
1 

Auditory cortex encodes lipreading information through 1 

spatially distributed activity 2 

Ganesan Karthik1, Cody Zhewei Cao1, Michael I. Demidenko1, Andrew Jahn1, William C. 3 

Stacey2, Vibhangini S. Wasade3,4, David Brang*1 4 

1 Department of Psychology, University of Michigan, Ann Arbor, MI 48109 5 
2 Department of Neurology, University of Michigan, Ann Arbor, MI 48109 6 
3 Henry Ford Hospital, Detroit, MI 48202 7 
4 Department of Neurology, Wayne State University School of Medicine, MI 48201 8 
 9 

*Corresponding Author: djbrang@umich.edu 10 

 11 

Data Availability Statement 12 

The data that support the findings of this study will be made openly available through the 13 

University of Michigan Deep Blue Repository. 14 

 15 

Conflict of Interest Statement 16 

The authors declare no competing financial interests. 17 

 18 

Acknowledgements 19 

This study was supported by NIH Grants R00DC013828 and R01NS094399. The authors report 20 

no conflicts of interest. 21 

 22 

Keywords 23 

Multisensory; Audiovisual; Speech; ECoG; iEEG; sEEG 24 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2022. ; https://doi.org/10.1101/2022.11.11.516209doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.11.516209
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

Summary 25 

Face-to-face communication improves the quality and accuracy of heard speech, particularly in 26 

noisy environments. Silent lipreading modulates activity in auditory regions, which has been 27 

hypothesized to reflect the transformation and encoding of multiple forms of visual speech 28 

information used to support hearing processes. Evidence suggests visual timing information as one 29 

such signal encoded in auditory areas: seeing when a speaker's lips come together between words 30 

can help listeners parse word-level boundaries. However, it remains unclear how lipreading alters 31 

activity in the auditory system to improve speech perception at the single word-level. Using fMRI 32 

and intracranial electrodes in patients, here we show that silently lipread words can be classified 33 

from neural activity in auditory areas based on distributed spatial information. Lipread words 34 

evoked similar representations to the corresponding heard words, consistent with the prediction 35 

that automatic lipreading refines the tuning of auditory representations. Similar to heard words, 36 

lipread words varied in the distinctiveness of their neural representations in auditory cortex: e.g., 37 

the lipread words DIG and GIG evoked more similar neural activity in auditory cortex relative to 38 

the more perceptually distinct word FIG, suggesting that lipreading activity reflects probabilistic 39 

distributions as opposed to the unique identity of the lipread word. Notably, while visual speech 40 

has both excitatory and suppressive effects on auditory firing rates, classification was observed in 41 

both neural populations, consistent with the prediction that lipreading contributes to phoneme 42 

population tuning by both activating the corresponding representation and suppressing incorrect 43 

phonemic representations. These results support a model in which the auditory system combines 44 

the joint neural distributions evoked by heard and lipread words to generate a more precise estimate 45 

of what was said, particularly during noisy speech.  46 
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Introduction 47 

 Visual speech improves auditory speech perception during face-to-face conversations1,2. 48 

These benefits are strongest in noisy situations3 and in individuals with hearing loss due to healthy 49 

aging4, intrinsic brain tumor5, stroke6,7, concussion8,9, or cochlear implants10. However, there 50 

remains limited understanding of how the brain enables vision to facilitate hearing processes. 51 

The ability to extract useful information from visual speech signals (e.g., lipreading) is an 52 

implicit behavior that is rooted in the statistical relationship between auditory and visual cues in 53 

the natural environment11. Lip dynamics are strongly correlated with different features of speech 54 

including temporal information (onset of words, rate of speech, and the boundaries between words) 55 

and relative spectral pitch based on the acoustics of the oral cavity1. Most recognizably, the shape 56 

of the lips during speech is reliably associated with corresponding speech sounds12; these simple 57 

lip shapes are described as visemes and are analogous to phonemes in the auditory domain (basic 58 

units of speech sounds). 59 

Research has demonstrated that silent visual speech (e.g., lipreading) evokes activity within 60 

the auditory system13,14. Indeed, intracranial electroencephalography (iEEG) recordings indicate 61 

that visual speech influences processing in auditory regions through multiple temporal, spectral, 62 

and spatial configurations15. While these findings highlight the broad effect of visual information 63 

on auditory speech processing, differences in activity do not provide a mechanistic account for 64 

how visual speech signals integrate with auditory neuronal populations. Best understood among 65 

these mechanisms is how visual timing information during continuous speech biases auditory 66 

timing through phase-resetting mechanisms16,17. However, it remains unclear how lipreading 67 

information (visemes) is transformed into a signal used by the auditory system. 68 
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Within the auditory domain, phonetic and phonemic features are encoded by local and 69 

distributed populations of neurons, respectively18. Mesgarani and colleagues18 used human iEEG 70 

recorded from high-density electrodes to demonstrate that phonemes are represented by distributed 71 

populations of neurons in the STG. Combined with past research, these data support a model in 72 

which the STG contains a patchy distribution of neurons that are tuned to specific phonetic features 73 

via their spectro-temporal profiles18,19. For example, research has reported spatially distinct 74 

responses in these regions to spectrally similar phonemes such as /ba/ and /da/19-21, and clustered 75 

activities across a large phoneme-space (e.g., the distributed pattern of activity to /ma/ is more 76 

similar to /na/ than it is to the spectro-temporally distinct phoneme /ba/18. Indeed, the identities of 77 

different heard phonemes can be decoded by the distribution of activity in the auditory cortex22, 78 

even when the physical auditory stimulus remains the same. 79 

Building on this understanding of auditory perception, we proposed that activity from 80 

lipread visemes is relayed from visual regions to auditory cortex, preferentially modulating the 81 

same populations of neurons that encode matching phoneme responses15. In this hypothesis, heard 82 

and lipread activations in auditory cortex are combined through a winner-take-all mechanism, in 83 

which the phoneme population with highest activation profile leads to the phoneme that is 84 

perceived23. 85 

 Here we test the hypothesis that the identities of individual visemes are represented in the 86 

auditory system through distributed patterns of activation, and these spatial distributions match 87 

corresponding phoneme representations. Auditory cortex activation magnitude and informational 88 

content were examined using functional magnetic resonance imaging (fMRI) in healthy 89 

individuals and iEEG recordings in patients with epilepsy during word perception tasks, in which 90 

patients either saw the lip movements or heard the speech sounds for the same groups of words. 91 
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The identities of the different words were classified from fMRI and iEEG signals in auditory cortex 92 

using support vector machines (SVMs). Results demonstrate that the auditory system reliably 93 

encodes the identity of visemes using spatially distributed activity in a similar manner to heard 94 

words. Moreover, visemes evoked spatially similar activity to matching phonemes, consistent with 95 

the hypothesis that visual speech targets corresponding phoneme representations 96 

 97 

Results 98 

fMRI Experiment 99 

 In Experiment 1 we presented subjects (n = 64) with consonant vowel (CV) syllables while 100 

fMRI activity was acquired. Each trial included the silent video or auditory stimulus taken from a 101 

speaker producing the CVs /mama/, /fafa/, or /kaka/ (Fig. 1a). Stimuli were presented using an 102 

optimized event-related design (pre-registered at OSF: https://osf.io/6fzwd/) and data were 103 

analyzed using univariate and decoding approaches to examine the activation and information 104 

present in heard and lipread signals. 105 

Mean behavioral accuracy was high in both conditions: 95.67% (SD = 3.01%) in the 106 

listening condition and 92.31% (SD = 3.72%) in the lipreading condition. As expected, the mean 107 

accuracy in the listening condition was significantly higher than the lipreading condition; t(63) = 108 

