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Summary 26 

Functional connectivity (FC) can provide insight into cortical circuit dysfunction in 27 

neuropsychiatric disorders. However, dynamic changes in FC related to locomotion with 28 

sensory feedback remain unexplored. To investigate FC dynamics in locomoting mice, we 29 

developed mesoscopic Ca2+ imaging with a virtual reality (VR) environment. We find rapid 30 

reorganization of cortical FC in response to changing behavioral states. Using machine learning 31 

classification, behavioral states are accurately decoded. We then use our VR-based imaging 32 

system to study cortical FC in a mouse model of autism and find that locomotion states are 33 

associated with altered FC dynamics. Furthermore, we identify FC patterns involving the motor 34 

area as the most distinguishing features of the autism mice from wild-type mice during 35 

behavioral transitions, which might correlate with motor clumsiness in patients with autism. 36 

Our VR-based real-time imaging system provides invaluable information to understand FC 37 

dynamics linked to a behavioral abnormality of neuropsychiatric disorders. 38 

  39 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.11.14.516121doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.14.516121
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

3 

Introduction 40 

Neocortical activity displays dynamic changes across multiple cortical areas to facilitate 41 

processing of sensory information and generate action outputs 1. Such large-scale network 42 

dynamics can be investigated using functional connectivity (FC), defined as temporal 43 

dependence of neuronal activity between anatomically separated brain regions 2. With 44 

functional magnetic resonance imaging (fMRI), FC is quantified as the extent of coactivation 45 

between spontaneous blood-oxygen-level-dependent (BOLD) signals during rest 2,3 or during 46 

task conditions necessitating minimal movement. FC can also be measured in rodents 4. 47 

However, immobilization of a subject within an MRI scanner and the slow nature of BOLD 48 

signals in resting-state fMRI has limited the study of cortical activity during complex behaviors 49 

involving whole-body movement and locomotion. Although the ability to record sensory-50 

evoked BOLD signals in awake head-restrained mice was recently developed 5, techniques to 51 

measure FC during natural and voluntary movement in an interactive environment remain to 52 

be established. 53 

 FC provides a valuable tool for investigating functional brain network organization in 54 

autism spectrum disorder (ASD) 6. A large body of resting-state fMRI studies reports functional 55 

under-connectivity (hypo-connectivity), over-connectivity (hyper-connectivity), and a 56 

combination of both global and local alterations in the ASD brain 7. In addition, machine 57 

learning models can be trained to predict an individual’s diagnostic status using their FC, 58 

although clinical heterogeneity is a significant challenge 8,9. In contrast to resting-state and task 59 

conditions, cortical dynamics during voluntary behaviors such as locomotion remain to be 60 

understood, particularly in neuropsychiatric disorders. Individuals with ASD exhibit motor 61 

coordination deficits 10 and impairment of movement planning in goal-directed locomotion 11,12. 62 

Furthermore, accumulating evidence suggests that sensorimotor difficulties seen in ASD are 63 

strongly associated with the development and maintenance of social and non-social core 64 

symptoms 13. 65 

 In this study, we sought to elucidate the rapid reorganization of functional cortical 66 

networks during locomotion, focusing on periods transitioning between locomotion (i.e., 67 

running) and rest conditions, in normal and ASD model mice. To this end, we developed an 68 

integrated Ca2+ imaging and virtual reality (VR) platform to study neural activity in mice 69 

during VR locomotion, including statistical analysis of second-by-second FC dynamics, graph 70 

theoretical analysis of network structures, and machine learning classification of FC patterns 71 

using support vector machine (SVM). Cortex-wide mesoscopic Ca2+ imaging enabled the 72 
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measurement of neural activity with high spatiotemporal resolution 14,15. VR created an 73 

environment that simulated real-world situations for head-fixed mice and allowed us to 74 

manipulate sensory information 16,17. Using this experimental and analytical framework, we 75 

assessed cortical FC of a copy number variation mouse model for human 15q11-13 duplication 76 

(15 dup) in different behavioral states. We previously reported that 15q dup mice display ASD-77 

like social communication deficits 18,19 and exhibit abnormal somatosensory tuning under 78 

anesthesia and whole-brain functional hypoconnectivity in awake resting-state fMRI 5,20. 79 

However, cortical FC alterations during behavior remain unknown. Here, we found that these 80 

mice exhibited impaired locomotion-dependent FC dynamics and aberrant FC patterns 81 

involving hyperconnectivity of the motor areas, highlighting the importance of motor areas in 82 

cortical FC dysfunction during spontaneous behavioral switching in ASD. 83 

 84 

Results 85 

To measure cortical FC in mice engaged in voluntary movement, we used transcranial Ca2+ 86 

imaging combined with a head-fixed VR system (Figures 1A–1C; STAR Methods). The 87 

virtual environment mimicked a realistic open-field enclosure and consisted of a two-88 

dimensional square arena with differently colored walls (Figure 1B). We crossed Emx1-Cre 89 

driver mice, which allows extensive Cre-mediated recombination in the forebrain, with Ai95D 90 

mice to express the genetically-encoded calcium indicator GCaMP6f in cortical excitatory 91 

neurons of the offspring Emx1G6 mice (Figure 1D; STAR Methods). During a 10-min VR 92 

session, mice exhibited voluntary locomotion (speed > 0.5 cm/s) in this virtual arena; they 93 

spent 58.7 ± 19.7 % of the total duration in a state of locomotion (mean ± SD, n = 89 sessions 94 

from 7 mice). For further analysis, we excluded periods of frequent alterations between 95 

locomotion and rest and focused only on long episodes (continuously ≥ 3 s) of locomotion and 96 

rest (Figure 1E). The percentage of time spent in long locomotion and rest was 50.3 ± 22.1 % 97 

and 32.5 ± 20.2 %, respectively (mean ± SD, n = 89 sessions from 7 mice). Average lengths of 98 

long locomotion and rest episodes were 10.0 ± 5.4 s (mean ± SD, n = 2,836 episodes from 89 99 

sessions) and 9.4 ± 6.6 s, (mean ± SD, n = 1,903 episodes from 89 sessions), respectively. There 100 

were no significant changes in these behavioral parameters across sessions (Figure 1F). We 101 

imaged cortical fluorescence changes at a frame rate of 30 frames per second in 50 ROIs 102 

(regions of interest) that covered most of the dorsal cortical subregions (Figures 1G and 1H; 103 

Figures S1 and S2; STAR Methods). Pair-wise correlation coefficients were computed 104 

between cortical ROIs at a temporal scale of a second, using a one-frame sliding window. We 105 
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then applied graph-theoretic analyses to characterize the resulting network dynamics and 106 

visualized highly correlated ROI pairs (r > 0.8) using an FC map (Figure 1H; STAR Methods). 107 

 108 

Graph analysis of cortical network dynamics during behavioral transitions 109 

First, we examined the activity of different cortical areas during behavioral transitions from 110 

long rest to long locomotion (locomotion onset, n = 566 events from 89 sessions) and from 111 

long locomotion to long rest (locomotion cessation, n = 643 events from 89 sessions; Figure 112 

2A). During a period that spanned 3 s before and after the onset of locomotion, many cortical 113 

areas displayed marked transient increases in fluorescence intensity that began slightly prior to 114 

the onset (dF/F; 0.05 ± 0.27 % at −0.5 s; 0.62 ± 0.45 % at 0 s; n = all 50 ROIs, mean ± SD; 115 

Figure 2A). In contrast, the fluorescence intensity of all areas rapidly and substantially 116 

decreased immediately after the cessation of locomotion (−0.06 ± 0.12 % at 0 s; −0.54 ± 0.34 % 117 

at 0.5 s; Figure 2A). Such large signal changes were not observed during control periods that 118 

were randomly selected independent of the locomotion state (−0.01 ± 0.03 % at −0.5 s; −0.03 119 

