129 

     More involved methods of gene selection are based on biological variance and F statistics. For 130 

gene selection based on biological variances, the underlying assumption is that genes distinctly 131 

expressed in one or more treatments have higher biological variances than genes expressed at sim-132 

ilar levels across all treatments. In this workflow, technical variation is reduced by first averaging 133 

replicates to the level of the treatments. To reduce the bias towards highly expressed the genes, 134 

pre-filtering high variance genes is done by first log-transforming the expression value, then 135 
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averaging replicates up to the level of treatments, and finally selecting high variance genes at the 136 

log-transformed scale. Biological variance of bait genes can be used to determine the variance 137 

threshold. For example, if user-selected bait genes are ranked among the highest 5000 variable 138 

genes, then the top 5000 variable genes can be selected for downstream analyses (Fig. 1a, data 139 

from (Shinozaki et al. 2018)).   140 

 141 

      142 

      143 

 144 

      145 

      146 

 147 

 148 

 149 

 150 

 151 

 152 

 153 

 154 

 155 

 156 

 157 

 158 

Fig. 1. Gene pre-filtering using biological variance and F statistics.  159 
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 160 
(a) Rank vs. value plot for transcripts (data from Shinozaki et al., 2018). Blue box includes top 5000 vari-161 
able genes, and orange lines correspond to two user-provided bait genes (Solly.M82.10G020850.1 and 162 
Solly.M82.03G005440.1). In this analyses, the top 5000 variable transcripts were used for downstream 163 
analyses.  164 
 165 
(b) Scatter plot showing standard deviation (sd) and F statistics of expressed genes (data from Moghad-166 
dam et al. 2021). In this case, filtering for high variance or high F statistics (F > 2) do not select for the 167 
same set of genes. In this analysis, the union of high variance and high F genes were used for downstream 168 
analyses.   169 

 170 

An alternative gene selection method to biological variance is the F statistics, which detects genes 171 

whose expression levels are changing across treatments. The F statistics is computed by first fitting 172 

a linear model for each gene:  173 

 174 

log(expression) ~ treatment 175 

 176 

The dependent variable is log-transformed to reduce the heteroscedasticity and mean-error rela-177 

tionship associated with gene expression data. If the experiment is multifactorial in nature, then 178 

users have the option to fit the linear model with the single factor accounting for the most varia-179 

tion in the dataset, or the interactions among two or more factors. Depending on the independent 180 

variable(s) in the model, the F statistics reflect if a gene is changing expression across a single 181 

factor or across the combinations of multiple factors. The F statistics are then calculated by 182 

ANOVA. After the F statistics are computed for each gene, genes can be filtered by the F statis-183 

tics values. We discourage the use of p value for this gene selection method since most gene ex-184 

pression experiments have low levels of replication (typically n = 3). As a result, selecting F sta-185 

tistics using p value is overly conservative. Instead, we recommend an F statistics cutoff between 186 

2 to 3. Depending on the model, high biological variance or high F statistics are not mutually ex-187 

clusive, nor do they select for the same set of genes (Fig. 1b, data from (Moghaddam et al. 188 
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2021)). Depending on the biological questions of interest, high variance genes, high F statistics 189 

genes, or the union can be used for downstream analyses.      190 

 191 

2.5 Edge selection  192 

     Gene selection produces the nodes of the graph object for downstream network analyses. To 193 

construct edges of the network, the workflow uses pairwise gene correlation on standardized log-194 

transformed expression values (z scores of log-transformed expression values). The correlation 195 

matrix contains the Pearson correlation coefficient r of all pairwise correlations. A p value can be 196 

computed from each correlation coefficient, which are then adjusted for multiple comparisons us-197 

ing the Benjamini-Hochberg procedure (Benjamini and Hochberg 1995). However, we encourage 198 

users to derive an r cutoff based on empirical observations of bait genes instead of using adjusted 199 

p values alone, since p value is affected by both r and degrees of freedom. Experiments with larger 200 

number of treatments and thus higher degrees of freedom produce smaller p values given the same 201 

r value. As a result, in experiments with large numbers of treatments, selecting an r cutoff based 202 

solely on p values will be too non-stringent. Instead, prior knowledge regarding bait genes can be 203 

used to guide edge selection. For example, users can examine the correlation between two bait 204 

genes known to be co-expressed and select an r cutoff accordingly (Fig. 2, data from (Shinozaki 205 

et al. 2018)). Alternatively, edge selection can be done using mutual ranks (Wisecaver et al. 2017; 206 