6.57, p < 0.001, Cohen’s d = 0.96. None of the 64 subjects performed below the pre-registered 109 

exclusion threshold (accuracy in either condition below 75%).  110 
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 111 

Figure 1. fMRI task schematic and univariate activations. (a) Schematic of auditory and visual trials. Auditory trials began with 112 
a fixation cross followed by a CV stimulus (either /mama/, /fafa/, or /kaka/). Visual trials presented the visual components of these 113 
same recordings without the corresponding audio track. After stimulus offset, subjects were cued to identify which of the three 114 
phonemes (or visemes) they saw (or heard) via button press. (b-c) Univariate group-level analyses of (b) phonemes vs fixation or 115 
(c) visemes vs fixation. Phonemes evoked maximally increased activity in the STG bilaterally. Visemes evoked increased activity 116 
within bilateral visual cortex, left pSTS, right MT, and posterior STG bilaterally, along with suppression through middle STG 117 
regions (including Heschl's gyrus). Colored regions reflect significant increases (red and yellow) or decreases (blues) in task-related 118 
activation (thresholded at p<.001 and corrected for multiple comparisons using cluster-statistics).  119 

 Previous research demonstrated that silent lipreading modulates fMRI BOLD responses 120 

within auditory regions13. First, we replicated this finding using univariate contrasts in listening 121 

and lipreading conditions (phonemes vs fixation and visemes vs fixation, respectively). Results of 122 

the whole-brain analysis, corrected for multiple comparisons using cluster statistics (vertex-wise 123 

threshold of P < 0.001, cluster-corrected to P < 0.05) are shown in Fig. 1b-c; full statistics for each 124 

analysis is reported in Supp. Tables 1 and 2 and beta estimates extracted from auditory and visual 125 

regions of interest (ROIs) are shown in Supp. Fig. 1. Phonemes elicited significantly increased 126 
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BOLD activity within the STG bilaterally and decreased BOLD within visual regions. Visemes 127 

similarly modulated activity broadly through the STG, with increased BOLD at the posterior STG 128 

and decreased BOLD in the middle to anterior STG, along with increased BOLD in visual regions. 129 

The finding that lipreading suppresses neural activity within portions of the auditory system is 130 

consistent with prior reports from fMRI24 and iEEG25, which has been theorized to reflect the 131 

optimized tuning of neurons specialized for auditory speech26. 132 

 Univariate contrasts reveal activation magnitude but not informational content or 133 

representational structure. To examine whether visual speech is represented in the auditory system 134 

by distributed patterns of activity, we used multivariate pattern analysis (MVPA)27 to classify 135 

individual phoneme and viseme labels. Previous decoding-based approaches using fMRI28,29 and 136 

iEEG30,31 demonstrated that speech patterns could be reconstructed from spatially distributed 137 

activity in auditory cortex.  138 

 Whole-brain searchlight-based MVPA was applied at the individual-subject level 32 139 

conducted separately for each of the two conditions of interest (phonemes and visemes). Results 140 

of the whole-brain analysis, corrected for multiple comparisons using cluster statistics are shown 141 

in Figure 2 (vertex-wise threshold of P < 0.001, cluster-corrected to P < 0.05); full statistics for 142 

each analysis is reported in Supp. Tables 3 and 4. In the auditory-only condition, peak decoding 143 

accuracy was observed bilaterally in the STG and pSTS. This is consistent with previous studies 144 

demonstrating phonetic representations in the STG using MVPA33. In the visual-only condition, 145 

peak decoding accuracy was observed within the STG bilaterally, the left pSTS, visual cortex 146 

bilaterally, and right hMT+.  147 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2022. ; https://doi.org/10.1101/2022.11.11.516209doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.11.516209
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 148 

Figure 2. fMRI decoding of phoneme and viseme information in an event-related design. (a-c) Searchlight-based MVPA 149 
classification in n = 64 subjects. Classifiers were trained to identify (a) the phoneme heard (/fafa/, /mama/, or /kaka/) in the auditory-150 
only condition, (b) the viseme seen in the visual-only condition, or (c) condition differences between auditory-only and visual alone 151 
trials. Decoding was conducted at the individual subject level and only group-level differences greater than chance (thresholded at 152 
p<.001 and corrected for multiple comparisons using cluster-statistics) are shown. (a) Peak phoneme decoding was observed in the 153 
bilateral STG. (b) Significant viseme decoding was observed in the bilateral STG, left pSTS, and visual regions. (c) Vertices with 154 
significant classification of phonemes but not visemes (red), visemes but not phonemes (blue), or with significant classification of 155 
both phonemes and visemes (purple). There is a large overlap in the vertices at which visemes and phonemes could be classified. 156 
Restricted to the just the STG, vertices at which viseme classification was significant covered roughly half of the area in the STG 157 
that phonemes were classified successfully at (48.1% overlap) with negligible area uniquely able to classify visemes. (d) Regions 158 
of interest (ROIs) used for hypothesis driven classification at the single-subject level. (e) Results of classification at selected ROIs. 159 
Phonemes were significantly classified from the left STG and pSTS. Visemes were significantly classified from the left STG 160 
(consistent with the hypothesis that information about visemes is represented within the STG), pSTS, and visual cortex. Center line 161 
reflects the mean, colored box SE, and the tails 95% confidence intervals. *p<.05, ***p<.001. Chance accuracy is 33.3%. 162 

To understand the spatial overlap of phoneme and viseme representations in the auditory 163 

system we compared the spatial distribution of the classification maps. Results showed that a 164 

majority of vertices contained either only phoneme information or both phoneme and viseme 165 

information, with very few vertices representing viseme information alone. Across the left and 166 
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right STG, phonemes (but not visemes) were significantly classified at 27.2% of vertices, visemes 167 

(but not phonemes) were significantly classified at 0.16% of vertices, and phonemes and visemes 168 

were jointly classified from 25.2% of vertices. In total, phonemes were classified at twice as many 169 

vertices compared to visemes within the STG (52.4% vs 25.4%). Thus, STG classification was 170 

most prominent in vertices where lipreading produced BOLD suppression effects, consistent with 171 

predictions that lipreading regionally suppresses auditory activity to improve phoneme tuning 172 

responses. 173 

To further quantify the relative information across target regions, we performed individual-174 

subject SVM classification in five regions of interest (ROIs) in each hemisphere (dimension of 175 

vertices within the ROI; Fig. 2d). As shown in Fig 2e and Supp. Fig. 2 Phoneme classification 176 

accuracy was strongly above chance (33.3%) in the left and right STG, and the left pSTS (all p < 177 

.001) with more moderate classification observed in the right pSTS, left and right hMT+, and left 178 

and right V1/V2 (all p < .05). Viseme classification accuracy was strongly above chance in the left 179 

STG, left pSTS, and right V1/V2 (all p < .001) with more moderate classification observed in the 180 

right STG, right hMT+, and left V1/V2 (all p < .05). 181 

The univariate analysis showed that visual speech modulated activity in auditory regions: 182 

visemes suppressed activity in the middle STG and increased activity in the posterior STG. Viseme 183 

decoding analyses identified above-chance classification accuracy broadly throughout the STG. 184 