± 0.04 % at 0 s; 0.01 ± 0.03 % at 0.5 s; Figure 2A). Hierarchical clustering of regional 120 

fluorescence signals revealed that response profiles of all ROIs during the onset periods could 121 

be divided into two major clusters; one represented the considerable transient activity of 122 

sensory (V1, HL, FL, etc.) and association (PT, RS, etc.) areas and the other represented 123 

sustained activity of the motor-related regions (M1, M2, etc.; Figure S3A). On the other hand, 124 

clustering of activity around the locomotion cessation differentiated M2 and CG from the major 125 

clusters (Figure S3B). 126 

Next, we investigated cortical FC dynamics during transition periods by visualizing 127 

indices that represent network centrality of each cortical area. Node degree captures the extent 128 

to which a region connects with other regions. Betweenness centrality measures how much a 129 

region is in-between other regions 21. Before locomotion onset, FC among posterior areas (blue 130 

and green edges), most notably bilateral HL, TR, PT, and Vm, gradually increased (time 131 

window from −3 to −1, Figure 2B top) and node degree also increased in many areas (15.8 ± 132 

5.9 at −3 s; 20.9 ± 6.3 at −1 s; n = all 50 ROIs, mean ± SD; Figure 2C). At locomotion onset, 133 

FC among posterior regions rapidly decreased, and highly correlated networks among anterior 134 

motor areas (orange and red edges) subsequently emerged (Figure 2B top). The node degree 135 

of most areas rapidly declined after locomotion onset (15.4 ± 3.6 at 1 s, n = all 50 ROIs, mean 136 

± SD), although the primary motor area remained elevated (M1p, 13.5 ± 0.7 at −3 s; 16.7 ± 0.7 137 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.11.14.516121doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.14.516121
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

6 

at −1 s; 17.7 ± 0.1 at 1 s, n = 2 ROIs; Figure 2C). At the cessation of locomotion, the dense 138 

anterior networks among motor areas disappeared, and the FC among posterior regions re-139 

emerged (Figure 2B middle). These locomotion-dependent dynamic reconfigurations of 140 

functional network architecture were absent during random control periods (Figure 2B 141 

bottom). Taken together, the results demonstrate that the correlation among anterior motor 142 

areas becomes dominant over posterior sensory/association cortices during locomotion, 143 

whereas this reciprocal relationship between anteroposterior cortical domains is reversed 144 

during rest. 145 

The betweenness centrality of M1p remained high during locomotion (Figure 2D), 146 

consistent with the notion that the primary motor area plays a pivotal role in voluntary 147 

movement. In addition, the betweenness centrality of the CG and PTa increased rapidly at 148 

locomotion onset, and PTa was high again immediately before cessation of locomotion. In 149 

contrast, TR and Vma displayed delayed rises after the onset and peaked immediately before 150 

cessation (Figure 2D). Fluorescence changes of each ROI were significantly correlated with 151 

node degree but not with betweenness centrality before locomotion onset (Figure S4), 152 

indicating that these functional network properties do not directly reflect the magnitude of 153 

fluorescence changes. These findings suggest that locomotion onset and cessation do not 154 

necessarily mirror each other, and hub structure dynamically changes within the period of 155 

locomotion. Moreover, we found significant increases in characteristic path length (CPL), a 156 

measure of the efficiency of information transfer that represents the average shortest path 157 

length between all region pairs (Figure 2E), and modularity Q, which means the extent to 158 

which the network is subdivided into nonoverlapping groups of regions (Figure 2F). These 159 

findings suggest that functional cortical networks manifest a more modular structure during 160 

movement than during rest periods of no locomotion. We found that correction for 161 

hemodynamic signals did not significantly impact these findings (Figure S5).  162 

 163 

Role of visual feedback in behavioral state-dependent cortical network dynamics 164 

Animals use visual information to explore external environments. To investigate the role of 165 

visual sensory processing on our results, we tested mice exploring a virtual environment with 166 

no projection of visual landscape (Figure 3). In this condition, mice spent 46.9 ± 24.8 % and 167 

35.2 ± 24.6 % of total time engaged in long locomotion and rest, respectively (mean ± SD; 168 

long locomotion, P = 0.38, vs. control; long rest, P = 0.46, vs. control, t-test, n = 71 sessions 169 
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from 17 mice). Total distances traveled did not differ significantly from the control experiments 170 

with projection (Figure 3B). However, the mice often exhibited local circling and were 171 

impeded by invisible walls and corners when they explored without visual feedback (Figure 172 

3A). As a result, they traversed a significantly smaller area within the arena (Figure 3C). These 173 

results demonstrate that vision provides important sensory information when mice explore the 174 

virtual arena. 175 

 We then examined FC dynamics under no visual feedback. The fluorescence changes 176 

at locomotion onset and cessation were comparable to those in the control experiments except 177 

for larger and smaller amplitudes in CG (mean ± SD; 136.8 ± 34.0 %, vs. control, n = 71 178 

sessions from 17 mice) and V1a (67.1 ± 19.9 %), respectively (Figures 3D and 2A). While FC 179 

networks were similar to those in the control experiments (Figures 3E and 2B), the number of 180 

connections during locomotion was significantly higher under no projection (Figures 3F, 3H, 181 

and 2C, after onset and before cessation). As in control experiments, the betweenness 182 

centrality of M1p was constantly high during locomotion. However, these centralities of CG, 183 

TR, and Vma were substantially reduced (no projection, 102.8 ± 41.7; control, 145.5 ± 33.7; 184 

mean ± SD, n = 6 ROIs; Figures 3G and 2D), which led to significant decreases in overall 185 

betweenness centrality during locomotion (Figure 3I). Furthermore, CPL and modularity Q 186 

were also significantly reduced during locomotion onset (Figure 3J–3K). These results 187 

indicate that the lack of visual feedback markedly weakens the network modularity of 188 

locomotion-dependent cortical FCs.  189 

 Desynchronization of cortical population activity often manifests when animals 190 

engage in a task 22. Using the network-based statistic (NBS) 23, we next tested for changes in 191 

FC during transitions between rest and locomotion. Importantly, this analysis allowed us to 192 

identify FCs that exhibited not only significantly higher correlations but also significantly 193 

lower correlations (i.e., decorrelation). In the control experiments, we observed gradual and 194 

marked increases in FC among posterior sensory areas and emergence of decorrelated 195 

subnetworks of anterior motor areas before locomotion onset (time window from –3 to –1, 196 

Figure 4A). After locomotion began, long-range decorrelations among anterior (motor areas), 197 

parietal (CG) and posterior (visual areas) cortices rapidly emerged, followed by robust 198 

decorrelations among posterior sensory cortices 2–3 s after locomotion onset (Figure 4A). In 199 

contrast, persistently decorrelated subnetworks of posterior sensory cortices during locomotion 200 

expanded to include M2 immediately before locomotion cessation, followed by the emergence 201 

of sustained decorrelations among anterior motor cortices and widespread transient 202 
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correlations among posterior sensory cortices beginning 1–2 s after cessation (Figure 4B).  203 

 The emergence of dense (de)correlated networks among sensory areas during 204 

behavioral transitions suggests that sensory processing could profoundly affect FC during these 205 

periods. Interestingly, we found that the decorrelated but not correlated networks markedly 206 

diminished in the condition with no projection of visual landscape (Figures 4C and 4D). Rapid 207 

decorrelations between M2 and V1 at ~1 s after locomotion onset and delayed decorrelations 208 

among posterior sensory areas, including not only visual but also somatosensory cortices, at 209 

~3 s after locomotion onset were almost absent (Figure 4C), although decorrelations between 210 

