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Abstract 

Electromagnetic source imaging (ESI) has been widely used to image brain activities for research 
and clinical applications from MEG and EEG. It is a challenging task due to the ill-posedness of 
the problem and the complexity of modeling the underlying brain dynamics. Deep learning has 
gained attention in the ESI field for its ability to model complex distributions and has successfully 
demonstrated improved imaging performance for ESI. In this work, we investigated the capability 
of imaging epileptic sources from MEG interictal spikes using deep learning-based source 
imaging framework (DeepSIF). A generic DeepSIF model was first trained with a generic head 
model using a template MRI. A fine-tuning procedure was proposed to introduce personalized 
head model information into the neural network for a personalized DeepSIF model. Two models 
were evaluated and compared in extensive computer simulations. The MEG-DeepSIF approach 
was further rigorously validated for imaging epileptogenic regions from interictal spike recordings 
in focal epilepsy patients. We demonstrated that DeepSIF can be successfully applied to MEG 
recordings and the additional fine-tuning step for personalized DeepSIF can alleviate the impact 
of head model variations and further improve the performance significantly. In a cohort of 29 drug-
resistant focal epilepsy patients, the personalized DeepSIF model provided a sublobar 
concordance of 93%, sublobar sensitivity of 77% and specificity of 99%, respectively. When 
compared to the seizure-onset-zone defined by intracranial recordings, the localization error is 
15.78 ± 5.54 mm; and when compared with resection volume in seizure free patients, the spatial 
dispersion is 8.19 ± 8.14 mm. DeepSIF enables an accurate and robust imaging of spatiotemporal 
brain dynamics from MEG recordings, suggesting its unique value to neuroscience research and 
clinical applications. 
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Introduction 

Electromagnetic Source Imaging (ESI) is the process of estimating the underlying brain 

electrical activity from noninvasive measurements such as electroencephalography and 

magnetoencephalography (E/MEG). It has been used to study the sensory systems [1,2], 

attention [3,4], functional networks [5–7] in both healthy subjects and patients. ESI also plays a 

substantial role in aiding the diagnosis and surgical planning for drug-resistant focal epilepsy. As 

one of the major neurological diseases, epilepsy is affecting more than 65 million people 

worldwide [8], one third of which is drug resistant epilepsy. Brain surgery with the goal to remove 

the epileptogenic tissue becomes a viable treatment option for these patients, if source 

localization can be performed accurately. ESI is commonly used to analyze the evolution of brain 

states or the connectivity patterns during the interictal and ictal periods to identify the 

epileptogenic tissue [9–14]. Thus, a robust and accurate ESI method is of great importance to 

both the basic research of brain functions and dysfunctions, and the clinical management of 

neurological diseases [15,16]. 

However, ESI is a challenging ill-posed problem since the number of measurements are 

usually limited to at most a few hundred channels, which are much smaller than the possible 

source locations in the brain. Theoretically, different cortical activations may generate the same 

scalp patterns. Thus, conventional ESI methods would use a priori constraints as regularization 

terms to limit the solution space and find a unique solution [17]. ESI then can be formulated as an 

optimization problem, that is, solving for the brain source distributions that can generate the 

recorded E/MEG while satisfying the chosen constraints. Various types of regularizations have 

been proposed and are constantly evolving over the years. Minimum norm estimation and its 

variations [18,19] or beamforming and scanning approaches [20,21] are widely adopted due to 

their simple formulations and fast computation. Recent developments have incorporated more 

details into the prior terms, such as imposing time-frequency constrains [22,23], utilizing spatial 

adjacency matrix for the dipole distributions [24,25], building hierarchical structures with latent 

variables [26,27], etc. Albeit these efforts on more realistic modeling of the priors, it remains to be 

challenging to choose and formulate the correct regularization priors that fully model the complex 

brain sources and networks. Over-simplified or improper priors would negatively affect the ESI 

performance since the optimization problem could be inaccurately formulated [28]. 

Deep learning (DL)-based ESI approaches alleviate the challenges of current ESI 

approaches. They aim at capturing the correct mapping relationship between signal and source 

spaces through learning from a large amount of training data, instead of explicitly speculating the 

features of underlying sources’ distributions. The weights of the interconnected units in a neural 

network are updated iteratively to minimize the difference between the predicted source and the 

ground truth in the training data [29], and the statistics and characteristics of underlying sources 

are implicitly embedded into the network through this process. Deep learning-based source 

imaging framework (DeepSIF) [30] is recently proposed to provide spatiotemporal imaging of 

cortical sources from EEG recordings. After the model is trained based on a single head model 

built from a template magnetic resonance image (MRI), it can still reliably image physiological or 

pathophysiological brain activities across different subjects and databases. 

 Although EEG and MEG share ample similarities as they both measure the 

electromagnetic signals originating from the neuronal currents in the brain [31], they differ in signal 

properties and the forward process from multiple aspects. For instance, MEG has the merits of 
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measuring the magnetic fields with little impact of the intermediate tissues, especially the low-

conductivity skull, with simplified forward modeling of MEG as compared to EEG [32]. On the 

other hand, EEG electrodes can be directly placed on the scalp while the locations of MEG 

sensors are fixed, and further away from the brain for conventional SQUID-based systems. 

Accurate head size and co-registration of the MEG and MRI become more prominent factors for 

MEG source imaging [33,34]. Moreover, the preference of MEG over tangential current sources 

means brain regions in sulcal walls will have a stronger representation in MEG over sources on 

the gyri, producing unique topographical patterns compared to EEG signals. Considering the wide 

application of MEG technique [35–37] and the differences between the two modalities, it is of 

interest to rigorously evaluate DeepSIF on MEG recordings, to see if the same forward modeling 

and training pipeline remains to be effective for MEG source imaging.  