Comparing the two results, the univariate visual-only analysis showed four times as many 185 

significant vertices in the STG (bilaterally) compared to the area with significant viseme 186 

classification in the MVPA analysis (64.3% vs 15.7% of STG vertices). This is consistent with the 187 

prediction that only a restricted proportion of the STG encodes visemic information, while other 188 

regions reflect domain general responses to the visual signals or the presentation of other visual 189 
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information (e.g., temporal or spectral information; 1. To better understand the relationship 190 

between these results we compared areas of significant classification relative to areas of significant 191 

activity (either increased or decreased BOLD for visemes relative to fixation). Across the left and 192 

right STG, significant viseme classification was observed in 27.3% of vertices with decreased 193 

BOLD during the visual-only condition (relative to fixation). Conversely, significant viseme 194 

classification was observed in only 8.74% of vertices with increased BOLD during the visual-only 195 

condition. This is consistent with a model in which visemes activate the correct representation in 196 

a minority of vertices in the posterior STG and suppress incorrect representations throughout the 197 

STG broadly. In contrast, viseme classification within the left pSTS was present only within 198 

vertices that showed increased BOLD activation during lipreading (87.7% of vertices with a 199 

BOLD increase). 200 

While the decoding analyses provide information about which regions of the brain encode 201 

the identities of individual phonemes and visemes, it is not possible to directly investigate 202 

similarities between how these phonemes and visemes are represented in these regions. For 203 

example, an examination of the spatial and temporal (dis)similarities for phonemes and visemes 204 

would aid in the interpretation of how visemic identities are transformed and encoded in the 205 

auditory regions. Using the same data as in the classification analysis, we separately averaged beta 206 

estimates for each phoneme and viseme and then compared the spatial distribution of activations 207 

at the individual subject level. We restricted vertices to those with significant classification in both 208 

auditory-only and visual-only conditions (purple vertices in Fig. 2c) within the STG and calculated 209 

the correlation between vertex-wise beta estimates for phoneme and viseme pairs. We averaged 210 

correlations across matching pairs (e.g., the phoneme /ma/ and the viseme /ma/) and separately 211 

mismatching pairs (e.g., the phoneme /ma/ and the visemes /ka/ and /fa/), then compared 212 
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correlations at the group level. Across subjects we observed a small but reliable increase in the 213 

correlation between associated phonemes and visemes compared to mismatched phonemes and 214 

visemes in the left STG, t(63) = 2.190, p = .032, d = 0.274,  but not the right STG, t(63) = -0.026, 215 

p = .979, d = -0.003. Repeating this analysis on all vertices within the anatomically defined STG 216 

ROI at the individual subject level, we observed a similar result, t(63) = 2.493, p = .015, d = 0.312. 217 

This result demonstrates that visemes evoke similar patterns of activity within the STG to those of 218 

phonemes. This is consistent with the prediction that automatic lipreading refines the tuning of 219 

auditory representations. 220 

 221 

iEEG Experiment 222 

Results from the fMRI study demonstrated that viseme information is represented in 223 

auditory areas. Moreover, because visemes were classified based on the spatial distribution of 224 

vertices in the STG, this supports a model in which lipreading is represented through population-225 

coded responses in the auditory system, similar to the neural representation underlying phonemes 226 

18. However, the slow temporal dynamics of fMRI signals prevent a fine-grained analysis of the 227 

time-course of lipreading activation to examine when this information is available to the auditory 228 

system. Additionally, the use of only three dissimilar CV stimuli prevented a more graded analysis 229 

of these population-coded responses, such as whether more perceptually similar phonemes (e.g., 230 

/ga/ and /da/) elicit more similar population-coded responses relative to perceptually distinct 231 

phonemes (e.g., /fa/ and /ba/). To answer both of these questions, next we collected data from a 232 

similar auditory-visual speech paradigm from n = 6 patients with epilepsy who had electrodes 233 

implanted within auditory areas of the brain (Fig. 3a). Patients were presented with 240 auditory-234 

only (listening) and 240 visual-only (lipreading) trials containing a single 1-2 syllable word. Each 235 
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word began with one of four consonants ('B', 'F', 'G', or 'D') to enable the decoding of distinct 236 

phonemic patterns. 40 distinct words were used (10 containing each of the 4 initial consonants; 237 

Supp. Table 5) and each word was repeated 6 times within each condition. On each trial subjects 238 

selected the initial consonant heard or seen from four options (4-alternative forced choice). 239 

Subjects' mean behavioral accuracy across listening and lipreading trials was significantly above 240 

chance (25%) at the group level: listening (M = .919, SD = .081, t(5) = 20.2, p < .001, d = 8.23), 241 

lipreading (M = .674, SD = .179, t(5) = 5.78, p = .002, d = 2.36). As expected, listening trials were 242 

correctly identified significantly more often than visual trials, t(5) = 5.93, p = .002, d = 2.42.  243 

 Words in both the auditory-only and visual-only conditions evoked activity broadly 244 

throughout the STG and MTG consistent with prior work15. Examining the spectral breakdown of 245 

these responses (Fig. 3b-d), phonemes evoked increased theta and high gamma power (HGp) and 246 

suppressed beta power following word onset. In natural speech, visual articulations typically occur 247 

before the onset of speech-related sounds (typically within 40 - 200 ms of speech onset34). Because 248 

of this pre-articulatory visual information, visemes evoked increased beta suppression beginning 249 

before the expected phoneme onset time, consistent with past research15 and indicative of feedback 250 

inputs into the auditory system35,36. Additionally, visemes evoked more moderate changes in HGp 251 

following sound onset, even though no sound was present. Viseme-related HGp increases were 252 

maximal at the posterior STG, consistent with past research15,37,38. Fig. 3e shows this pattern in 253 

single electrode HGp responses from two patients (both electrodes within the left posterior STG), 254 

with HGp changes occurring in response to visemes before phonemes. This pattern was distinct 255 

from responses in the fusiform gyrus, at which visemes evoked early HGp increases following the 256 

onset of the visual stimulus and no reliable response at any point during auditory-only trials (Fig. 257 

3f). 258 
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 259 

Figure 3. iEEG results during an auditory-only (listening) and visual-only (lipreading) speech perception paradigm. (a) 260 
Distribution of all recorded electrodes (those beneath the pial surface not shown) (n = 6 patients). (b-d) Event-related spectral 261 
perturbations (ERSP) plots from all STG electrodes, averaged across subjects. (b) Phoneme responses peaked after sound onset 262 
with theta and high-gamma power (HGp) increases, as well as beta suppression. (c) Viseme responses evoked maximal changes in 263 
beta power, with increased beta suppression starting before the expected time of sound onset. (d) Difference between phoneme and 264 
viseme ERSP plots. (e) HGp responses from two superior temporal gyrus (STG) electrodes in response to auditory-only trials 265 
(phonemes; red lines) and visual-only trials (visemes; blue lines). Posterior STG electrodes showed increased HGp responses to 266 
visemes before the time when speech sounds would be expected to begin. (f) HGp responses from two fusiform gyrus electrodes. 267 
Visemes evoked increased HGp shortly after onset of the face, with elevated HGp persisted throughout the visual movement period. 268 
Phonemes failed to evoke reliable changes in activity within the fusiform gyrus. Shaded regions reflect single condition 95% 269 
confidence intervals. Light gray boxes show significant between condition differences (multiple comparisons corrected using FDR). 270 
 To examine whether viseme information is represented within auditory regions, we 271 

decoded word information using spatial and temporal signals from iEEG electrodes. Fig. 4a shows 272 

group-level classification accuracy for decoding the initial word consonant for auditory-only and 273 

visual-only trials. Classification was conducted separately in each subject using SVM classifiers 274 

on single-trial event-related potential (ERP) responses (60 per consonant-initial auditory and visual 275 

words) using time points and electrodes as dimensions. We observed significant classification 276 