CG and V1 and correlations between bilateral visual areas at ~1 s after locomotion onset 211 

remained. Persistent decorrelations among posterior sensory areas before cessation and 212 

transient correlations among those areas ~2 s after the cessation were considerably weakened 213 

(Figure 4D). Collectively, these results demonstrate that the absence of visual feedback 214 

markedly alters exploration behavior and dynamics of multiple functional subnetworks 215 

primarily involving the visual cortex, such as long-range anteroposterior FCs between motor 216 

and visual cortices and cross-modal FCs between somatosensory and visual cortices. 217 

 218 

Decoding behavioral dynamics using functional cortical network 219 

Having found that the transitions between states of rest and locomotion were each characterized 220 

by distinct cortical network architectures, we next tested whether an animal’s behavioral state 221 

can be decoded from its cortical network. To this end, we trained support vector machine 222 

(SVM) classifiers using datasets of FC containing all time frames from four mice (train set) 223 

and classified FCs for the remaining three mice (test set) into two behavioral states. This was 224 

repeated for all combinations of mouse assignments to test and train sets. Accuracy of the out-225 

of-sample classification (Test, 88.9%, median, n = 35 classifiers) was comparable to the level 226 

achieved by classification for the train set (Train, 89.0%) and substantially higher than expected 227 

due to chance, as determined by randomly shuffling classification labels (Shuffled, 58.3%; 228 

Figure 5A). Incorrect classification mainly occurred during short periods flanking the state 229 

transition, and classification accuracy was highest during continuing locomotion and rest 230 

periods. However, accuracies remained modest during the intermediate periods in which two 231 

contrasting states coexisted (time window from −1 to 1, Figure 5B). Accordingly, the accuracy 232 

of classification increased to 92.3 % (n = 1,326,379 frames from 89 sessions) when the periods 233 

of short locomotion and rest episodes (less than 3 s) were excluded, whereas accuracy within 234 
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the periods of short episodes was 65.0 % (n = 275,621 frames from 89 sessions). 235 

To identify the features that contributed significantly to the classification, we sorted 236 

all FCs according to feature weights and found that M1, Mou, FL, and HL were significantly 237 

overrepresented in the top 0.5 % and bottom 0.5 % FCs (6 FCs each) (Figure 5C). We then 238 

retrained the classifiers using these top 0.5 % and bottom 0.5 % FCs and achieved classification 239 

accuracies that were comparable to the classifier trained with all FCs (Top+Bottom, 84.2 %; 240 

Figure 5D) and significantly better than the classifiers trained with a randomly selected 1 % 241 

of all FCs (Random, 71.0 %; Figure 5D). Collectively, these results demonstrate that 242 

connectivity of the primary motor and primary somatosensory forelimb, hindlimb, and mouth 243 

areas contains information sufficient for highly accurate differentiation of locomotion and rest 244 

states. 245 

 246 

Functional hyperconnectivity and impaired locomotion-dependent dynamics in the 247 

cortex of a mouse model of ASD 248 

We applied our VR-based imaging system to investigate behavior-dependent cortical network 249 

dynamics of ASD model mice. We used Emx1G615q dup mice that possessed the paternal 250 

duplication of the mouse syntenic region of human 15q11-13 and expressed GCaMP6f in 251 

excitatory neurons in the cortex. Emx1G615q dup mice showed lower locomotor activity in the 252 

virtual arena during 10-min sessions (Figures 6A and 6B). They spent 25.8 ± 17.1 % and 59.1 253 

± 21.3 % of total time engaged in long locomotion and rest, respectively (mean ± SD; long 254 

locomotion, P = 5.3×10-14, vs. Emx1G6; long rest P = 6.9×10-15, vs. Emx1G6; t-test, n = 88 255 

sessions from 9 mice; Figure 6C), and average lengths of long locomotion and rest per episode 256 

were 9.0 ± 4.2 s (P = 0.17, vs. Emx1G6, t-test, n = 1,523 episodes from 88 sessions) and 20.5 257 

± 14.7 s (P = 2.7×10-9, vs. Emx1G6, t-test, n = 1,882 episodes from 88 sessions), respectively. 258 

Functional sensory mapping confirmed that locations and response amplitudes of primary 259 

somatosensory subareas were not markedly different between Emx1G615q dup mice and 260 

Emx1G6 mice (Figure S7), although the area responsive to whisker stimuli was larger in 261 

Emx1G615q dup mice (Figures S7C and S7D), as reported in our previous study 20. 262 

Although the fluorescence changes at locomotion onset and cessation in Emx1G615q 263 

dup mice were generally similar to those in Emx1G6 mice (Figure 6D, see also Figure 2A), the 264 

magnitude of changes in a few areas, such as PTa (mean ± SD; Emx1G615q dup, -0.10 ± 0.21 %; 265 

Emx1G6, 1.33 ± 0.29 % at 0 s) and BCm (Emx1G615q dup, -0.15 ± 0.20 %; Emx1G6, 0.63 ± 266 
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0.15 % at 0 s), were low (Figure 6D). These differences were not likely due to different 267 

baseline fluorescence levels in Emx1G615q dup mice, as average fluorescence intensities of each 268 

cortical area were only slightly higher in these mice (Figure S6). The overall patterns of FC 269 

networks in Emx1G615q dup mice were also similar to those in Emx1G6 mice (Figure 6E, see 270 

also Figure 2B). However, the strength of FC appeared higher in Emx1G615q dup mice, 271 

particularly FCs connecting ROIs in anterolateral motor cortices (i.e., M1 and M2) and FCs 272 

bridging anterior and posterior cortex (e.g., M1, PT, and RS) during locomotion (Figure 6E), 273 

as supported by generally larger node degrees compared with Emx1G6 mice (Figures 6F and 274 

6H). In Emx1G615q dup mice, betweenness centrality, CPL, and modularity Q were significantly 275 

lower than in Emx1G6 mice during locomotion (Figures 6I–6K), suggesting that cortical 276 

hyperconnectivity results in a less modularized, more interconnected network in behaving 277 

Emx1G615q dup mice. Given the baseline hyperconnectivity in Emx1G615q dup mice, surprisingly 278 

fewer locomotion-dependent decorrelations were detected, particularly in the posterior cortex 279 

(Figure S8). These findings collectively demonstrate that functional cortical networks in 280 

Emx1G615q dup mice exhibit hyperconnectivity and enhanced interconnectivity, but a 281 

locomotion-related reconfiguration of network architecture is dampened compared to Emx1G6 282 

mice.  283 

 284 

Diagnosis of ASD model mice using temporal FC during behavioral transitions 285 

Compared to Emx1G6 mice, we found that Emx1G615q dup mice were characterized by 286 

significant hyperconnectivity of M2 and M1 areas during the transitions, most notably 1 s after 287 

onset and 2 s after cessation of movement (Figures 7A and 7B). Bilateral connections of 288 

somatosensory nodes (especially HL and TR) were significantly decorrelated compared with 289 

Emx1G6 mice regardless of behavioral state (Figures 7A and 7B). In addition, FCs between 290 

PT and M1, M2, FL, and HL showed decorrelation during locomotion, most evidently before 291 

cessation (Figure 7B). 292 

To identify FC features that most distinguished Emx1G615q dup mice from Emx1G6 293 

mice, we conducted SVM classification of FC during locomotion onset and cessation into the 294 

two genotypes. The SVM classifiers trained with all features (All FCs) at each time point 295 

during behavior transitions accurately classified the Emx1G615q dup and Emx1G6 genotypes 296 

(Figures 7C–7F). As with behavior state classification, the SVM classifiers trained with top 297 