Obayashi and Kinoshita 2009).    207 

  208 
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  209 
Fig. 2. Edge selection using bait genes.  210 
(a) Scatter plots showing standardized z scores of PSY1 and PG, two genes previously known to be co-211 
expressed (data from Shinozaki et al., 2018), r = 0.75. DPA: days post anthesis. MG: mature green. Br: 212 
breaker. Pk: pink. LR: light red. RR: red ripe.  213 
 214 
(b) Histogram showing distribution of correlation coefficient r. Based on correlation coefficient of known 215 
co-expressed genes (shown in a), the cutoff is chosen at r > 0.7 (red line), beyond which the histogram 216 
drops off rapidly.     217 

 218 

2.6 Construction of the network object and graph-based clustering  219 

     The nodes (genes) and edges (correlations) are passed onto the `graph_frome_data_frame()` 220 

function of igraph to generate the network object for graph-based clustering. Gene co-expression 221 

modules are then detected using the Leiden algorithm (Traag, Waltman, and van Eck 2019), which 222 
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detects modules whose members are highly interconnected. The Leiden algorithm is implemented 223 

using the `cluster_leiden()` function within the igraph package. A critical parameter for module 224 

detection is resolution, which needs to be optimized for each experiment. Too low of a resolution 225 

forces genes with different expression patterns into a single module, whereas too high of a resolu-226 

tion leads to many genes not contained in a module. The resolution parameter can be optimized by 227 

testing a range of resolution values and monitoring the number of modules with 5 or more genes, 228 

as well as the number of genes contained in modules with 5 or more genes. The minimum module 229 

size 5 is chosen arbitrarily, but generally, higher resolution leads to more modules but less genes 230 

contained in large modules (Fig 3).  231 

 232 

 233 

3. Results  234 

3.1 Data visualization  235 

     From the gene co-expression modules detected by this workflow, a few data visualization op-236 

tions are available, such as heatmap and line graphs (Fig. 4). For heatmaps, the workflow reorders 237 

Fig. 3. Resolution for 

graph-based clustering 
 

(a) Tradeoff between 

module number and 

genes retained (data 

from Shinozaki et al., 

2018).  
 

(b) Tradeoff between 

module number and 

genes retained (data 

from Moghaddam et al. 

2021).     
 

Dotted lines represent a 

resolution of 2, a com-

prise between two the 

performance indexes.   
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rows and columns based on module peak expression. The workflow was tested on two distinct use 238 

cases: tomato fruit developmental series (Shinozaki et al. 2018) (Fig. 4a) and tepary bean heat 239 

stress time course (Moghaddam et al. 2021) (Fig. 4b). The workflow can detect gene co-expression 240 

modules that are highly expressed in early fruit development (e.g., Fig. 4a, Module 137) and fruit 241 

ripening (Fig. 4a, Module 9), as well as tissue specific modules (Fig. 4a, Module 8, a seed specific 242 

module). The workflow appears to perform well for experiments with a strong diurnal component, 243 

as indicated by the detection of modules that appeared to cycle within a 24-hr period (Moghaddam 244 

et al. 2021) (Fig. 4b, Module 7), in addition to stress-responsive modules (Fig. 4b, Modules 3 and 245 

9). The workflow also provides methods for candidate gene identification using module member-246 

ship, as well as querying direct neighbors to bait genes using the `neighbors()` function within 247 

igraph. Expression values of candidate genes (in the original scale or log-transformed scale) as 248 

well as dispersion among replicates can be visualized (Fig. 4c).   249 

 250 

Fig. 4. Heatmap and line graph visualization for gene co-expression modules.  251 
 252 
(a) Heatmap for gene co-expression modules (data from Shinozaki et al., 2018).  253 
(b) Line graphs for gene co-expression modules (data from Moghaddam et al. 2021). Thin grey lines rep-254 
resent individual genes. Black lines represent the average expression pattern of the module.  255 
(c) Line graphs showing exemplar candidate genes based on module membership (Module 9 in a) as well 256 
as network neighborhood to bait genes (data from Shinozaki et al., 2018).  257 

 258 
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  259 
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3.2 Benchmarking against WGCNA  260 

     We benchmarked our `Simple Tidy GeneCoEx` method against Weighted Gene Coexpression 261 