(evaluated using binomial statistics) in all six patients for both auditory-only (all p < .05) and 277 

visual-only conditions (all p < .05) (single-subject statistics shown in Supplemental Table 6). 278 

Similarly, at the group-level we observed classification accuracy reliably above chance for both 279 
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auditory-only (t(5) = 5.39, p = .0030, d = 2.20), and visual-only trials (t(5) = 5.57, p = .0026, d = 280 

2.27). We additionally observed a trend towards greater classification in auditory-only trials 281 

relative to visual-only trials (t(5) = 2.08, p = .0916, d = 0.851). 282 

 283 

Figure 4. iEEG classification of phoneme and viseme identities from auditory (n = 6 patients) and visual (n = 3 patients) 284 
regions. (a) Accuracy of an SVM classifier in identifying the correct initial consonant ('B', 'F', 'G', or 'D') from either auditory-only 285 
or visual-only words classified at the individual-subject level from spatial and temporal iEEG information. Both visemes and 286 
phonemes were reliably classified from auditory electrodes. Chance accuracy is 25% and plots show group-level boxplots. (b-c) 287 
Group-averaged confusion matrices taken from 4-class auditory-only and visual-only SVM classifiers. Cells denote the frequency 288 
at which each consonant-initial word was predicted (x-axis) relative to the true labels (y-axis). 'F' initial words were best classified 289 
across both auditory-only and visual-only conditions, whereas 'G' and 'D' initial words were more readily confused. (d) Group-290 
averaged classification at individual time-points from auditory electrodes (phoneme-onset at 0 sec) showing significant 291 
classification accuracy for both auditory-only and visual-only trials shortly after phoneme onset; in the visual-only condition, this 292 
time-point reflected the associated speech onset time even though no auditory stimulus was presented. Shaded region reflects SEM. 293 
(e) Spatial distribution of electrodes at which auditory-only (red) or visual-only (blue) trials were reliably classified (p<.05 based 294 
on binomial statistics); purple electrodes reflect significant classification in both conditions (with 11 out of 14 of these electrodes 295 
present in the superior temporal gyrus) and gray electrodes reflect non-significant classification in either condition. Electrodes 296 
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beneath the pial surface were projected out to the lateral surface for visualization. (f) Scatterplot quantifying the similarity of 297 
classification frequency for auditory-only trials and visual-only trials from auditory electrodes (taken from 8-class classifier). Data 298 
reflect pairwise classification values, with the first letter reflecting the real consonant label and the second letter the predicted 299 
consonant label. For example, ‘F’ trials were predicted correctly at high frequency for both auditory and visual trials, whereas ‘D’ 300 
trials were incorrectly labeled as 'F' trials infrequently across both auditory and visual trials. The high correlation (r2 = .8003, p<.001 301 
permutation test) is consistent with the hypothesis that visual speech evokes responses targeting similar distributions of neurons to 302 
corresponding phoneme responses in the STG. (g) Group-level classification accuracy showing that responses in the fusiform gyrus 303 
can distinguish between different visemes but not phonemes. (h-i) Group-level confusion matrices for auditory-only and visual-304 
only trials from fusiform gyrus electrodes.  305 

The successful classification of phonemes and visemes indicated that auditory areas 306 

represent information about the consonant initial words for both auditory-only and visual-only 307 

speech stimuli. The diagonal of the confusion matrices (Fig. 4b-c) shows that this classification 308 

was robust for each of the four auditory-only and visual-only stimuli considered (p < .05 for 3 out 309 

of 4 phonemes and 3 out of 4 visemes) (statistics shown in Supp. Table 7). Previous research has 310 

shown that local auditory responses spatially cluster according to phonetic features18; for the 311 

stimuli used here, B, G, and D form one cluster and F another. Consistent with these clusters, 312 

classification was higher for auditory words with the consonant F compared to words with the 313 

consonants B, G, or D (t(5) = 2.95, p = .0319, d = 1.20); a similar trend was observed for visual-314 

alone trials (t(5) = 1.80, p = .1318, d = 0.736), consistent with perceptual ambiguity of these items 315 

in phoneme-space. 316 

 To examine the time-course of auditory and visual speech representations within the 317 

auditory system, we classified the identity of stimuli independently at 10 ms intervals (from -1000 318 

ms to +1000 ms after phoneme onset time). Classification was applied separately for each subject 319 

and group-level statistics were calculated across subjects (Fig. 4d). Results showed significant 320 

classification accuracy (p < .05) for both auditory-only and visual-only trials shortly after phoneme 321 

onset, indicating that visemic information is available to the auditory system at the same perceptual 322 

stage as is phonemic information. 323 

In a parallel set of analyses, we classified the identity of stimuli independently at each 324 

electrode within an auditory region (including the STG, MTG, SMG) to understand the spatial 325 
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distribution of phoneme and viseme classification and their overlap. Phonemes were significantly 326 

(p < .05 using binomial statistics) classified from 65 out of 260 electrodes (25.0%) while visemes 327 

were significantly classified from only 38 electrodes (14.6%). This pattern is similar to the overall 328 

classification rate observed in our fMRI data, such that phonemes were classified at twice as many 329 

vertices compared to visemes within the STG. Restricted to only the STG, 14 electrodes 330 

significantly classified visemic information in total, with 11 of these also significantly classified 331 

phonemic information, highlighting the spatial overlap of these processes. Again, this is consistent 332 

with the pattern observed in our fMRI data, in which few vertices were sensitive to only visemic 333 

information. 334 

Because phonemes are represented through population coded responses, misclassification 335 

can reveal information about related neural processes. For example, if the rate at which the 336 

consonant /d/ is misclassified as /g/ in both auditory-only and visual-only trials is similar, it 337 

suggests similar underlying representations. To test whether auditory cortex shows similar 338 

representations for phonemic and visemic information, we calculated a correlation between each 339 

of the phoneme-pairs across the phoneme and viseme group-averaged confusion matrices. Fig. 4f 340 

shows the scatter plot reflecting classification rate for each consonant pair. Across auditory-only 341 

and visual-only trials, classification (and misclassification) rates were highly correlated (r2 = 342 

.8003, p < .001 permutation test). Significance was calculated by randomly permuting the stimulus 343 

labels of each trial and repeating the full classification analysis n = 1000 times. This is consistent 344 

with our hypothesis that the spatiotemporal neural representation of viseme identities in the 345 

auditory areas is similar to that of phonemes. 346 

Three of the six subjects had electrodes along the ventral temporal lobe (including the 347 

fusiform gyrus). To examine phoneme and viseme representations in this visual region, we 348 
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repeated classification on this restricted set of electrodes. Within visual electrodes, group-level 349 

classification was significantly above chance for visual-only trials (t(2) = 8.74, p = .0128, d = 5.05) 350 

but not auditory-only trials (t(2) = 1.15, p = .3701, d = 0.662).  We additionally observed greater 351 

classification in visual-only trials relative to auditory-only trials (t(2) = 5.29, p = .0339, d = 3.05). 352 