In this work, DeepSIF was adapted for MEG ESI where the forward process was 

calculated for the MEG signal based on a template MRI. Computer simulations were performed 

 

Figure 1. Schematic diagram of study design. The source activities are generated by the spatiotemporal source 

model, consisting of interconnected neural mass models. A generic head model using template MRI is used to 

generate synthetic MEG data to train a generic network model. Personalized training data are generated using 

individual MRI and co-registered MEG sensor locations, which are further used to fine-tune the weights of the 

generic DeepSIF for a personalized network model.  
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to evaluate the performance of this generic DeepSIF (GDeepSIF) model and the impact of head 

model discrepancies between the training and testing data. Then, we proposed to use the weights 

of the trained GDeepSIF model as the starting values and continue training the neural network 

with data from a personalized head model generated based on co-registered individual MRI and 

channel locations for a personalized DeepSIF model (PDeepSIF). In other words, we used a fine-

tuning technique to acquire a PDeepSIF model. Last, we validated the GDeepSIF and PDeepSIF 

models by comparing their imaging results of interictal spikes to epileptogenic regions including 

intracranial EEG defined seizure onset zones (SOZ) and resection volumes in a cohort of 29 drug-

resistant focal epilepsy patients from two clinical centers. We demonstrated that DeepSIF can 

return accurate imaging results from MEG recordings, consistent with the clinical findings in 

epilepsy patients. The additional fine-tuning step for PDeepSIF can alleviate the impact of head 

model discrepancy and further improve imaging performance significantly. 

Methods 

DeepSIF Outline 

The deep learning-based source imaging framework (DeepSIF) is a spatiotemporal ESI 

method where a deep neural network (DNN) is trained with a synthetic dataset generated by 

spatial-temporal brain network models. For the spatial model, the cortical surface is segmented 

into multiple regions and the spatial variations are introduced by a region-based growing method. 

The source locations are randomly selected among the cortical segments and the size of the 

source is determined by randomly grouping the neighboring segments with the center segment. 

The temporal model of each cortical segment is represented by one neural mass model (NMM). 

NMM describes the average excitation and inhibition behaviors of neuron populations and can 

generate various types of brain dynamics such as alpha oscillation, evoked potentials, or interictal 

spikes [38–40]. Using the brain network model, signals with various spatial and temporal patterns 

can be generated and projected to the scalp based on the anatomical head model. The scalp-

brain signal pairs are used as the input-output for the DNN during training. The DNN consists of 

a spatial module to process the spatial distribution of the scalp data distorted by noise and volume 

conduction, and a temporal module to model the dynamics of the sources over time and provide 

the final spatiotemporal estimation of the source distribution (Fig. 1, top half). 

Generic DeepSIF Model Training and Evaluation  

To generate a generic training dataset for the GDeepSIF model in the simulation study, 

the template MRI (fsaverage5) [41] was used as the genetic head model with the cortical surface, 

the skull, and the scalp extracted. The cortical surface was segmented into 994 regions and the 

Jansen-Rit model [42,43] was used as the NMM for each segment. Then, source patches with 

different sizes, shapes, locations and temporal waveforms were generated following the same 

source data generation process as summarized in the DeepSIF outline and detailed in [30]. A 148 

MEG magnetometer helmet was used as the MEG sensor configuration. The helmet location was 

manually adjusted to a centered position and the leadfield matrix was calculated using boundary 

element method (BEM) model with openMEEG [44] in Brainstorm [45]. The NMM signal was then 

scaled [30] and projected to the scalp with added Gaussian white noise so that signal to noise 

ratios (SNR) of 5, 10, 15, or 20 dB were obtained between the scalp signal and noise. In total, a 
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two-source training dataset containing 620,256 spatiotemporal brain-scalp signal samples was 

generated based on the superposition principle of the two sources. 

The network architecture is similar to the one used in [30]. It consisted of a spatial module 

to pre-filter the MEG signal and a temporal module to model the temporal dynamics. The spatial 

module had a residual network (ResNet) architecture [46], composed of fully connected layers, 

which processed the spatial information at each time point independently. Two layers formed a 

ResNet block (ResBlock) with a skip connection, and Exponential Linear Unit (ELU) activation 

function [47] was used. For the ResBlock with different input and output dimensions, the skip 

connection was another fully connected layer to account for the dimension change. The first 

ResBlock had an input size of 148 (the number of MEG sensors, depending on the MEG systems 

used. In real patient analysis, the input size was 102 for UPMC MEG data.) and the same output 

size. The number of MEG sensors could be different across different MEG systems, here we use 

a 4D Neuroimaging system with 148 magnetometers to perform all the simulation analysis, and 

we believe the simulation results should generalize to other systems with different numbers of 

magnetometers. The second ResBlock projected the dimension from 148 to 500, and was 

followed by another fully connected layer with ELU activation function and output dimension 994. 

The temporal module aggregated the output from the spatial module over time, and provided the 

spatiotemporal activity of the source. It had 3 hidden layers and employed Long Short Term 

Memory (LSTM) [48] with hyperbolic tangent (TanH) activation units. All LSTM layers had an input 

size of 994 and an output size of 994. Both the source and sensor space signals were scaled by 

their maximum absolute value to have a maximum or minimum of 1 or -1. During training, the loss 

function was the mean square error loss (MSE) between the model output and the ground truth 

source activity. Adam optimizer [49] was used for the training with a weight decay of 1e-6. The 

learning rate was 3e-4 and the batch size was 64. The whole network was implemented in 

PyTorch and trained on one NVIDIA Tesla V100 GPU [50]. 

The source patches in the test dataset were separately generated following the same 

protocol as the training data. Three test datasets were created using different head models and 

leadfield matrices to evaluate GDeepSIF’s generalizability. Each dataset contains single source 

data with 47,712 samples at 5-20 dB SNR levels. First, the same leadfield matrix used in the 

generic train dataset was adopted for the test dataset when projecting the source space signal to 

the sensor space. This dataset is called the “no change” dataset. In the second test dataset which 

is called the “tilt helmet” dataset, the MEG helmet was tilted left for 5 degrees from the original 

position to simulate the MRI-MEG co-registration error. The leadfield was recalculated using the 

template MRI and tilted MEG sensor locations. Third, three different subjects’ MRIs were used to 

evaluate the impact of head geometry. MEG helmets were co-registered to each individual head 

surface and the leadfield matrices were calculated using subjects’ BEM models. Each leadfield 

matrix generated one-third (randomly selected) of the test samples in this “different BEM” dataset. 