0.5 % and bottom 0.5 % features (Top+Bottom) performed comparably to the classifiers trained 298 
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with all FCs, and significantly more accurately classified FC than the classifiers trained with 299 

randomly selected 1 % features (Random) at all time points (Figures 7C and 7D). FCs 300 

including M2 and M1 were significantly over-represented in the top 0.5% and bottom 0.5% 301 

features (Figures 7E and 7F), pointing to these cortical areas as key nodes that primarily 302 

contribute to deficits of cortical processing during spontaneous behavioral switching of 303 

Emx1G615q dup mice. 304 

Finally, we tested the importance of the behavior transition periods for genotype 305 

classification. The accuracies of classifiers trained with data from the locomotion that occurred 306 

within the transition periods (median accuracy, After-On, 100 %; Before-Ces, 100 %; Figure 307 

7G) were significantly higher than those trained with data from continuous locomotion outside 308 

the transition (Out, 56.3 %; Figure 7G). Similarly, classifiers trained with datasets from the 309 

rest that occurred within the transition periods more accurately classified FC into the right 310 

genotype than classifiers trained with the data from continuous rest periods outside the 311 

transition (Before-On, 92.9 %; After-Ces, 100 %; Out, 84.5 %; Figure 7H). In summary, these 312 

results demonstrate that the distinguishability of FC is greater during transition periods than 313 

during continuous locomotion and rest. 314 

 315 

Discussion 316 

In this study, we investigated locomotion-induced changes in rapid cortico-cortical FC on the 317 

time scale of seconds by taking advantage of an integrated platform for mesoscopic Ca2+ 318 

imaging and VR that allows mice to run spontaneously with sensory feedback. Neural activity 319 

signals obtained using fluorescent Ca2+ indicator proteins are faster and typically more spatially 320 

resolved than BOLD signals. FC measured using fMRI and mesoscopic functional imaging is 321 

shown to overlap mainly with underlying structural connectivity 24–26 and reflect the correlation 322 

of modulation of neuronal spiking and LFP (local field potential) power between brain regions 323 

27–29. Our correlation-based FC analysis thus highlighted communication and interaction 324 

between cortical areas based on the level of local activity.  325 

 326 

Cortical FC dynamics during behavioral transitions with and without visual feedback 327 

The locomotion-dependent cortical functional network changes revealed in this study align 328 

with previous observations 27,30–34. Recent imaging studies demonstrate that M2, which has 329 
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dense reciprocal anatomic connections with sensory, parietal, and retrosplenial cortices 35, 330 

orchestrates widespread cortical activity during motor learning and in a decision-making task 331 

30,33. In our study, in line with the view that M2 acts to link antecedent conditions such as 332 

sensory information to motor actions 36, M2 showed a transient elevation of significant 333 

correlation with multiple sensory areas at 1–2 s ahead of locomotion onset, regardless of the 334 

presence or absence of visual feedback (Figures 4A and 4C). Recently, a study that investigated 335 

cortical FC dynamics during locomotion also highlighted the importance of M2 34. However, 336 

the role of sensory feedback for FC in this node had not been directly examined. Here, we 337 

found that FC between M2 and sensory cortices, including primary somatosensory cortex (S1) 338 

and primary visual cortex (V1), was decorrelated at 1 s after locomotion onset and 339 

demonstrated that this decorrelation completely disappeared when visual feedback was not 340 

available (Figures 4A and 4C). The implication is that locomotion with visual feedback drives 341 

V1 more strongly than without feedback and that direct top-down input from M2 to V1 sends 342 

motor-related signals for visual flow predictions 31,32. 343 

 The FC associated with S1 significantly contributed to the SVM classification of 344 

locomotion and rest (Figure 5C). Remarkably, a dense correlated network among nodes of 345 

sensory areas, including S1, exhibited widespread and gradual augmentation over a period of 346 

2 s before locomotion onset, but this characteristic functional subnetwork was no longer 347 

evident once locomotion started (Figure 4A). This preparatory emergence of a correlated 348 

network is reminiscent of the synchronous oscillations observed in S1 during premovement 349 

attentive immobility 37,38 and is also consistent with the recent finding that S1 neuronal activity 350 

is highly correlated with the onset of movement and can control locomotion through a direct 351 

pathway independently of the motor cortex 39. Our analysis of fast FC dynamics was thus able 352 

to capture a global picture of distributed transient functional subnetworks that may play a role 353 

in the preparation and initiation of voluntary movement.  354 

 355 

Cortical FC abnormalities in 15q dup mice 356 

Our FC analysis of a mouse model of ASD uncovered previously unknown impairment of 357 

cortical circuit function such as widespread hyperconnectivity, less modularized network 358 

during locomotion, and FC patterns involving M2 and M1 as the most distinctive signature for 359 

15q dup mice. 360 
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It has been reported that individuals with ASD exhibit motor coordination deficits and 361 

impairment of movement planning in goal-directed locomotion 10–12. Although various factors 362 

could influence the locomotor activity of mice, reduced time spent for long locomotion in 363 

Emx1G615q dup mice might result from impaired motor planning and execution due to abnormal 364 

M2-related FC. While human dup15q syndrome shows a gait pattern of the slow pace, poor 365 

postural control, and large gait variability 40 and patients with paternal duplication in 15q11-366 

13 display clumsy motor skill development 41, 15q dup mice were also reported to display mild 367 

motor impairment such as longer stride length and reduced stride frequency, and deficits in 368 

motor learning and cerebellar synaptic plasticity 42. Since recent studies demonstrate that 369 

cerebellar output modulates preparatory activity in the anterolateral motor cortex 43,44, the 370 

abnormal M2-related FC we observed during behavior state transitions may also arise as a 371 

consequence of deficiency of a more widespread functional network, potentially including 372 

interactions with extracortical brain regions. 373 

Compared with Emx1G6 mice, Emx1G615q dup mice show significant decorrelation of 374 

FC that links M2, CG, S1, and PT during locomotion (Figures 7A and 7B). This subnetwork is 375 

reminiscent of the human lateral frontoparietal network (L-FPN), which consists of the rostral 376 

and dorsolateral prefrontal cortex and the inferior parietal cortex and participates in executive 377 

functions such as goal-directed cognition and task switching 45. In task-based fMRI studies, 378 

atypical activation of L-FPN is observed during cognitive flexibility tasks in ASD brains 46. 379 

Thus, it would be of interest in the future to investigate whether abnormal interaction between 380 

nodes of a mouse L-FPN equivalent in 15 dup mice is implicated in impaired behavioral 381 

flexibility observed in reversed learning tests of the Morris water maze and Barnes maze 18.  382 

 383 

Future outlook 384 

Our machine learning classification results demonstrate that information regarding an animal’s 385 

ongoing behavioral state is represented in the fast dynamics of global cortical FC patterns 386 

(Figure 5). Identification of brain activity-based ASD biomarkers and machine learning-387 

assisted diagnosis of ASD using neuroimaging data are fields of active investigation 8,9,47. 388 

While recent human fMRI studies have begun to explore the use of dynamic resting-state FC 389 

to identify atypical brain network activity unique to ASD 46,47, our results highlight the 390 

importance of examining behavioral transitions rather than simply looking at the resting state 391 

(Figures 7C–7F). Exploring additional mouse models will accumulate more evidence to 392 
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identify common FC changes beyond heterogeneity of ASD 48. Furthermore, in future studies, 393 

it is of great interest to investigate whether the observed FC abnormalities can be reversed by 394 

pharmacologic treatment during postnatal development or adulthood of ASD model mice. Thus, 395 

our system to examine locomotion-dependent rapid FC changes based on mesoscopic cortex-396 

wide Ca2+ imaging and VR offers a new translational approach toward developing precise 397 

diagnostic tools and effective treatment for various brain disorders. A fascinating future 398 

possibility would be to create a multimodal “metaverse” in which mice interact with other 399 

conspecifics via their avatars to understand cortical FC dynamics during virtual social 400 

interaction 49.  401 
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STAR Methods  402 