This pattern was seen at the individual-subject level in all three subjects using binomial statistics 353 

(all p < .01 for visual-only trials and all p > .24 for auditory-only trials).  354 

 Classification of ERPs revealed robust encoding of phoneme and viseme information in 355 

the auditory system, driven by low-frequency oscillatory information (power and phase) that 356 

reflects the excitatory/inhibitory balance of local neuronal populations39. Higher frequency activity 357 

(high-gamma power; HGp), in contrast, is associated with the average rate of action potentials 358 

generated by a local population of neurons40. Across HGp from all auditory electrodes, we 359 

observed significant classification (evaluated using binomial statistics; p < .05) in five out of six 360 

patients for auditory-only trials and three out of six patients for visual-only trials. Similarly, at the 361 

group-level we observed classification accuracy reliably above chance for both auditory-only (t(5) 362 

= 3.74, p = .013, d = 1.53), and visual-only trials (t(5) = 3.56, p = .0162, d = 1.45). We additionally 363 

observed a trend towards greater classification in auditory-only trials relative to visual-only trials 364 

(t(5) = 2.40, p = .0614, d = 0.981). More reliable classification for low-frequency signals evoked 365 

by visemes is consistent with the fMRI finding that classification can occur in auditory regions 366 

that do not show increased firing rates in response to visual speech.  367 

 368 

Discussion 369 

Extensive research has shown that silent visual speech can modulate activity within 370 

primary auditory regions in humans13-15,23,41,42. However, multiple sources of information could be 371 
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contained in these visual-driven auditory responses including visual motion timing information43, 372 

visual parsing of speech rate11, visual-derived spectral information1, general effects on attention or 373 

arousal44, or viseme-to-phoneme transformations15. Here we tested the hypothesis that the 374 

identities of individual visemes are represented in the auditory system through distributed patterns 375 

of activation, and these spatial distributions match corresponding phoneme representations. Using 376 

fMRI and intracranial electrodes implanted in auditory regions we found that the auditory system 377 

reliably encodes the identity of visemes using spatially distributed activity in a similar manner to 378 

heard words. Moreover, visemes evoked spatially similar activity to matching phonemes, 379 

consistent with the hypothesis that visual speech targets corresponding phoneme representations 380 

Data from both fMRI and iEEG showed reliable classification of visemes from auditory 381 

regions, maximal in the left pSTS and STG bilaterally. Visemic information is likely first encoded 382 

in the visual cortex45 and then relayed to the auditory cortex. Consistent with this view we observed 383 

significant classification of visemes throughout visual regions (including early visual areas using 384 

fMRI and the fusiform gyrus using iEEG). Future functional connectivity analyses can be used to 385 

examine the paths of transmission of lipreading information from visual to auditory regions and 386 

computational analyses to examine how viseme information is transformed into phoneme or 387 

phonetically tuned features. For example, dynamic causal modelling (DCM) has previously shown 388 

that visual speech modulates auditory processing through ventral and dorsal routes46. Because 389 

auditory populations show opposing effects to visual speech (increased activity in posterior 390 

STG/STS and suppression in mid- to anterior STG) DCM may reveal discrete pathways of 391 

information transmission, such as fusiform to pSTS/pSTG connections and alternative pathways 392 

to the mid- to anterior STG. 393 
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Classification of iEEG data enables inferences about when phoneme and viseme 394 

information is available to the auditory system. This temporal resolution is necessary to understand 395 

whether visemes are used by the auditory system at the same time that auditory phonemes are 396 

processed (at the perceptual level), or if viseme representations emerge only after auditory 397 

processes are completed to support categorical decisions about what was heard. The present data 398 

showed significant classification accuracy for both auditory-only and visual-only trials shortly 399 

after phoneme onset, indicating that visemic information is available to the auditory system at the 400 

same perceptual stage as is phonemic information. It remains possible that silent visual speech can 401 

encode visemic information in the auditory system before phoneme onset in cases that visual 402 

speech precedes auditory onset25. 403 

Mechanistically, we show that categorical visual speech information is likely encoded 404 

through the suppression of neural activity in mid- to anterior STG and increased activity in the 405 

posterior STG and STS. This is supported by converging evidence from iEEG and fMRI that silent 406 

visual speech evoked decreased BOLD and HGp in mid- to anterior STG regions (including 407 

primary auditory cortex), and increased BOLD and HGp in the posterior STG and STS. Despite 408 

these differences in activation, classification was observed throughout the STG and pSTS 409 

suggesting two distinct mechanisms through which visual information is used to modulate 410 

phoneme populations. In posterior activations, we suggest that silent visual speech selectively 411 

activates matching phoneme-tuned neurons in a categorical manner. Conversely, we suggest that 412 

visemes suppress activity in the STG in a targeted manner to inhibit incorrect representations in 413 

phonetically tuned neuronal populations25 to indirectly refine the representation of correct phonetic 414 

features. While speculative, one possible explanation for why visemes avoid directly activating 415 
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matching phonetically tuned neurons is to limit the potential for crossmodal hallucinations47; i.e., 416 

hearing speech during silent lipreading. 417 

A limitation of the present work is that the small set of phonemes and visemes presented 418 

provide a limited account of the full distribution of phonemes and visemes present in English. This 419 

limitation was necessary to ensure adequate signal-to-noise ratios to enable classification of the 420 

individual phonemes and visemes, but future research can examine the full distribution of phoneme 421 

and viseme representations using more natural speech stimuli48 in auditory-visual contexts using 422 

high-density intracranial electrodes. Data from such experiments would be predicted to show that 423 

phoneme tuning functions (the spatial selectivity of responses to a specific phoneme) will be more 424 

precise (narrower and more distinct from other phonemes) during auditory-visual speech compared 425 

to auditory-only speech. Moreover, we predict that phoneme and viseme spatial maps will 426 

imperfectly overlap (as the same viseme could denote ‘pet’ or ‘bet’) and that the dissimilarity in 427 

phoneme and viseme maps explain categorical shifts in perception during the McGurk effect (a 428 

perceptual illusion in which visual speech alters which phoneme is heard49).  429 

In sum, the present studies support the hypothesis that silent visual speech information is 430 

represented in the auditory system for the purpose of refining phonetic and phonemic population 431 

responses, to in turn support speech perception fluency. This crucial form of information shared 432 

between auditory and visual regions likely reflects only one type of signal shared, and leaves open 433 

the possibility that other visual features (e.g., visual motion timing, visual parsing of speech rate, 434 

visual-derived spectral information) modulate auditory neurons in complementary ways to support 435 

speech perception in the natural environment. 436 

 437 

 438 
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Methods 439 

fMRI Experiment 440 

Planned analyses and sample size stopping justification for the fMRI study were pre-441 

registered at OSF (https://osf.io/6fzwd/?view_only=60484583a2bb4dcdb8e27788c7c4c373). 442 

Minor deviations from the pre-registered protocol are noted throughout the methods section. The 443 

study was approved by the Institutional Review Board (IRB) of the University of Michigan. 444 