Samples in these three datasets were used as the input for the trained GDeepSIF model, and the 

results are shown in Fig. 2c.   

Personalized DeepSIF Model Training and Evaluation  

The leadfield matrices used in the “tilt helmet” and “different BEM” were also used to 

generate the personalized training data to either re-train or fine-tune the DNN for PDeepSIF 

models. The source configurations remained to be the same in the personalized training data, but 
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the leadfield matrices were updated to the corresponding matrices when projecting the source 

activities to the sensor space. To re-train a DeepSIF model, the extract same training procedures 

were followed as training a GDeepSIF model, while the training data was replaced with the 

corresponding personalized data (“tilt helmet” or “different BEM). To fine-tune a DeepSIF model, 

the weights of the GDeepSIF model were used to initialize the PDeepSIF weights. The weights 

were continued to be updated using the personalized training data with a learning rate of 1e-4. 

The PDeepSIF model fine-tuned with the “tilt helmet” training data was used as an 

example to validate the performance of the proposed fine-tuning procedure. Test datasets 

containing one to three- sources were generated with the “tilt helmet” leadfield matrix. There are 

a total of 47,712 samples at 5-20 dB SNR levels in each dataset.   

Evaluation Metrics for Simulation Study 

The Otsu’s thresholding technique [51] was used to identify the boundary of the imaging 

solution. The algorithm finds a threshold to separate the foreground (active brain sources) and 

background value that minimizes the intra-class variance. The whole cortical space is denoted by 

𝐽. The estimated active source regions can be denoted by 𝐽𝑒, and the simulated active source 

regions are denoted by 𝐽𝑠. The estimated and simulated nonactive source regions can be denoted 

by 𝐽𝑛𝑒 = 𝐽\𝐽𝑒 and 𝐽𝑛𝑠 = 𝐽\𝐽𝑠. The ability of DeepSIF to estimate the extent, location and temporal 

dynamics of the cortical sources is evaluated in computer simulations using the following metrics: 

1. Sensitivity and Specificity 

The sensitivity, also called the true positive rate, is defined as the overlap between the 

estimated and simulated active sources divided by the simulated active sources, which is 

calculated as  
|𝐽𝑒 ⋂  𝐽𝑠| 

|𝐽𝑠|⁄ , where | ⋅ | denotes the size of the sources. 

The definition of specificity is the overlap between the estimated and simulated nonactive 

sources divided by the simulated nonactive sources. However, for source imaging applications, 

the size of nonactive regions is usually much larger than the size of active regions, directly using 

𝐽𝑛𝑠 as the nonactive “ground truth” to calculate the specificity would bias the results. Because of 

this imbalance between the active and nonactive regions, even if 𝐽𝑒 is overly diffused compared 

to 𝐽𝑠, there remains a large 𝐽𝑛𝑒 and 𝐽𝑛𝑒 ⋂  𝐽𝑛𝑠 area. The original definition of specificity will provide 

numerically high specificity values, failing to evaluate the method’s true ability to identify the 

boundary of 𝐽𝑠. A more balanced specificity requires the number of active and inactive source 

regions to be the same. Thus, a modified specificity as proposed in [25] was adopted. A number 

of |𝐽𝑠| regions were randomly selected, either among the neighboring regions of 𝐽𝑠 (denoted by 

 𝐽𝑛𝑠
𝑐𝑙𝑜𝑠𝑒̂ ) or near the far local maximum of 𝐽𝑒  (denoted by  𝐽𝑛𝑠

𝑓𝑎𝑟̂
). These two types of nonactive 

regions assess the focality of the estimation and the generation of spurious sources. Here we 

define the neighboring regions to be within 30 mm Euclidean distance to the source boundary. 

The final specificity is defined as the average of the 𝑐𝑙𝑜𝑠𝑒 and 𝑓𝑎𝑟 specificity calculated using 

|𝐽𝑛𝑒 ⋂  𝐽𝑛𝑠
∗̂ | 

|𝐽𝑛𝑠
∗̂ |

⁄ , where ∗ represents 𝑐𝑙𝑜𝑠𝑒 or 𝑓𝑎𝑟. The geometric mean of the sensitivity and 

specificity can also be calculated as √𝑎𝑏 , where 𝑎  and 𝑏 represent sensitivity and specificity 

respectively.  
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2. Localization errors 

For each cortical segment 𝐽𝑒,𝑖  in the estimated source 𝐽𝑒 , the localization error (LE) is 

defined as the minimum Euclidean distance to the ground truth regions 𝐽𝑠 . One test sample 

consists of multiple active cortical segments and the LE for one test sample is the mean LE for all 

segments in the estimated source.  

3. Linear correlation 

Linear correlation is the Pearson correlation between the solution’s reconstructed 

waveform and the simulated waveform. 

Patient Information 

The clinical data collection were approved by relevant institutions at the University of 

Pittsburgh Medical Center (UPMC) and Minnesota Epilepsy Group. The data analysis was 

approved by the Institutional Review Board (IRB) of Carnegie Mellon University. Patients gave 

their informed consent to participate in this study. 