Mice 403 

The following Cre driver, reporter, and ASD model mouse lines were used for breeding; Emx1-404 

cre (B6.129P2-Emx1<tm1.1(cre)Ito>/ItoRbrc, RBRC01345, RIKEN Bioresource Center; 50), 405 

Ai95D (B6;129S-Gt(ROSA)26Sortm95.1(CAG-GCaMP6f)Hze/J, JAX024105, Jackson 406 

Laboratories), 15q dup (B6.129S7-Dp(7Herc2-Mkrn3)1Taku, RBRC05954, RIKEN 407 

Bioresource Center; 18). Although some genotypes of transgenic mice that express GCaMP6 408 

reportedly exhibit cortical epileptiform fluorescence events (most often seen in Ai93 line) 51, 409 

we did not observe such aberrant activity in our combination of Emx1-cre mice and Ai95D 410 

mice. For experiments, Emx1G6 mice were obtained by crossing Emx1-cre mice with Ai95D 411 

mice. Emx1G615q dup mice were obtained by crossing male mice double-positive for Emx1-Cre 412 

and 15q dup and female mice positive for Ai95D. All mice were maintained in a reverse 12 h 413 

dark/light cycle (light off at 8 a.m.), and experiments were conducted during the dark phase. 414 

Food and water were available ad libitum.  415 

 416 

Surgery 417 

All procedures were carried out following the institutional guidelines and protocols approved 418 

by the RIKEN Animal Experiments Committee. Twenty-three Emx1G6 mice, nine Emx1G615q 419 

dup mice, and three C57BL/6J (non-G6) mice (all male at 12–20 weeks old) were used for 420 

experiments. During surgery, mice were anesthetized under 1.5–2.0 % isoflurane in air, and the 421 

body temperature was kept at 37°C using a heating pad. The scalp was cut off and the surface 422 

of the skull was cleaned using a cotton swab. The skull surface was then covered with a thin 423 

layer of transparent resin (Super-Bond C&B, Sun Medical, Japan), followed by placement of 424 

a coverslip (0.17 mm thickness, Matsunami, Japan) onto the resin layer 52. A custom-made 425 

metal head plate with a polygonal imaging window (size of opening, 13 mm long and 10 mm 426 

wide, Narishige, Japan) was affixed to the edge of the coverslip with dental cement so that the 427 

entire dorsal cortex was clearly visible transcranially through the window (Figures 1C and 1G). 428 

The mice were allowed to fully recover from anesthesia in a warmed chamber and then returned 429 

to their home cages. 430 

 431 

VR environment 432 
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A VR environment for head-fixed mice was constructed as previously described with 433 

modification (Figures 1A and 1B) 16,17. An air-floated spherical treadmill was composed of a 434 

20-cm polystyrene foam ball and a hemispherical stainless steel bowl with an internal diameter 435 

that fitted with the ball. The bowl had eight holes for pressured air at the bottom. The head of 436 

the mouse was fixed to a rigid head mount bar and posts via the head plate and positioned ~1 437 

cm above the top of the ball. The movement of mice was detected as rotations of the treadmill 438 

by two USB optical motion detectors (Gaming Mouse G302, Logicool) which were positioned 439 

orthogonal to each other on the equator of the treadmill. The movement signals from the motion 440 

detectors were transformed into analog output voltages using a custom-written LabVIEW 441 

program (National Instruments) to control the mouse’s virtual position via a joystick controller 442 

(USB Joystick Interface, 909991, APEM) connected to the VR software (OmegaSpace ver 3.7, 443 

Solidray). An interactive VR landscape rendered from a first-person perspective was projected 444 

by two compact liquid crystal display projectors (M110, Dell) onto the back of a custom-made 445 

40 cm-diameter translucent acrylic semi-domal screen that was positioned 20 cm in front of 446 

the mouse and covered 240° of the mouse’s visual field. 447 

 448 

Behavioral testing and mesoscopic cortical-wide Ca2+ imaging 449 

Mice underwent three pre-training steps to acclimate to the test environment. In the first step 450 

that began 3–5 days before surgery, mice were daily allowed to move freely on the top of the 451 

polystyrene foam ball that was rotated manually by an experimenter for 10 min and then 452 

handled by the experimenter under room light for another 10 min. The second step started as 453 

early as a day after surgery. In this step, mice were acclimated daily to head-fixation in the VR 454 

set-up for 3–5 days until they were able to sit and move on the treadmill in a balanced manner 455 

for 0.5–1 h under dim light (approximately 20 lux). In the final step, mice were acclimated to 456 

a complete VR environment and allowed to explore the virtual arena for 10 min daily for 5–10 457 

days until they could move along the wall of the arena and turn the corner without difficulty. 458 

 After completing these pre-training processes, spontaneous locomotion within the 459 

virtual arena and cortical activity were recorded in a 10-min test session daily for a total of 15 460 

sessions. The cortex was illuminated transcranially by a mercury lamp (U-HGLGPS, Olympus) 461 

through 460-480 nm (MGFPHQ, Olympus) or 457-487 nm (GFP-3035D, Semrock) excitation 462 

filters. Green fluorescence images were acquired using a CMOS camera (ORCA-Flash 4.0 v2, 463 

Hamamatsu) mounted on a HyperScope upright microscope (Scientifica) through a 2× 464 
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objective lens (Plan Apo λ, NA: 0.10, Nikon) and 495-540 nm (Olympus) or 502.5-537.5 nm 465 

(Semrock) emission filters. Images of 512 × 512 pixels (14.8 μm × 14.8 μm/pixel; field of view, 466 

7.5 mm × 7.5 mm) were collected at a rate of 30 frames per second while the head-fixed mouse 467 

freely explored the virtual arena. The mouse’s locomotion speed and coordinates were recorded 468 

at a sampling rate of 60 Hz using custom LabVIEW software. The rising edge of the TTL 469 

(Transistor-transistor-logic) signals that the camera generated at the acquisition of each frame 470 

were detected and recorded simultaneously with the behavioral data for synchronization with 471 

the imaging data. Experiments without projection of VR landscape were conducted (5 sessions 472 

after final sessions in the normal condition) by turning off the LCD projectors. 473 

 474 

ROI selection 475 

A total of 50 ROIs were defined bilaterally (25 ROIs for each hemisphere) so that they covered 476 

all the cortical subregions designated in a dorsal cortical map 53,54 (Figure 1G). During our 477 

preliminary analysis, we visually inspected sample fluorescence movies of spontaneous 478 

cortical activity from three mice and selected several tens of ROI candidates that appeared 479 

brighter or darker than their surrounding regions. We then carefully examined and modified 480 

them so that the entire ROI set accords well with known cortical parcellations provided by 481 

annotated brain atlases 53,54. The resultant ROI map was registered with fluorescence images 482 

of the dorsal cortex by manual translation and rotation so that Bregma and the midline of the 483 

ROI map and fluorescence images were in the register. Each ROI was defined as a square of 5 484 

× 5 pixels (within 128 × 128 pixel images) to avoid potential signal contamination across areal 485 

borders. In some cases, multiple ROIs assigned to relatively large cortical areas (e.g., primary 486 

somatosensory cortex, visual cortex, etc.) were arranged so that each corresponded to 487 

anatomical/functional subdivisions designated in the brain atlases.  488 

 The validity of our ROI positions for the primary somatosensory and primary visual 489 

cortices was confirmed by mapping sensory responses (Figure S1A). An air-puff (20 psi, 200 490 

ms duration, PLI-10, Warner Instruments) to the right whiskers, forelimb, hindlimb, or the right 491 

side of the trunk and a flash of a yellow LED (0.2 Hz, 5 ms duration, Spectralynx, Neuralynx) 492 

to the right eye were given to mice anesthetized with 1.0–1.2 % isoflurane as tactile and visual 493 

stimuli, respectively, and the areas that displayed the largest average fluorescence changes 494 

calculated from 25–30 responses were compared to the corresponding ROIs. The validity of 495 