 445 

Subjects 446 

 FMRI data was acquired from n = 64 subjects (F = 47, M = 17) recruited from the 447 

University of Michigan’s Psychology paid-subject pool (individuals who had previously expressed 448 

interest in research studies) and through word of mouth. Subjects’ ages ranged from 18-32 (Mean: 449 

22.87, SD = 3.29) and included 56 right-handed, 7 left-handed, and 1 ambidextrous individual. 450 

Written consent was obtained from each subject. subjects were paid USD $20 per hour for their 451 

time. Data was collected from each subject in a single session lasting approximately 1 hour and 15 452 

minutes. Because power analyses using multivariate pattern analyses (MVPA) remain a challenge, 453 

we determined our sample size based on univariate power analysis (on the assumption that this 454 

would yield a minimum acceptable sample size). Sample size to detect visual-only effects was 455 

determined using data from the auditory-only condition in a preliminary sample using NeuroPower 456 

(using random field theory, cluster threshold p=.05, alpha=.05, n=27). Estimated sample sizes 457 

ranged from n=62 to 64 across the pairwise phoneme comparisons (/fafa/ vs /mama/, /fafa/ vs 458 

/kaka/, and /kaka/ vs /mama/) and n=64 was selected to ensure adequate power. No data from the 459 

visual-only condition was analyzed prior to submission of the pre-registration. 460 

 461 
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Tasks, Stimuli and Experimental Design 462 

We used an auditory and visual speech paradigm optimized for an event-related fMRI 463 

design. On each trial, subjects were presented with a three-alternative forced-choice task that 464 

consisted of either an auditory-only stimulus or a visual-only stimulus. Three types of phonemes; 465 

/fafa/, /kaka/ and /mama/ and three types of visemes; /fafa/, /kaka/ and /mama/ were used for this 466 

task. These specific phonemes were chosen to maximize the differentiability between the 467 

individual phonemic representations in the neuronal populations of the STG30,42. Fig. 1a shows the 468 

timing and structure of the task. Each trial for both the auditory-only and visual-only conditions 469 

lasted for 2 seconds. The auditory-only trials began with a fixation cross against a black screen, 470 

with the phonemes presented 250 ms after the appearance of the fixation cross. The visual-only 471 

trial began with the appearance of a female actor’s face on the screen, with lip movements 472 

beginning 250 ms after face onset. After the presentation of each auditory-only or visual-only trial, 473 

subjects were presented with 3 options (/fa/, /ka/, and /ma/) and were instructed to press one of 474 

three associated buttons on an MRI-safe button response box.  475 

The first 24 subjects were shown response choices that always appeared in the same order 476 

(/fa/, /ka/, or /ma/) with a stable mapping between response choice and button (the index finger 477 

was always used to make the response for /fa/, the middle finger for /ka/ and the ring finger for 478 

/ma/). While performing the sample size estimates for our power analysis, we saw that the stable 479 

mapping between response choices and button presses resulted in response type differentiability 480 

in the motor cortex consistent with prior evidence for motor regions encoding information about 481 

finger movements50. Hence, to counteract this effect and to negate the confounds of motor region 482 

responses during speech perception51, we altered the pre-registered protocol for the remaining 40 483 

subjects, who were shown response choices that were randomized after each trial.  484 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2022. ; https://doi.org/10.1101/2022.11.11.516209doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.11.516209
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

Subjects had 1.25 seconds to respond to the answer choices. If the subject failed to register 485 

a response within 1.25 seconds, the trial was recorded as a missed response. Every trial was 486 

followed by a 5-6 second jitter period (sampled from a uniform random distribution) which acted 487 

as the intertrial interval (ITI)52. In each run, subjects completed 60 trials that were split between 488 

30 auditory-only and 30 visual-only trials, with 10 trials each for every phoneme and viseme; trial 489 

types and stimuli were randomly intermixed in each run. 490 

In total, subjects completed five runs, resulting in 300 trials in total (150 phonemes, 150 491 

visemes) during the task, with each run lasting 8 minutes and 30 seconds. Psychtoolbox was used 492 

for stimulus delivery and recording timing information and subject responses. Auditory stimuli 493 

were presented using fMRI compatible Avotec headphones that had integrated earmuffs in order 494 

to achieve maximum reduction of scanner noise. The sound level of stimuli was held constant for 495 

all subjects. While presenting auditory speech stimuli in an MRI scanner can be challenging, the 496 

undegraded nature of the auditory stimuli enabled near perfect accuracy throughout the task. A 497 

mirror system reflected the visual stimuli from an LCD projector onto a mirror (width of the mirror: 498 

12cm, approximate viewing distance between eye and mirror: 15cm; width and height of the face 499 

on screen: 9cm x 12cm) located inside the magnet bore of the scanner. 500 

 501 

Data Exclusion Criteria 502 

To ensure that subjects included in analyses demonstrated persistent attention throughout 503 

the task, we pre-registered exclusion criteria to remove subjects with behavioral accuracy rates 504 

less than 75% for either auditory-only or visual-only conditions: no subjects were excluded based 505 

on this cutoff. 506 

 507 
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fMRI Data Collection 508 

Subjects were scanned in a GE Discovery MR750 3.0 Tesla scanner with a Nova 32 509 

channel standard adult-sized coil (Milwaukee, WI). One high-resolution T1-weighted structural 510 

image was obtained for each subject that was used in preprocessing, flip angle = 8, FOV = 25.6 511 

mm, slice thickness = 1 mm, 256 slices. Then, for each of the five runs, functional T2*-weighted 512 

BOLD images were obtained using a multiband gradient-echo, echo planar imaging sequence with 513 

a resolution of 2.4 x 2.4 x 2.4 mm3, TR of 800 ms and, TE of 30 ms, Flip Angle of 52, for a total 514 

of 644 3D volumes of the whole brain with a FOV of 216 mm. To account for signal saturation, 515 

the task did not start until the first 10 TRs were acquired and discarded by the scanner in each run. 516 

 517 

Data Processing 518 

fMRI data was reconstructed with realignment and fieldmap correction applied using 519 

SPM12 to each of the five T2* runs for inhomogeneity recovery of signal in the B0 field. 520 

Physiological noise was removed using RETROICOR53. For both the univariate and multivariate 521 

analysis, preprocessing steps were completed using SPM12 (Wellcome Department of Cognitive 522 

Neurology, London, UK; https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). We utilized The 523 

Decoding Toolbox (https://sites.google.com/site/tdtdecodingtoolbox/; version 3.997) for the 524 

whole-brain multivariate analyses. 525 

 526 

Preprocessing 527 

Before preprocessing the functional images, SPM’s display tool was used to set the origin 528 

of the anatomical volumes for each subject manually by picking the location of the anterior 529 

commissure. After this, functional volumes were reconstructed and realigned, physiological noise 530 
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was removed, and field map correction was applied. This was followed by slice time correction to 531 

account for acquisition time differences between slices for each of the whole brain functional 532 

volumes. This data was then co-registered to the subject’s anatomical space using a 4th degree B-533 

spline, followed by segmentation of the tissues from the anatomical image with a forward 534 

deformation field. Information generated during the segmentation process was then used to 535 

transform the co-registered functional volumes into the standard MNI anatomical space with 536 

isotropic voxel volume dimensions of 2mm. The normalized data was then spatially smoothed 537 

using a full-width half maximum (FWHM) kernel of 5mm. 538 

 539 

Univariate Analysis 540 

We performed a univariate, contrast-based analysis of auditory-only phonemes (averaged 541 

across the 3 phonemes) and visual-only visemes (averaged across the 3 visemes) in order to 542 

identify the regions that demonstrate significantly different activation patterns across stimulus 543 

types. We utilized a canonical hemodynamic response function with event duration set to 2 seconds 544 

for each of the phonemes (AuditoryFA + AuditoryKA + AuditoryMA) and visemes VisualFA + 545 