Twenty-nine focal drug-resistant epilepsy patients from these two clinical centers were 

included in this study (Table 1). All patients underwent a complete presurgical evaluation, 

including a MEG and intracranial EEG monitoring, as well as a resective surgery. The surgical 

outcome was scored based on Engel Surgical Outcome Scale [52] by physicians. All patients 

achieved seizure-free outcome (Engel I) during a follow-up period of at least 12 months. Seven 

out of 29 patients analyzed were from Minnesota Epilepsy Group. Each patient underwent a 20- 

to 40-minute MEG session using the Magnes 2500 WH (148 MEG magnetometers, 4D 

Neuroimaging). The sampling rate is 1,017 Hz. Twenty-two out of 29 patients analyzed were from 

UPMC. Each patient underwent a 60-minute MEG session using the Elekta Neuromag Vector 

View 306 Channel System (Elekta Neuromag, Helsinki, Finland). It contains 102 magnetometers 

and 204 planar gradiometers and only data from the magnetometers were included in the present 

analysis. The sampling rate is 1,000 Hz.  

Clinical MEG Data Analysis 

A GDeepSIF model was trained for each clinical center, as the number of MEG channels, 

thus, the input size of the neural network, is different (148 for Minnesota Epilepsy Group and 102 

for UPMC). The PDeepSIF model for each subject was acquired by finetuning the GDeepSIF 

model. For each subject, the cortical surface, the skull, and the scalp were extracted, and its 

cortical space was segmented following the same segmentation atlas as used in the generic brain 

model in Freesurfer [41]. The surfaces were then imported to Brainstorm and the cortical surface 

was down-sampled to 20,487 vertices using iso2mesh [53]. The alignment of the anatomical and 

functional fiducial points was performed manually, and then the helmet positions were further 

refined based on the digitalized head points and scalp surface. The leadfield matrix was 

calculated using BEM for each patient, which was used to generate the personalized training data 

to fine-tune the DeepSIF model. 

A 10-minute segment of the MEG recording was bandpass filtered between 1 and 40 Hz 

and down-sampled to 500 Hz. Interictal spikes were extracted, averaged and scaled by the 
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maximum absolute value of the data to range -1 and 1 before being used as the input for the 

trained DeepSIF model. Three conventional source imaging methods were used as the 

benchmark methods. The imaging results for standardized low resolution brain electromagnetic 

tomography (sLORETA) [19] and linearly constrained minimum variance (LCMV) beamformer [20] 

were calculated using MNE-Python (version 0.22.0) [54]. Coherent maximum entropy on the 

mean (CMEM) [25] was calculated using the brainentropy plugin (version 2.7.3) in Brainstorm. 

The output source reconstruction was averaged for a 20 ms window around the peak of the spike 

and the Otsu’s method was used to find the extent of the imaging solution when evaluating the 

performance of all methods [51]. 

In patient studies, the sensitivity, specificity and spatial dispersion (SD) were calculated 

with respect to the resection region. The definitions of sensitivity and specificity are the same as 

the simulation study and the resection region is used as the ground truth (or active source regions). 

Spatial dispersion is defined as the weighted mean of the distance of each reconstructed region 

to the resection area. 𝑆𝐷 =
∑ 𝑑𝑖 𝐽𝑒,𝑖𝑖

∑ 𝐽𝑒,𝑖𝑖
, where 𝑑𝑖 is the minimum distance to the resection region for 

reconstructed region 𝑖 , and 𝐽𝑒  is the estimated source map. When comparing to the SOZ 

electrodes, sublobar concordance, sublobar sensitivity and specificity, and localization errors 

were calculated. The cortical surface was segmented into 20 subregions (Anterior temporal, 

lateral posterior temporal, medial posterior temporal, orbitofrontal, prefrontal, premotor, central, 

superior parietal, inferior parietal and occipital). The imaging result is concordant with SOZ if the 

maximum of the source estimate and the SOZ electrodes are located in the same subregions. 

When calculating the sublobar sensitivity and specificity, the subregions containing both source 

estimates and SOZ electrodes are defined as the true positive subregion, and the true negative 

subregions are defined as regions containing neither SOZ nor source estimates. The sublobar 

sensitivity definition is the same as the sensitivity defined above, which is the number of true 

positive subregions divided by the number of SOZ subregions. The sublobar specificity is 

calculated as the number of true negative regions divided by the number of subregions without 

SOZ. Note that unlike the specificity comparing to the resection, all the nonactive subregions were 

used for the evaluation without sampling. When evaluating the localization error, two LEs are 

calculated. The first LE is defined as the average distance of each intracranial EEG defined SOZ 

to the closest estimated source regions. The second LE is defined as the average distance of 

each estimated source region to the closest SOZ. SOZ LE is defined as the average value of 

these two LEs (Fig. 4a). 

Results 

GDeepSIF Performance in Computer Simulations 

Fig. 2b shows the GDeepSIF model performance evaluated on three test datasets. When 

there is no change between the head model used for the train and test datasets, GDeepSIF model 

can achieve excellent localization performance with a LE of 1.52 ± 1.74 mm. However, when the 

head model used is modified in the test dataset, the accuracy decreased by an expected however 

noticeable amount. For the “tilt helmet” test dataset, the LE becomes 5.98 ± 9.75 mm, and for the 

“different BEM” test dataset, the LE is 6.57 ± 8.18 mm. This is mostly caused by the change in 

the scalp-brain relationship as shown in Fig. 2a. For the same cortical source, the tilted helmet 

measures a different topographical pattern (right) compared to the original training data (left), 
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which caused a shift of the estimated source regions and a decreased sensitivity and specificity 

value.   

 

Figure 2. a, Example topographical patterns of the same cortical source from two test datasets. b, The performance 

of the GDeepSIF model on three test datasets. The geo mean represents the geometric mean of sensitivity and 

specificity. Corr represents the linear correlation between the estimated time activity and the simulated time profiles. 

The dataset names refer to the head model used during the forward process. The distributions are demarcated within 

the 10th to 90th percentile. The gray bars span the 25th to 75th percentile, the white circle is the median and the 

colored horizontal bar is the mean of the distribution. (n = 47,712, Geo Mean = 0.93±0.07, 0.74±0.19, 0.61±0.24; LE 

= 1.52±1.74, 5.98±9.75, 6.57±8.18 mm; Corr = 0.98±0.02, 0.94±0.13, 0.93±0.21; for “no change”, “tilt helmet” and 

“different BEM” respectively). c, Loss function and localization error for four different DeepSIF models. Personalized 

training data were generated by individual head models, either with a tilted helmet or different MRIs (different BEM). 