Network Analysis (WGCNA), a widely accepted gene co-expression analysis package (Langfelder 262 

and Horvath 2008) using both use cases (tomato fruit development and tepary bean stress time 263 

course) (Shinozaki et al. 2018; Moghaddam et al. 2021). We found that both methods can detect 264 

treatment-specific/enriched gene co-expression modules. While there was a lack of a one-to-one 265 

correspondence between modules detected by the two methods, we detected groups of modules 266 

with similar expression patterns. For example, the “plum1” Module detected by WGCNA is highly 267 

correlated with Module 9 detected by this workflow; both peaked at the red ripe stage of tomato 268 

fruit development (Fig. 5). Analysis of module membership revealed the equivalence of a subset 269 

of modules detected by either method (Fig. 6). In some cases, the two methods detected modules 270 

that share practically the same mem-271 

bership, while in other cases, a large 272 

module detected by one method is 273 

split into multiple smaller modules 274 

that have similar expression patterns 275 

by the other method.  276 

 277 

Fig. 5. Module correspondence be-278 
tween WGCNA and `Simple Tidy 279 
Gene CoEx`.  280 
 281 
Rows are gene co-expression modules 282 
detected by WGCNA, annotated by the 283 
color strip on the left. Columns are mod-284 
ules detected by `Simple Tidy Gen-285 
eCoex`. Color strips at the bottom or on 286 
the right annotate the module peak 287 
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expression. Heatmap colors indicate correlation coefficient (r).   288 

 289 

 290 

Fig. 6. Membership analyses between two gene co-expression methods, visualized by alluvial plots. 291 
Horizontal grey bars represent gene co-expression modules. Blocks of colored curves represent shared 292 
membership.  293 
 294 
(a) data from Shinozaki et al. (2018).  295 
(b) data from Moghaddam et al. (2021).   296 

 297 

3.3 Module tightness 298 

     To evaluate and compare the quality or tightness of gene co-expression modules detected by 299 

either method, we computed the squared error loss for each module, which is defined as:  300 

 301 

For gene i and treatment j in module m, the mean sum of square of such a module, i.e., msqm, is 302 

computed by:   303 

 304 

𝑚𝑠𝑞𝑚 =  
∑(𝑧𝑖𝑗𝑚 − 𝑧�̅�𝑚)2

𝑛𝑚
 305 
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 306 

where zij is the z score of each gene at each treatment, 𝑧�̅�𝑚 is the average z score across all genes 307 

in the module at each treatment, and nm is the total number of genes in each module, such that the 308 

sum of squares is normalized to the number of genes in each module.    309 

     We computed msqm for each module detected by WGCNA or `Simple Tidy GeneCoEx` and 310 

found that consistently for both use cases, the `Simple Tidy GeneCoEx` workflow detected mod-311 

ules with lower squared loss error (Fig. 7). For the Shinozaki et al. (2018) data, there was a ~45% 312 

reduction in msqm using `Simple Tidy GeneCoEx` relative to WGCNA (P = 3.6 × 10-8, Wilcoxon 313 

Rank Sum Test). The association between msqm and module size (number of genes in modules) 314 

was weak (r = 0.17), suggesting the higher msqm values for WGCNA modules is not due to insuf-315 

ficient clustering resolution (Fig. 7a). For data from Moghaddam et al. (2021) data, we saw a ~40% 316 

reduction in msqm using `Simple Tidy GeneCoEx` relative to WGCNA (P = 3.1 × 10-5, Wilcoxon 317 

Rank Sum Test). We also observed a mild association between module size and msqm (r = 0.526), 318 

suggesting both methods may benefit from a higher clustering resolution (Fig. 7b). However, after 319 

controlling for module size using a mixed effect linear model with module size as a random effect 320 

covariate, on average, the `Simple Tidy GeneCoEx` workflow returned lower msqm values (esti-321 

mate = -0.939, 95% confidence interval = [-1.6, -0.276], F = 8.6, P = 0.0067, ANCOVA). Taken 322 

together, the `Simple Tidy GeneCoEx` workflow detects gene co-expression modules that are 323 

tighter than those detected by WGCNA.  324 
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 325 

Fig. 7. Quantification of module tightness. Each data pot is a module, color coded by the gene co-ex-326 
pression method.  327 
 328 
(a) data from Shinozaki et al. (2018).  329 
(b) data from Moghaddam et al. (2021).   330 

 331 

4. Discussion  332 

     Here, we present a simple, highly customizable co-expression analysis workflow in R powered 333 

by tidyverse and igraph functions. The workflow has been tested on two distinct gene expression 334 

studies (Shinozaki et al. 2018; Moghaddam et al. 2021), one focused on development and one 335 
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focused on a diurnal time course following heat stress. The workflow is applicable to other gene 336 

expression studies such as single cell RNA-seq experiments. In a recent study, we applied this 337 

workflow to detected co-expression modules enriched in specific cell types, which were used to 338 

discover candidate genes in a biosynthetic pathway for complex plant natural products (Li et al. 339 