ROI positions for motor areas was confirmed by constructing a pixel-based correlation map 496 
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between fluorescence changes of the pixel and locomotor activity (Figures S1B and S1C). The 497 

consistency of ROI registration processes within and across genotypes was validated by 498 

consistent positions of multiple ROIs that corresponded to the primary somatosensory subareas 499 

(n = 9–11 Emx1G6 mice and 4–5 Emx1G615q dup mice; Figure S7). 500 

 501 

Data analysis 502 

For locomotion analysis, the locomotion speed recorded at 60 Hz was downsampled to 30 Hz 503 

to match the timing of image acquisition. Periods of locomotion were defined as those during 504 

which the locomotion speed exceeded 0.5 cm/s, and the other periods were defined as those of 505 

rest. Episodes of locomotion and rest that were equal to or longer than 3 s were then labeled as 506 

“long locomotion” and “long rest”, respectively. The remaining episodes were categorized as 507 

“short locomotion” and “short rest”. The threshold of 3 s was close to the average lengths of 508 

all locomotion and rest episodes (locomotion, 3.7 ± 7.3 s; rest, 2.6 ± 6.4 s; mean ± SD, n = 89 509 

sessions) and was chosen to obtain a sufficient number of transition events per session 510 

(locomotion onset, 6.4 ± 3.9 events/session; locomotion cessation, 7.3 ± 4.7 events/session; 511 

mean ± SD, n = 89 sessions) while excluding periods of frequent alterations of the behavioral 512 

state that were too short to be used for the subsequent analysis of functional connectivity (FC) 513 

(Figure 1E). The exclusion of these periods did not likely affect the comparisons between 514 

Emx1G6 mice and Emx1G615q dup mice, as stereotypy measured in an open-field test 55, and 515 

the percentages of time spent on short locomotion and short rest were comparable between 516 

these genotypes (Figure 6C). 517 

Raw fluorescence movies were spatially binned to 128 × 128 pixels and registered 518 

manually using ImageJ (NIH) so that the cortical image was aligned to a representative 519 

overhead view of the dorsal cortex 53. Subsequent analyses were conducted using custom 520 

software written in MATLAB (Mathworks). Fluorescent intensities of the pixels within an ROI 521 

were averaged to represent the signal of the ROI, denoted F, and this value was divided by the 522 

baseline signal value F0, which was calculated as an average of F across all frames, to obtain 523 

normalized fluorescence changes dF/F = (F-F0)/F0.  524 

The extent of fluorescence signals derived from intrinsic sources (flavin fluorescence 525 

and hemodynamics 56–58) was estimated via the following two control experiments: imaging 526 

non-GCaMP6-expressing C57BL/6 (non-G6) mice (Figure S2) and correction of 527 

hemodynamic signals using two-wavelength imaging (Figure S5). In the former approach, 528 
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basal fluorescence images of the dorsal cortical surface were acquired from non-G6 mice in 529 

order to estimate a potential upper bound of signal contamination. The average baseline signal 530 

intensity of non-G6 mice across three representative ROIs (M2a, HLp, and V1a) was 41.1 ± 531 

0.9 % of that in Emx1G6 mice (Figure S2B, mean ± SEM, n = 7 Emx1G6 mice and 3 non-G6 532 

mice). Furthermore, the average fluorescence changes of non-G6 mice across all hemispheric 533 

ROIs after locomotion onset was 19.4 ± 2.2 % of Emx1G6 mice (mean ± SEM, Figures S2C 534 

and S2D). These results imply that intrinsic fluorescence signals are much weaker and less 535 

dynamic than GCaMP fluorescence and that they constitute at most ~8 % of signal changes 536 

observed in Emx1G6 mice. These observations are consistent with other recent studies 59,60 that 537 

were conducted without compensation of endogenous signals. 538 

In the latter approach, we imaged Ca2+-dependent and -independent fluorescence 539 

signals at 470 and 405 nm wavelengths, respectively, in a separate cohort of Emx1G6 mice (n 540 

= 6), by following the previously described procedure 61. Images of fluorescence excited at 470 541 

and 405 nm were captured alternately at an overall frame rate of 40 frames per second (20 542 

frames per second for each wavelength) using two LED drivers (470 nm, SOLIS-470C and 543 

DC20; 405 nm, M405L4 and LEDD1B, Thorlabs) controlled by custom LabVIEW software. 544 

A hemodynamic correction was conducted by subtracting dF/F405 nm from dF/F470 nm, where 545 

dF/F405 nm and dF/F470 nm are normalized fluorescence changes for signals obtained at 405 and 546 

470 nm, respectively (Figure S5A; 62). The results demonstrate that although correlation 547 

coefficients between ROIs appeared slightly higher and thus resulted in identifying a larger 548 

number of highly correlated FCs (Figure S5B, see also Figure 2B), overall patterns of the 549 

network properties (node degree, betweenness centrality, CPL, and modularity Q, see below 550 

for details of these parameters) were qualitatively similar to those obtained without 551 

hemodynamic correction (Figures S5C–S5F, see also Figures 2C–2F; 34).  552 

In this study, we focused on analyses of the dynamics of functional cortical networks 553 

during transitions between locomotion and rest. We considered only transitions from long rest 554 

to long locomotion (locomotion onset) and those from long locomotion to long rest 555 

(locomotion cessation). As a control, we randomly selected reference time points regardless of 556 

the behavioral state as many times as an average number of locomotion onset and locomotion 557 

cessation (random control). Sessions with at least two onset or two cessation events were 558 

included for analysis, and average fluorescence changes across all onset, cessation, or random 559 

events were calculated to obtain values representative of each session. The numbers of each 560 

type of transitions (onset, cessation, and random, respectively) analyzed are as follow: 561 
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Emx1G6, 569, 653, and 659 events, n = 89 sessions from 7 mice; no projection, 382, 454, and 562 

451 events, n = 71 sessions from 17 mice; hemodynamics correction, 658, 616, and 656 events, 563 

n = 71 sessions from 6 mice; Emx1G615q dup, 275, 296, and 331 events, n = 88 sessions from 9 564 

mice; Non-G6, 513, 621 and 590 events, n = 41 sessions from 3 mice. 565 

To analyze functional connectivity (FC) between ROIs, we created correlation 566 

matrices representing the correlation between the cortical activity of all ROI pairs. We 567 

extracted 6-s segments of dF/F that spanned –3 s to +3 s around the event of interest (i.e., onset, 568 

cessation, or random). Each of the 6-s segments was then further divided into 6 non-569 

overlapping 1-s subsegments, and FC was calculated as pair-wise Pearson correlation 570 

coefficients between dF/F during these 1-s subsegments. The 1-s time window was chosen to 571 

investigate rapid and dynamic changes of FC associated with behavior and accords with the 572 

recent notion that spontaneous behavior and ongoing brain activity are related to each other at 573 

a time scale of about 1 s 63. The correlation matrices obtained were averaged within a session 574 

and visualized as functional connectivity graphs of binarized networks using available 575 

MATLAB codes 64, in which the positions of ROIs were arranged according to their anatomical 576 

positions, and lines and symbol sizes represented highly correlated FC (r > 0.8) and the number 577 

of such connections associated with the ROI, respectively. The threshold for binarization (r > 578 