DeepSIF trained with “tilt helmet” training data from scratch with random initialization is called tilt helmet retrained 

(dash line), and continuing training based on GDeepSIF weights is called “tilt helmet finetuned” (solid line). The 

naming follows the same rule for the “different BEM” dataset.  

PDeepSIF Training and Evaluation 
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 To further improve the performance on the personalized test datasets, DNN can be 

retrained from random initial weights or finetuned based on a trained GDeepSIF model using 

personalized training data. The training curves in Fig. 2c followed a similar trend, however, the 

number of iterations to fine-tune a model (solid line, bottom axis), is only one fifth of retraining a 

model (dash line, top axis).  Fine-tuning GDeepSIF model provided faster convergence compared 

to retraining the network. The number of iterations means the number of DNN weights updates, 

which roughly translates to the training time. With one fifth of the training time, fine-tuning a DNN 

can reach the same validation loss as retraining the network from scratch. When evaluating the 

changes of LE during training, a similar trend can also be observed that the LE converged to a 

low value with fewer updates when fine-tuning based on GDeepSIF weights. 

The fine-tuned DeepSIF model was further evaluated for its ability to estimate the extent 

(Fig. 3a), location (Fig. 3b) and temporal dynamic (Fig. 3c) of the underlying source activities on 

the personalized test dataset. PDeepSIF can estimate the temporal evolution of the source 

activities with a high correlation value (0.88 ± 0.17). High specificity (0.91 ± 0.17) and sensitivity 

(0.81 ±  0.20) are also achieved when averaged across the one-, two-, and three-source 

conditions for all SNR levels. A significant Pearson’s correlation of 0.83 is achieved (p < 0.001) 

between the simulated source areas and estimated source areas, which means PDeepSIF can 

identify the extent of the cortical sources with high accuracy. The average localization error is 

1.89 ± 2.47 mm for all source configurations across datasets. When examining the samples at 

different SNR, the LEs are 2.06 ± 2.47, 1.88 ± 2.44, 1.82 ± 2.52 and 1.80 ± 2.39 mm for SNR = 

5, 10, 15, 20, respectively. Source depth is defined as the distance between the source center to 

the closest MEG sensor. Robust performance can be observed when the source depth increases 

as the change of the average LE is less than 1 mm. PDeepSIF can also provide consistent 

superior performance when the inter-source distance or the temporal correlation between sources 

varies (Supplementary Fig. S1) in the two-source configuration, indicating PDeepSIF’s capability 

in distinguishing multiple closely located or correlated sources. The simulation study 

demonstrated that PDeepSIF can provide accurate and robust source estimates from MEG 

measurements.    
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Figure 3. Model performance on the personalized test datasets. a, Extent estimation. Left: The specificity (n = 47,712, 

1-source: 0.98±0.04, 2-sources: 0.90±0.18, 3-sources: 0.86±0.20) and sensitivity (n = 47,712, 1-source: 0.93±0.11, 2-
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sources: 0.78±0.21, 3-sources: 0.71±0.20) of three test datasets with one-, two-, and three- sources, respectively. 

Right: Simulated source area vs estimated source area for three datasets combined. b, Localization error analysis. 

Left: the LE distributions of each dataset (n = 47,712, 1-source: 1.81±3.01, 2-sources: 1.91±2.21, 3-sources: 1.96±2.09 

mm).  Middle: LE vs SNR for all three datasets combined, the error bar shows the standard deviation. Right: LE vs 

depth, the plot shows the average LE for all sources within a particular depth, and the error bar shows the standard 

error of the mean. c, Temporal estimation. The linear correlation between ground truth and reconstruction of each 

dataset (n = 47,712, 1-source: 0.98±0.03, 2-sources: 0.87±0.21, 3-sources: 0.79±0.25 mm). d, Imaging examples. 

Source locations and waveforms of ground truth and reconstructed activities for a single source (left) and three 

sources (right). 

Comparison of GDeepSIF and PDeepSIF in Patient Data Analysis  

We compared the interictal spike imaging results of GDeepSIF and PDeepSIF in a cohort 

of 29 focal epilepsy patients. All patients suffered from drug-resistant epilepsy and went through 

intracranial EEG (iEEG) monitoring and resective surgery with seizure free outcomes. Twenty-

one out of 29 have clear post-operative MRI images to extract the resection regions, and 27 out 

of 29 patients have post-implantation computer tomography (CT) images available to identify the 

iEEG electrode locations. 

 

Figure 4. Clinical validation for GDeepSIF and PDeepSIF models. [P] and [G] represent PDeepSIF and GPDeepSIF 

respectively. a, Evaluation metric illustration (details in methods). b, Sublobar comparison results. Left: concordance 

rate (93% [P], 83%[G]). Right: Sublobar sensitivity (77% [P], 66% [G]) and specificity (99% [P], 97% [G]). c, Quantitative 

spike-imaging results. The horizontal solid line shows the mean, the dashed line shows the median, the bars span the 

25th to 75th percentile of the data, the vertical bars span the 10th to 90th percentile of the data, and each circle 

represents individual patients. (Specificity: n = 21, 0.90 ± 0.14 [P], 0.83 ± 0.12 [G]; Sensitivity: n = 21, 0.41 ± 0.29 [P], 

0.14 ± 0.20 [G];  Spatial dispersion (SD): n = 21, 8.19 ± 8.14 mm [P], 21.90 ± 19.03 mm [G]; SOZ LE: n = 27, 15.78 ± 

5.54 mm [P], 24.86 ± 10.40 mm [G].) d, Examples of spike-imaging results along with the surgical resection outcome 

and iEEG defined SOZ. 
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Both GDeepSIF and PDeepSIF models can produce reasonable results close to the 

clinical findings, achieving a high sublobar concordance rate of 83% and 93% respectively.  