2022). The method has been benchmarked against WGCNA, a widely accepted gene co-expression 340 

package. We found that across two distinct use cases, the ̀ Simple Tidy GeneCoEx` method detects 341 

modules that are, on average, tighter than those detected by WGCNA. A potential reason underly-342 

ing the differences in module tightness might be due to the module detection methods. By default, 343 

WGCNA uses hierarchical clustering followed by tree cutting to detect modules (Langfelder, 344 

Zhang, and Horvath 2008). In contrast, `Simple Tidy GeneCoEx` uses the Leiden algorithm to 345 

detect modules, which returns modules that are highly interconnected (Traag, Waltman, and van 346 

Eck 2019).  347 

 348 

Data availability  349 

Gene expression matrix for Shinozaki et al. (2018) are available at Zenodo: https://zenodo.org/rec-350 

ord/7117357. Gene expression matrix for Moghaddam et al. (2021) are available at GitHub: 351 

https://github.com/cxli233/SimpleTidy_GeneCoEx/tree/main/Data/Moghaddam2022_data. Step-352 

by-step instructions for the workflow and source code are available at GitHub 353 

https://github.com/cxli233/SimpleTidy_GeneCoEx, and stable release of source code are available 354 

at Zenodo: https://zenodo.org/record/7182680.   355 
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 370 

Figure Legends  371 

Fig. 1. Gene pre-filtering using biological variance and F statistics.  372 

(a) Rank vs. value plot for transcripts (data from Shinozaki et al., 2018). Blue box includes top 373 

5000 variable genes, and orange lines correspond to two user-provided bait genes 374 

(Solly.M82.10G020850.1 and 375 

Solly.M82.03G005440.1). In this analyses, the top 5000 variable transcripts were used for down-376 

stream analyses.  377 

(b) Scatter plot showing standard deviation (sd) and F statistics of expressed genes (data from 378 

Moghaddam et al. 2021). In this case, filtering for high variance or high F statistics (F > 2) do 379 

not select for the same set of genes. In this analysis, the union of high variance and high F genes 380 

were used for downstream analyses.   381 
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 382 

Fig. 2. Edge selection using bait genes.  383 

(a) Scatter plots showing standardized z scores of PSY1 and PG, two genes previously known to 384 

be co-expressed (data from Shinozaki et al., 2018), r = 0.75. DPA: days post anthesis. MG: ma-385 

ture green. Br: breaker. Pk: pink. LR: light red. RR: red ripe. 386 

(b) Histogram showing distribution of correlation coefficient r. Based on correlation coefficient 387 

of known co-expressed genes (shown in a), the cutoff is chosen at r > 0.7 (red line), beyond 388 

which the histogram drops off rapidly.     389 

 390 

Fig. 3. Resolution for graph-based clustering 391 

(a) Tradeoff between module number and genes retained (data from Shinozaki et al., 2018).  392 

(b) Tradeoff between module number and genes retained (data from Moghaddam et al. 2021).     393 

Dotted lines represent a resolution of 2, a comprise between two the performance indexes.   394 

 395 

Fig. 4. Heatmap and line graph visualization for gene co-expression modules.  396 

(a) Heatmap for gene co-expression modules (data from Shinozaki et al., 2018).  397 

(b) Line graphs for gene co-expression modules (data from Moghaddam et al. 2021). Thin grey 398 

lines represent individual genes. Black lines represent the average expression pattern of the mod-399 

ule.  400 

(c) Line graphs showing exemplar candidate genes based on module membership (Module 9 in 401 

a) as well as network neighborhood to bait genes (data from Shinozaki et al., 2018).  402 

 403 

Fig. 5. Module correspondence between WGCNA and `Simple Tidy Gene CoEx`.  404 
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Rows are gene co-expression modules detected by WGCNA, annotated by the color strip on the 405 

left. Columns are modules detected by `Simple Tidy GeneCoex`. Color strips at the bottom or on 406 

the right annotate the module peak expression. Heatmap colors indicate correlation coefficient 407 

(r).   408 

 409 

Fig. 6. Membership analyses between two gene co-expression methods, visualized by allu-410 

vial plots. Horizontal grey bars represent gene co-expression modules. Blocks of colored curves 411 

represent shared membership.  412 

(a) data from Shinozaki et al. (2018).  413 

(b) data from Moghaddam et al. (2021).   414 

 415 

Fig. 7. Quantification of module tightness. Each data pot is a module, color coded by the gene 416 

co-expression method.  417 

(a) data from Shinozaki et al. (2018).  418 

(b) data from Moghaddam et al. (2021).   419 

 420 
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