0.8) selected top 26.7 ± 10.1 % of the most prominent connections out of all 1,225 connections 579 

between 50 ROIs (mean ± SD, n = 1,602 subsegments from 89 sessions times 3 conditions; 580 

average correlation coefficient, onset, 0.68 ± 0.03; cessation, 0.68 ± 0.01; random, 0.68 ± 0.01; 581 

mean ± SD, n = 534 subsegments from 89 sessions). Node degree, betweenness centrality, 582 

characteristic path length (CPL), and modularity Q were calculated using the Brain 583 

Connectivity Toolbox 21. Node degree and betweenness centrality represent the number of 584 

functional connections associated with each cortical ROI and the extent to which the ROI falls 585 

on the shortest paths between any other pairs of ROIs in the network, respectively. CPL 586 

represents the average shortest path length between all ROI pairs in the network. Modularity 587 

Q represents an index of optimized modules that maximize the number of within-module edges 588 

and minimize the number of between-module edges. 589 

 590 

Support vector machine classification 591 

Support vector machine (SVM) classification was performed using the Statistics and Machine 592 

Learning Toolbox in MATLAB. For behavior state classification, we used the “fitclinear” 593 
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function to train a linear classification model with high-dimensional predictor data. The SVM 594 

was regularized by the lasso method to reduce model complexity and prevent overfitting. The 595 

FC datasets included 17,970-time point data that spanned the entire 10-min sessions. Each time 596 

point data contained 1,225 FCs from 50 ROIs as features. The FCs were calculated using a 1-597 

frame sliding window of 30-frame size without excluding short locomotion and short rest 598 

periods. The corresponding behavioral data were binary vectors in which rest and locomotion 599 

were labeled as 0 and 1, respectively. Data that contained at least two episodes of long 600 

locomotion or long rest within a session were used. All relevant data (11–15 sessions per 601 

mouse) from each mouse were concatenated to be used for training and testing. An SVM 602 

classifier was trained using datasets from four of all seven mice (train set), and binary 603 

classification was conducted on each time point of the FC data from the remaining three mice 604 

(test set). All 35 combinations arising from seven mice (7C4) were tested. Accuracy was 605 

calculated as a percentage of time points that were classified to the right behavioral state. The 606 

chance level was defined as the overall average percentage of short and long locomotion 607 

periods (58 %) since SVM tends to classify data to the more frequent category. In control, the 608 

datasets used for training were also used for testing (“train” control). In shuffled control, 609 

elements of behavioral state vectors were randomly shuffled and used for training and testing. 610 

To identify features that contributed to the classification, we sorted features of the 611 

trained classifiers by their weights that represented coefficients of normal vector on the 612 

hyperplane. We then counted the appearance of features that included each ROI in the top 0.5 % 613 

and bottom 0.5 % distributions (6 features each, 12 total) as an importance index for the ROI. 614 

When cortical areas of interest contained multiple ROIs, this index was normalized by their 615 

number. The change level was defined as an average of 100 times random sampling. We then 616 

newly trained SVM classifiers using these top 0.5 % and bottom 0.5 % features and classified 617 

the test datasets to confirm that the selected features contribute to the classification. As a 618 

control, we tested classifiers trained with the same number of randomly selected features. This 619 

was repeated 100 times, and the results were averaged. 620 

 For genotype classification, we used the “fitcsvm” function in MATLAB, which trains 621 

and cross-validates an SVM model to solve problems with low-dimensional predictors. The 622 

1,225 correlation coefficients were averaged throughout a session at each time point within 623 

relevant behavioral states or transitions. The data were then concatenated together for all 624 

relevant sessions, and the correlation coefficients were normalized into z-scores. We then cross-625 

validated the classifiers using the leave-one-subject-out (LOSO) method, in which a pair of 626 
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datasets from a mouse per each genotype were excluded from training and used for testing. In 627 

training, the classifiers were subjected to 10-fold cross-validation. All 63 combinations were 628 

tested from nine Emx1G615q dup mice and seven Emx1G6 mice. 629 

 630 

Histology 631 

Mice were deeply anesthetized with isoflurane and perfused transcardially with phosphate-632 

buffered saline (PBS) followed by 4 % paraformaldehyde (PFA) in PBS. Brains were removed 633 

and further fixed in 4 % PFA in PBS at 4°C overnight. Frozen parasagittal sections were cut 634 

on a cryostat to a thickness of 30 μm. The sections were incubated at 4°C overnight with rabbit 635 

anti-GFP antibody (1:1000, A-11122, Thermo Fisher) and mouse anti-GAD67 antibody 636 

(1:1000 clone 1G10.2, Millipore) diluted in PBS containing 5 % normal goat serum and 0.3 % 637 

Triton X-100, followed by Alexa Fluor 488- or Alexa 568-labeled goat anti-rabbit or anti-638 

mouse IgG antibody (1:500, A-11034 or A-11019, ThermoFisher) diluted in the same buffer 639 

at room temperature for 1 h. Cell nuclei were counterstained using VectaShield Mounting 640 

Medium with DAPI (Vector Laboratories). Fluorescence images were acquired using a 641 

Keyence BZ-9000 epifluorescence microscope equipped with a 4× or 10× objective. 642 

 643 

Statistics 644 

To statistically test functional network connectivity, we used Network Based Statistic (NBS) 645 

Toolbox in MATLAB 23. NBS nonparametrically calculates familywise error rate-corrected P-646 

values with 5,000 times permutation testing. Inter-areal activity in test conditions was 647 

considered significantly correlated or decorrelated if the correlation coefficient during the 648 

behavioral transitions was higher or lower than random control with P < 0.01. In comparison 649 

between Emx1G6 mice and Emx1G615q dup mice, the differences were considered significant 650 

when P < 0.05. Other statistical tests were performed using MATLAB or R. For two-group 651 

comparisons, Welch’s t-test was used when normal distributions were assumed. Otherwise, 652 

Wilcoxon rank-sum test was used. For comparisons between more than two groups, Wilcoxon 653 

rank-sum test with Bonferroni correction, one-way ANOVA and two-way ANOVA with Tukey-654 

Kramer test were used.   655 
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Figure 1. Analysis of cortical functional connectivity with mesoscopic Ca2+ imaging. 892 

(A) The imaging and virtual reality (VR) system.  893 

(B) The virtual arena. The floor and walls have green gridlines to enhance the sense of visual 894 

flow. Each wall is painted in a different color. The mouse starts to move from the location 895 

indicated by the red dot.  896 

(C) A schematic of transcranial imaging window affixed to the mouse skull.  897 
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(D) Expression of GCaMP6f in a parasagittal section of an adult Emx1G6 mouse (top, scale 898 

bar = 1 mm). Immunofluorescence detection of GCaMP6f (green) and GAD67 (red) in layer 899 

2/3 of the primary motor cortex (bottom, scale bar = 20 µm). Cell nuclei were stained with 900 

DAPI (blue). The arrow and arrowhead indicate an example of GCaMP6f-positive and 901 

GAD67-positive cells, respectively.  902 

(E) Two behavioral states, long locomotion (L) and long rest (R), were defined by spontaneous 903 

locomotion and resting states (duration: ≥3 s) of head-fixed mice. Locomotion and rest 904 

episodes shorter than 3 s, short locomotion (SL) and short rest (SR) were excluded from 905 

functional connectivity analysis during behavioral transitions.  906 

(F) Percentages of time spent in long locomotion and long rest (top) and average lengths of 907 

long locomotion and long rest episodes (bottom) across sessions. Data represent mean ± SD. 908 

(Percentage) locomotion: F(14, 74) = 0.61, P = 0.84; rest: F(14, 74) = 0.52, P = 0.91; (Duration) 909 

locomotion: F(14, 74) = 0.63, P = 0.83; rest: F(14, 74) = 1.83, P = 0.58, n = 7 mice, one-way 910 