However, the PDeepSIF performed better in all metrics compared to GDeepSIF (significant in 

resection sensitivity, SD and SOZ LE, two-sided Wilcoxon signed rank test, p<0.01), 

demonstrating that for MEG DeepSIF, finetuning is a critical step to improve the imaging accuracy. 

As we can see in one imaging example in Fig. 4d, the GDeepSIF model introduced a bias in the 

estimate, away from the clinical ground truth, to compensate for the discrepancies in the leadfield 

matrix. After the finetuning, PDeepSIF can produce results with a better concordance with the 

resection region. This can also be observed in the group-level metrics (Fig. 4c). Although 

GDeepSIF produced results with high spatial specificity (Sublobar specificity equals 97%, 

resection specificity equals 83%), demonstrating that GDeepSIF can still provide an good extent 

estimate without sources at spurious locations, a “shift” can be observed for GDeepSIF because 

of the inaccuracies in the training leadfield matrix, as reflected in the increased SD and SOZ LE 

values. However, the reconstruction remained to be in close proximity to the clinical ground truth 

as the mean SOZ LE is 24.86 mm. On the other hand, after the model is finetuned with 

personalized head model information, the SOZ LE dropped to 15.78 mm, indicating excellent 

concordance with the SOZ covered area. 
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Figure 5. a, Quantitative interictal spike imaging results. (Specificity: n = 21, 0.90 ± 0.14 [P], 0.43 ± 0.20 [L], 0.31 ± 

0.21 [S], 0.78 ± 0.17 [C]; Sensitivity: n = 21, 0.41 ± 0.29 [P], 0.54 ± 0.34 [L], 0.76 ± 0.28 [S], 0.23 ± 0.28 [C];  Spatial 

dispersion (SD): n = 21, 8.19 ± 8.14 [P], 33.36 ± 16.16 [L], 32.36 ± 17.94 [S], 33.95 ± 23.60 [C] mm; SOZ LE: n = 27, 

15.78 ± 5.53 [P], 25.96 ± 7.06 [L], 24.34 ± 7.52 [S], 33.14 ± 18.42 [C] mm, where [P], [L], [S] and [C] represent PDeepSIF, 

LCMV, sLORETA and CMEM respectively). Paired two-sided Wilcoxon signed rank test was used with statistical 

significance cutoffs of (*P<0.05, **P<0.01). b, Examples of spike-imaging results along with the surgical resection 

outcome and iEEG defined SOZ.  

Comparison of PDeepSIF and Other Methods in Patient Data Analysis 

Fig. 5 shows the comparison of PDeepSIF to other benchmark ESI methods: LCMV, 

sLORETA and CMEM. PDeepSIF demonstrated superior imaging performance, with an SD value 

of 8.19 ± 8.14 mm and SOZ LE of 15.78 ± 5.53 mm, which is significantly better when compared 

to the benchmark methods. Although LCMV and sLORETA can provide high sensitivity, their low 

specificity impairs their ability to identify the true epileptic regions. PDeepSIF can provide a 

reasonable extent of the sources, without being too focal or overly diffused as it has a balanced 

sensitivity and specificity value. When calculating the geometric mean (GM) of the sensitivity and 

specificity, PDeepSIF reaches 0.54 ± 0.28, and it is significantly better than 0.43 ± 0.23, 0.41 ± 

0.21 and 0.30 ± 0.30 for LCMV, sLORETA and CMEM respectively (two-sided Wilcoxon signed 

rank test, p<0.05). These validation results demonstrated that PDeepSIF can reliably image and 

localize the epileptogenic tissue from MEG measurements. 

 

Discussion 

Imaging spatiotemporal brain activities from MEG measurements has become an 

indispensable tool for research and clinical applications [16]. We further developed a recently 

proposed deep learning-based source imaging framework and rigorously validated its 

performance in computer simulations and in a cohort of 29 drug-resistant focal epilepsy patients. 

We have demonstrated that DeepSIF can be successfully applied to MEG measurements and 

provide good imaging results with a generic head model. Personalized anatomical information 

can be incorporated into the framework by continuing to train the generic DeepSIF model with 

personalized training data. The fine-tuned model can significantly improve the overall 

performance for estimating the location, extent, and temporal activities of the brain sources across 

different subjects. The validation of DeepSIF on MEG measurements is a crucial advancement 

for DL-based electromagnetic source imaging (ESI) methods.  

Designing and optimizing the appropriate priors for the ill-posed ESI problem has been a 

challenging task. Deep learning methods have the advantage of implicitly learning the source 

distributions instead of explicitly formulating the regularization terms, providing opportunities for 

a more accurate and robust ESI estimate. There have been several attempts recently to image 

brain activities using deep neural networks [55–60]. They have shown excellent performance in 

computer simulations, demonstrating the power of DL-based ESI methods. However, since 

synthetic training data is required due to the lack of real recordings [61], it is of great importance 

to evaluate the generalizability of the trained network on a group of subjects with different 

anatomical features and signal properties. A recent study [30] filled this gap by validating the 

trained DeepSIF network on a group of epilepsy patients and showed that it can provide accurate 
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and robust imaging results in real EEG recordings. However, most of these studies, including 

DeepSIF, were developed and validated under the EEG setup. Although EEG and MEG share 

ample similarities, and many ESI methods can be applied to both simply by changing the leadfield 

matrix in the forward problem to the corresponding modality, rigorous validation is required before 

applying DL-based ESI methods on MEG measurements, as the differences in the experimental 

setup, forward processes, signal properties, etc, could make the training process designed for 

EEG signals inappropriate for MEG measurements. 

In this work, we demonstrated, in systematic simulations, that DeepSIF could be 

successfully adapted to process MEG measurements, reaching a median LE of around 4 mm for 

the GDeepSIF model even when a different head model was used in the test data. After fine-

tuning the GDeepSIF with personalized training data, the median LE decreased to around 1 mm. 