VisualKA + VisualMA) and 5.5 seconds for the fixation periods (Fixation). Event onsets times 546 

were defined as the moment when the fixation cross (for auditory trials) or face (visual trials) 547 

appeared on the screen. 548 

In the first level analysis, whole brain beta maps were generated individually for all seven 549 

conditions for each of the 64 subjects. These maps also included information from regressors for 550 

motion correction (six head movement parameters). Freesurfer’s group-analysis pipeline was used 551 

for second level analyses54. Specifically, each subject’s data was projected onto the cortical surface 552 

of the fsaverage subject (using the command mris_preproc) and smoothed using a FWHM of 553 
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10mm (using the command mri_surf2surf). General linear models were estimated with the 554 

command mri_glmfit separately for each hemisphere and condition, excluding motor and frontal 555 

areas due to the initial n = 24 subjects with consistent phoneme-motor mappings. Significant 556 

vertices were identified at the group level using the command mri_glmfit-sim using a vertex level 557 

threshold of p < .001 and cluster-level threshold of p < .05 (estimated with 10000 permutations) 558 

to control for multiple comparisons; p-values were adjusted for separate tests of the two 559 

hemispheres. 560 

 561 

Multivariate Analysis 562 

To identify regions that reliably differentiated classes of phonemes and classes of visemes, 563 

we performed searchlight based MVPA analyses. Preprocessing steps for univariate and 564 

multivariate analyses were matched except for the normalization and smoothing, such that for the 565 

multivariate analysis, these two steps were performed after the first level analysis was completed. 566 

For the decoding analysis, we utilized The Decoding Toolbox55 with a LIBSVM56 based support 567 

vector machine (SVM) implementation. For each of the individual subjects, we built a SVM 568 

classifier with a cross-validation scheme for the five runs. We used these classifiers to build two 569 

separate models: one to classify between the three phonemes and the other to classify between the 570 

three visemes. The phoneme models were constructed to identify voxels that reliably decoded the 571 

identity of each of the three phonemes while the viseme models were built to identify voxels that 572 

reliably decoded the identity for each of the three visemes. These models were implemented as 573 

independent whole-brain searchlight analysis in the first level of the MVPA model. For each of 574 

the models, beta estimates were calculated and extracted from a 3-voxel radius sphere. 4 fMRI 575 

runs were used for training and 1 run for testing in an iterative manner. The searchlight center was 576 
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shifted through voxel-wise patterns throughout the brain to extract whole-brain accuracy maps for 577 

auditory-only and visual-only conditions. Chance-level accuracy (33.3%) was subtracted from 578 

individual subjects and conditions so that null-hypothesis values could be set to zero. Group-level 579 

analyses and multiple comparison corrections were performed using Freesurfer and matched those 580 

in the Univariate Analyses. 581 

 582 

ROI-Based Decoding Analyses 583 

Following the whole-brain searchlight analysis, we selected five regions of interests from 584 

each hemisphere (ROI) based on results from literature23,41,42. Four ROIs (STG, pSTS, fusiform, 585 

and hMT+) were pre-registered. The fifth ROI (V1/V2) was included in the classification analyses 586 

given the strong univariate response in the visual-only condition. ROIs were identified at the 587 

individual subject level based on Freesurfer aparc-aseg labeling57. Selected labels included 588 

‘superiortemporal’, ‘bankssts’,‘MT_exvivo.thresh’, the combinated labels ‘FG1.mpm.vpnl’ to 589 

‘FG4.mpm.vpnl’, and the combined labels ‘V1_exvivo.thresh’ and ‘V2_exvivo.thresh’. Contrast 590 

beta estimates (condition vs fixation) were extracted for each subject, stimulus (6 phonemes and 591 

visemes), block, and ROI. SVM analyses were performed at the individual subject level with 592 

models trained on n-1 blocks (leave-one-out classification) using the ‘fitcecoc’ function in 593 

MATLAB. 594 

 595 

Multivariate Similarity Analysis 596 

We used the same data from the ROI-based decoding analyses to examine the correlation 597 

of spatial activity across the conditions within the STG. We restricted vertices to those with 598 

significant classification in both auditory-only and visual-only conditions (purple vertices in Fig. 599 
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2c) within the STG and calculated the correlation between vertex-wise beta estimates for phoneme 600 

and viseme pairs. At the single subject level, we then correlated the spatial distribution of STG 601 

activity across each of the 6 stimuli (3 phonemes and 3 visemes) in a pairwise manner. We 602 

averaged correlations across matching pairs (e.g., the phoneme /ma/ and the viseme /ma/) and 603 

separately mismatching pairs (e.g., the phoneme /ma/ and the visemes /ka/ and /fa/), to yield a pair 604 

of values for each subject, and then compared these values at the group level to examine whether 605 

visemes evoke similar spatial distributions of activity to the matching phoneme (e.g., that the 606 

viseme MA evokes a more similar spatial layout to the phoneme MA compared to the phoneme 607 

KA). 608 

 609 

IEEG Experiment 610 

 The study was approved by the Institutional Review Boards (IRB) at the University of 611 

Michigan and Henry Ford Hospitals. 612 

 613 

Subjects and Recordings 614 

N = 6 patients (2 female, 4 male) undergoing clinical evaluation using iEEG for intractable 615 

epilepsy consented to participate in this study under an institutional review board (IRB) approved 616 

protocol at the University of Michigan or Henry Ford hospital. Patients’ ages ranged from 12-39 617 

years of age (mean = 29.7, std = 9.8) and 5 were right-handed (one patient self-reported to be 618 

ambidextrous). All patients were native English speakers. Clinically implanted depth electrodes (5 619 

mm center-to-center spacing) and/or subdural electrodes (10 mm center-to-center spacing) were 620 

used to acquire iEEG data from subjects. IEEG data  from a total of 459 electrodes were recorded 621 

from the six subjects. The type and location of electrodes implanted were based on the clinical 622 
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needs of the patients. Electrodes were implanted within left auditory areas for 2 patients and right 623 

auditory areas for 4 patients. IEEG recordings were acquired at either 4096 Hz (n = 4 patients) or 624 

1000 Hz (n = 2 patients) due to differences in clinical amplifiers. 625 

 626 

MRI and CT Acquisition and Processing 627 

Preoperative T1-weighted magnetic resonance imaging (MRI) and postoperative computer 628 

tomography (CT) scans were acquired for all subjects. The preoperative T1 MRI was registered to 629 

the postoperative CT using SPM12 using the ‘mutual information’ method58. The CT was not 630 

resliced or resampled. The localization of each electrode was performed using custom software59. 631 