When evaluating on the interictal spikes from focal epilepsy patients on a sublobar level, both 

GDeepSIF and PDeepSIF can provide a high sublobar concordance rate (83 % and 93%). 

Various sublobar concordance rates have been reported for MEG (47% to 91%) [62–64] and EEG 

interictal spike imaging (36% to 95%) [10,65]. In terms of sublobar sensitivity and specificity, there 

is a tradeoff between the two metrics depending on the properties of the source imaging methods 

evaluated. For more diffused imaging methods, a sublobar sensitivity of 84%-98% and specificity 

of 38%-60% can be reached, and the geometric mean of the sensitivity and specificity is in the 

range of 56% - 77%  [66,67] . When using sparse imaging methods for a higher spatial specificity 

value, the sensitivity could drop to 25%-40% [62]. Correctly estimating the extent of the sources 

objectively remains to be a challenging problem [11,68]. DeepSIF provides a reasonable balance 

between identifying the correct source regions and having spurious activations, as the geometric 

mean of the sublobar sensitivity and specificity is 87% and 78% respectively for PDeepSIF and 

GDeepSIF. Both GDeepSIF and PDeepSIF models can reach a high specificity (> 97%) without 

excessive sacrificing on the sensitivity (> 66%). It is observed that GDeepSIF performance is 

worse compared to PDeepSIF performance due to the variations among the patient head models. 

However, GDeepSIF could still be used as a valuable and efficient tool for guiding the implantation 

of iEEG electrodes on a sublobar level, as it has shown high concordance with the SOZ 

subregions.  

The differences between the GDeepSIF model and PDeepSIF model were more 

significant when compared to the clinical ground truth quantitatively. The spatial specificity 

compared to the resection of GDeepSIF remains to be above 0.8, however, the sensitivity has a 

huge decrease. This indicates that, even though GDeepSIF can correctly identify the subregions 

of the source activity, there is a shift of between the clinical ground truth and the GDeepSIF 

estimate, reducing the overlap area between the resection and source estimates. This can also 

be observed in the increased SOZ LE (24.86 ± 10.40 mm). On the other hand, personalized head 

model information can further reduce the error caused by the shift of the GDeepSIF source 

estimation, improving the sensitivity value and reducing localization error, as shown in the patient 

example. The SOZ LE decreased to 15.78 ± 5.53 mm for PDeepSIF, and the SD decreased to 

8.88 ± 8.25 mm, demonstrating that excellent source localization results can be obtained in real 

patients when personalized head models are used.  

Using a generic head model (template MRI with standard channel locations) for MEG 

source imaging is less established than EEG. Studies have shown that when evaluating the effect 

of head models variations on the leadfield matrices and ESI results, the major differences were 

caused by the MEG sensor co-registration errors other than the shape of the volume conductor 
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or the measurement noise [34,69]. As SQUID MEG sensors are not directly placed on the scalp, 

head points describing the head shape as well as the relative positioning between the head and 

helmet are necessary for an accurate MRI and MEG co-registration and imaging analysis [70]. 

This posed a unique challenge for GDeepSIF method as the differences between the generic and 

personalized head model, especially the sensor locations, are not negligible for MEG. 

To introduce the correct head shape information to DeepSIF, personalized training data 

can be used. Training a separate DeepSIF model individually from scratch inevitably increased 

the computational burden, and we proposed to use the personalized training data to fine-tune the 

GDeepSIF model to reduce the training time to acquire a personalized model by five times (Fig. 

2c). As shown in Fig. 2c, GDeepSIF already learned the mapping relationship between the source 

and sensor space and can provide reasonable imaging results even for data generated by 

different head models. Fine-tuning based on GDeepSIF weights can provide a faster convergence 

and significantly reduce the training time for PDeepSIF model, without sacrificing the imaging 

performance. We demonstrated that the fine-tuned PDeepSIF can provide accurate and robust 

source reconstructions under various simulation conditions (multiple simultaneous sources, low 

SNR, deeply located sources, etc). As shown in Fig. 5, PDeepSIF can also provide accurate 

imaging results of interictal spikes from epilepsy patients, with high spatial specificity of 90% and 

low SOZ LE (15.78 ± 5.53 mm), which means the source estimates are concordant with the clinical 

findings without spurious activations at other locations, an important advantage over other 

benchmark ESI methods. Note that even if we can achieve a very high specificity value, the 

sensitivity value compared to resection volume is around 0.4, which means the estimated sources 

from interictal spikes are within but smaller than the resected region.  

Since multiple factors can influence the resection volume in practice, starting with 

anatomo-electro-clinical correlation, patient’s other clinical characteristics, including individual 

functional level, identified cognitive deficits, treatment goals (e.g., “cure” vs. meaningful seizure 

reduction or control/reduction of the most disabling seizures), imaging and functional testing 

findings, encountered individual anatomical reality during an operation, neurosurgeon’s 

assessment of risks and even possibly their practice style, the resection region is not necessary 

the ground truth for the interictal spike activities [71,72]. However, it is still a valuable benchmark 

to validate our imaging results, especially in seizure free subjects.  

In sum, we have demonstrated that DeepSIF can provide robust capability of imaging 

brain activity from MEG recordings. The present results indicate that even with a generic head 

model, GDeepSIF can still offer good capability of localizing epileptiform activity at sublobar level. 

With the additional fine-tuning step with personalized data, PDeepSIF can accurately estimate 

the extent, location, and temporal dynamics in computer simulations, and provide interictal spike 

imaging results concordant with clinical findings. This extension of DeepSIF from EEG to MEG is 

a crucial step for the development of ESI methods in general. However, it is worth noting that, the 

conclusions were drawn based on the magnetometers of the SQUID MEG systems. Gradiometers 

have the advantage of reducing the environmental noise during the recording [32], while a higher 

sensitivity for detecting mesial temporal spikes has been reported for magnetometers [36]. The 

influence of different sensor configurations on ESI methods remains to be an open question that 

worth exploring in future investigations [68,73].  
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Table 1 

Patient Information 

Pt. 
# Gender Surgical Resection Intracranial EEG Follow-up 

Duration 
Surgery 

age 

1 M Right anterior temporal lobectomy SEEG over the right frontal 
temporal region 

2 years 19 

2 F 
Left anterior temporal lobe 
lobectomy including mesial 

structure 
SEEG over the left temporal 

region 
2.5 years 17 

3 F 
Right anterior temporal lobectomy 
with amygdalohippocampectomy 
and resection of seizure focus in 

right orbital frontal area 

SEEG over the right 
temporal region 

2 years 42 

4 F Right anterior temporal lobectomy 
including mesial structure 

SEEG over the right 
hemisphere 

3.5 years 10 

5 M Left anterior temporal lobectomy 
including mesial structures 

SEEG over the left frontal 
temporal region 

1.7 years 28 

6 F right temporal lobectomy and 
right frontal topectomy 

SEEG over the left and right 
temporal region 

1.5 years 53 

7 M right temporal lobectomy  N.A. 3 years 9 

8 M Right anterior temporal lobectomy Right temporal grids 5 years 50 

9 M Left anterior temporal lobectomy 
Left 

temporal grids and  
strips 

2 years 64 

10 F A resection in the right 
supplementary motor area  

Right frontal and parietal 
grids 3 years 52 

11 M Resection of seizure focus and 
anterior temporal lobectomy. 

Left temporal and frontal 
grids 4 years 43 

12 M Right temporal lobectomy  Right temporal grids 7 year 25 

13 F Left anterior temporal lobectomy  
Grids and  

strips in right frontal, 
temporal and parietal 

regions 
3 years 52 

14 M Right temporal lobectomy  Right temporal grids 7 years 45 
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15 F left frontal resection 
Grids and  

strips in left frontal, 
temporal and parietal 

regions 
6 years 30 

16 M A right frontal lobe seizure focus 
resection Right frontal grids 6 years 32 

17 F Resection of her left temporal and 
orbitofrontal epileptogenic zone  

Left 
temporal grids and  

strips 
4 years 52 

18 F Left temporal lobectomy SEEG over the left temporal 
region 4 years 42 

19 F Right temporal lobectomy  SEEG over the right 
temporal and frontal region 3 years 30 

20 M Left frontal resection  SEEG over the left and right 
frontal region 1 year 46 

21 F Removal of the right frontal AVM SEEG over the right parietal 
region 3 years 17 

22 F Left temporal lobe resection SEEG over the left temporal 
region 5 years 27 

23 F 
Resection of the presumed 

transmantle cortical dysplasia in 
the right frontal lobe. 

SEEG over the right 
temporal and frontal region 3 years 44 

24 M Left transfusiform 
amygdalohippocampectomy  

SEEG over the left and right 
temporal region 4 years 54 

25 F 
right anterior temporal lobectomy 
with hippocampal and amygdala 

resection 
SEEG over the right temporal 

region 2 years 60 

26 M left anterior temporal lobectomy SEEG over the left temporal 
and parietal region 5 years 36 

27 F left temporal lobectomy  
Grids and  

strips in left frontal, temporal 
and parietal regions 

4 years 50 

28 M resection SEEG over the right temporal 
and occipital region 7 years N.A. 

29 M resection of a left temporal lesion  SEEG over the left and right 
temporal region 1 year 20 
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Supplementary Information 
 

Figures 

 

 

 

 

Figure S1. The relationship between the imaging performance and a, the distance or b, the temporal correlation 
between sources for the two-source scenario in computer simulations. The plots depict the median localization error, 
linear correlation over time, and the geometric (geo) mean of sensitivity and specificity (SNR = 5, 10, 15, and 20 dB) 
when the distance or temporal correlation between the two sources is varied. The error bar shows the 25th to 75th 
percentile. The distance between sources is defined as the minimum distance between the two extended sources. 
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Figure S2. The ratio between minimum and maximum singular value of the lead-field matrix at each source location 
(Nchannel*3) was defined as the R value to indicate the sensitivity to a certain source orientation. A low R value 
indicates the difference between the minimum and maximum gain of the leadfield is large, which means that the 
measurement is more sensitive to a certain orientation. a, R value distribution over the cortex. b, R value histogram. 
c, PDeepSIF performance for low R value and high R value conditions for a single source dataset. R value for a source 
patch is calculated as the mean R value of all the vertices in the source patch. Low and high value is divided based on 
the median of the R distribution (median = 0.07). The geo mean represents the geometric mean of sensitivity and 
specificity. Corr represents the linear correlation between the estimated time activity and the simulated time profiles. 
The distributions are demarcated within the 10th to 90th percentile. The gray bars span the 25th to 75th percentile, 
the white circle is the median and the colored horizontal bar is the mean of the distribution. 
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Figure S3. Clinical validation for GDeepSIF and PDeepSIF models for temporal lobe epilepsy (TLE, n=22) and 
extratemporal lobe epilepsy (ETLE, n=7). [P] and [G] represent PDeepSIF and GPDeepSIF respectively. TLE: Specificity 
– 0.93 ± 0.10 [P], 0.87 ± 0.10 [G]; Sensitivity – 0.37 ± 0.27 [P], 0.14 ± 0.20 [G]; SD – 7.43 ± 8.27 mm [P], 21.40 ± 20.40 
mm [G]; SOZ LE – 15.91 ± 4.69 mm [P], 26.61 ± 11.49 mm [G]. ETLE: Specificity – 0.77 ± 0.23 [P], 0.70 ± 0.14 [G]; 
Sensitivity – 0.58 ± 0.35 [P], 0.12 ± 0.23 [G]; SD – 11.41 ± 7.74 mm [P], 24.01 ± 13.67 mm [G]; SOZ LE – 15.41 ± 7.94 
mm [P], 19.86 ± 3.28 mm [G]. There is no statistical significance between TLE and ETLE for all metrics (Two-sided 
Wilcoxon rank sum test, p>0.19). 
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