The algorithm works by identifying and segmenting electrodes from the CT image based on gray 632 

scale intensity, and projects subdural electrodes to the dura surface using the shape of the electrode 633 

disk to counteract post-operative compression. For all subsequent analyses including 634 

reconstruction of cortical surfaces, volume segmentation and anatomical labeling, the Freesurfer 635 

image analysis suite was utilized (http://surfer.nmr.mgh.harvard.edu/60,61). 636 

 637 

Task and Stimuli 638 

Subjects were tested at their bedside in an Epilepsy Monitoring Unit using a laptop running 639 

Psychtoolbox62. The task paradigm was adapted from a prior study 63 which was designed to 640 

behaviorally study multiple aspects of auditory-visual speech integration. The stimuli consisted of 641 

a female speaker who produced 40 commonly used 1-2 syllable words that each started with one 642 

of the four consonants: ‘b’, ‘f’, ‘g’, ‘d’ (10 of each). The phoneme in the second position of each 643 

of these words was generally balanced across each of the four groups. Each stimulus was recorded 644 

at a frame rate of 29.97 frames per second, and trimmed to 1100 ms in length. Further adjustments 645 
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were made such that the first consonantal burst of each word occurred at 500 ms during the video 646 

playback by removing leading video frames. 647 

Each subject underwent two task variants using the same stimuli and task design to increase 648 

trial numbers, and to reduce classifier overfitting. Supp. Fig. 3 shows the task schematic for both 649 

variants of the task. In variant one, subjects were presented with words one at a time, in one of two 650 

main conditions: auditory-only or visual-only. Subjects then identified the initial speech sound of 651 

the presented stimulus using a button press to select one of four options shown on the computer 652 

screen. For example, on a trial with the word “bag”, the options presented to the subject were ‘b’, 653 

‘g’, ‘d’, ‘th’. The paradigm included 40 trials per consonant in each main condition, such that each 654 

of the 40 words were presented 4 times in the visual-only condition and another 4 times in the 655 

auditory-only condition. This resulted in a total of 320 trials for each subject using task variant 1. 656 

The words used in our task are presented in Supplemental Table 5. 657 

In task variant 2, subjects were presented with trials in one of four main conditions: 658 

auditory-only, visual-only, congruent audiovisual, or incongruent audiovisual. Task stimuli and 659 

instructions were the same as in variant 1. Variant 2 included 20 trials per consonant in each main 660 

condition. A second factor that was manipulated in this variant was the background noise level of 661 

the stimuli such that half of the words used in each condition were presented in either a low noise 662 

or a high noise context. In the low noise context, the auditory stimuli were presented as they were 663 

recorded (SNR = 32.2 dB SPL). In the high noise context, pink noise was added to reduce the 664 

signal-to-noise (SNR) ratio of the signals to -6 db SPL. In this task variant, only data from the 665 

auditory-only and visual-only conditions were included in analyses because they matched the main 666 

conditions obtained from Task variant 1. This resulted in a total of 80 auditory-only and 80 visual-667 

only trials for each subject using task variant 2. 668 
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A total of 480 trials (Task variant 1: 320 trials, task variant 2: 160 trials) with 60 trials for 669 

each consonant (‘b’, ‘g’, ‘d’, ‘f’) per condition was obtained from the combined data of both task 670 

variants. Each subject received a randomized trial order. For the auditory-only condition, a gray 671 

rectangle was presented 500 ms before sound onset. Stimuli offset occurred 600 ms after sound 672 

onset time. In the visual-only condition, face onset occurred 500 ms before the time when phoneme 673 

onset would naturally occur. A wait time of 1.25 seconds was provided for the subjects to respond 674 

to each of the stimuli. 675 

 676 

IEEG Data Preprocessing 677 

Data were preprocessed using bipolar referencing, such that signals from adjacent 678 

electrodes were subtracted in a pairwise manner. This ensured that the final signals of interest were 679 

obtained from neuronal populations that provided maximal localized responses64. Analyses in 680 

auditory regions were restricted to electrodes (registered in MNI space) that were within 10 mm 681 

of the Freesurfer anatomical labels 'superiotemporal', 'middletemporal' or 'supramarginal'. 682 

Excessively noisy electrodes were removed either manually or statistically by identifying 683 

electrodes with raw signals that were 5 SD greater in comparison to all other electrodes. For 684 

complementary analyses in visual regions, electrode locations were anatomically restricted to the 685 

'inferiortemporal' and 'fusiform' labels. 686 

Drift was removed from each channel (using residuals from fits to a 3rd order polynomial 687 

and high-pass filtering at 0.1 Hz). Power-line interference was removed by notch-filtering at 60 688 

Hz and its harmonics. ERPs were extracted from this minimally processed signal. HGp activity 689 

was extracted from the continuous time-series after wavelet convolution and power transformation 690 

(70-150 Hz in 5 Hz intervals, wavelet cycles = 20 at 70 Hz, and increased linearly to maintain the 691 
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same wavelet duration across frequencies). ERP and HGp data were segmented into 2 second 692 

epochs centered around speech onset time for a specific stimulus: trial onset was defined as the 693 

point when the initial consonant burst occurred. All data were then resampled to 1000 Hz.  694 

Electrodes from both the left and right hemispheres were projected into the left hemisphere 695 

for analyses and visualization. This projection was performed by registering each subject’s skull-696 

stripped brain to the Freesurfer cvs_avg35_inMN152 template image through affine registration 697 

using the Freesurfer function 'mri_robust_register'65. Right hemisphere electrode coordinates were 698 

then reflected onto the left hemisphere across the sagittal axis. 699 

 700 

Classifiers for Calculating Decoding Accuracy  701 

A support vector machine66 classifier was utilized for calculating decoding accuracy. 702 

Classifiers for stimulus trials were built for individual subjects and group-level analyses were 703 

performed by combining results from individual subjects (subject as a random effect). 704 

Classification was performed on downsampled data (10 Hz except where stated otherwise) to 705 

reduce dimensional complexity. Phonemes and visemes were classified using a 4-fold multiclass 706 

classifier from 0 to 500 ms following sound onset time (or the corresponding point in the visual 707 

movie); electrodes and time-points were treated as dimensions in the classification of individual 708 

trials. Time-series analyses were performed independently at each time-point (500 Hz) and 709 

accuracies were smoothed at the individual subject-level across 20 time points using the Matlab 710 

function 'movmean'. Electrode-level analyses were performed on individual electrodes located in 711 

auditory regions.  712 

 713 

 714 
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Similarity Analysis  715 

 To test whether auditory cortex showed a similar representation for phonemic and visemic 716 

information, we examined the similarity of the phoneme and viseme confusion matrices. 717 

Specifically, we paired each of the 16 cells in the two confusion matrices and used Pearson 718 

correlation to examine their relationship. Significance was calculated by randomly permuting the 719 

stimulus labels of each trial and repeating the full classification analysis n = 1000 times.  720 

 721 

Calculating Individual Subject Classification Significance 722 

 The four classes tested within each condition yielded chance levels of classification at 25%. 723 

To calculate significance above this chance level, we used binomial statistics for within-subject 724 

significance testing67,68. We used the ‘binocdf’ function in MATLAB for this, by considering two 725 

parameters: the number of trials, and probability of success at each instance (25%). This gives rise 726 

to a binomial chance-level probability that varies depending on the number of data points used for 727 

classification in each of the models that were built. This resulted in a chance probability of 29.58% 728 

(p = 0.05) for a 4-class classifier with 240 trials. 729 

 730 

 731 

  732 
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