ANOVA.  911 

(G) Fifty cortical ROIs are overlaid onto a grayscale image of the dorsal cortex with a cortical 912 

parcellation map (top, dashed lines indicate the field of view, scale bar = 1 mm). ROIs 1–25 913 

and 26–50 were defined in the left (L) and right (R) hemispheres, respectively, and ROIs for 914 

each hemisphere were numbered along the anterior-posterior axis (bottom). The lower case 915 

letters following cortical areas indicate anterior (e.g., M2a) and posterior (e.g., M2p), or lateral 916 

(e.g., BCl) and medial (e.g., BCm) positions.  917 

(H) Analysis of cortical functional connectivity. After calculating normalized fluorescence 918 

changes (dF/F) for each ROI, pair-wise Pearson’s correction coefficients of cortical activity in 919 

a one-second time window were calculated for all ROI pairs and then visualized as matrices. 920 

Each matrix was labeled with a corresponding behavior state at the first frame of the time 921 

window. In graph visualization of functional networks, connectivity with a correlation 922 

coefficient above a threshold (r > 0.8) was denoted as a line (edge) that connected the 923 

corresponding ROIs (nodes). 924 

  925 
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Figure 2. Dynamic reconfiguration of the functional cortical network during behavioral 926 

transitions. 927 

(A) Cortical activity during behavioral transitions in Emx1G6 mice. The top plots present 928 

average relative changes in fluorescence signals in representative cortical areas (n = 89 sessions 929 

from 7 mice). The vertical dashed lines indicate the occurrence of transition. The colormaps at 930 

the bottom show changes in fluorescence signals in all ROIs. ROI 1–25 and 26–50 were defined 931 

in the left and right hemispheres, respectively (see Figure 1G for details).  932 

(B) Dynamics of the functional cortical network during the behavioral transitions. The data for 933 

locomotion onset, cessation, and random control are shown from top to bottom. Correlation 934 

matrices and functional connectivity graphs (FC, r > 0.8) were determined for each second of 935 

the time window encompassing the relevant behavioral transition that occurred at time zero 936 

(vertical dashed line). Time windows -3, -2, -1, 1, 2, 3, correspond to windows that cover -3 s 937 

to -2 s, -2 s to -1 s, -1 s to 0 s, 0 s to 1 s, 1 s to 2 s and 2 s to 3s, respectively.  938 
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(C, D) Changes in node degree (C) and betweenness centrality (D) during the transitions.  939 

(E) Change in characteristic path length (CPL) during the transitions. Data represent mean ± 940 

SEM. Onset: F(5, 612) = 11.35, P = 1.7×10-10, Cessation: F(5, 600) = 19.15, P = 1.1×10-17, Random: 941 

F(5, 612) = 0.22, P = 0.95, one-way ANOVA. ***P < 0.001, vs. time window -1, Tukey Kramer 942 

test, n = 89 sessions from 7 mice.  943 

(F) Change in modularity Q during the transitions. Data represent mean ± SEM., Onset: F(5, 944 

612) = 25.46, P = 2.3×10-23, Cessation: F(5, 600) = 37.20, P = 3.0×10-23, Random: F(5, 612) = 0.51, 945 

P = 0.77, one-way ANOVA. ***P < 0.001, vs. time window -1, Tukey Kramer test, n = 89 946 

sessions from 7 mice.947 
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Figure 3. Changes in behavior and functional cortical network during exploration 948 

without visual feedback. 949 

(A) Representative trajectories overlaid onto heatmaps of dwell time during exploration with 950 

(Control) and without (No projection) visual feedback.  951 

(B, C) Distance traveled (B) and percentage of unvisited areas (C) during 10-min sessions with 952 

(Cont) or without (No pro) visual feedback. Data represent mean ± SEM. n.s., P = 0.14, ***P 953 

< 0.001, t-test, n = 89 control sessions from 7 mice and 71 no projection sessions from 17 mice.  954 
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(D) Cortical activity of Emx1G6 mice without visual feedback. The convention of the figure is 955 

the same as in Figure 2A.  956 

(E) Dynamics of correlations between activities of ROI pairs during the behavioral transitions 957 

without visual feedback. FC graphs (r > 0.8) were generated using the data shown in (D). The 958 

convention of the figure is the same as in Figure 2B.  959 

(F, G) Changes in node degree (F) and betweenness centrality (G) during the transitions in each 960 

ROI.  961 

(H, I) Mean node degree (H) and mean betweenness centrality (I) during the transitions. Data 962 

across all ROIs were averaged. **P < 0.01, ***P < 0.001, t-test, n = 89 control sessions from 963 

7 mice and 71 no projection sessions from 17 mice.  964 

(J, K) Change in CPL (J) and modularity Q (K) during the transitions. The control data 965 

presented in Figure 2 are again shown in black for comparison. Data represent mean ± SEM. 966 

(CPL) Onset, Time: F(5, 930) = 11.95, P = 3.1×10-11; Genotype: F(1, 930) = 22.28, P = 2.7×10-6; 967 

Time×Genotype: F(5, 930) = 2.68, P = 0.02. Cessation, Time: F(5, 924) = 19.59, P = 1.4×10-18; 968 

Genotype: F(1, 924) = 9.47, P = 0.002; Time×Genotype: F(5, 924) = 3.29, P = 0.006; Random, 969 

Time: F(5, 948) = 1.25, P = 0.28; Genotype: F(1, 948) = 9.65, P = 0.002; Time×Genotype: F(5, 948) 970 

= 0.12, P = 0.99; (modularity Q) Onset, Time: F(5, 930) = 29.78, P = 4.0×10-28; Genotype: F(1, 971 

930) = 11.03, P = 9.3×10-4; Time×Genotype: F(5, 930) = 3.19, P = 0.007; Cessation, Time: F(5, 924) 972 

= 44.90, P = 1.5×10-41; Genotype: F(1, 924) = 4.37, P = 0.04; Time×Genotype: F(5, 924) = 2.94, P 973 

= 0.01; Random, Time: F(5, 948) = 1.45, P = 0.20; Genotype: F(1, 948) = 2.78, P = 0.10; 974 

Time×Genotype: F(5, 948) = 0.42, P = 0.83, two-way ANOVA. *P < 0.05, vs. control, Tukey 975 

Kramer test. n = 89 control sessions from 7 mice and 71 no projection sessions from 17 mice.  976 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.11.14.516121doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.14.516121
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

37 

Figure 4. Statistically significant correlations and decorrelations within functional 977 

cortical networks during behavioral transitions with or without visual feedback. 978 

(A, B) Significant correlations and decorrelations of functional cortical subnetworks of 979 

Emx1G6 mice during locomotion onset in control experiments (A). Network diagrams of 980 

statistically significant FC during each second before and after the locomotion onset are shown 981 

from left to right (top). Magenta and blue lines denote significant correlations (Corr) and 982 

decorrelations (Decor) compared to the random control, respectively. The horizontal bar plots 983 

(bottom) indicate the number of significant FC (rightward: correlated, leftward: decorrelated) 984 

connected to each cortical area. The cortical areas are sorted along the antero-posterior axis 985 

from top to bottom. The values were averaged across bilateral ROIs and further averaged across 986 

multiple ROIs if the area contained more than one ROI. The same convention applies to 987 

locomotion cessation (B). Loco, locomotion; M, motor areas; S, somatosensory areas; V, visual 988 

areas. P < 0.01, NBS. 989 

(C, D) Significant correlations and decorrelations of functional cortical subnetworks during 990 

locomotion onset (C) and cessation (D) in Emx1G6 mice under no projection of visual 991 

landscape. P < 0.01, NBS. 992 
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Figure 5. Decoding behavioral states from the functional cortical network on a subsecond 994 

time scale. 995 

(A) Accuracy of SVM classification of FC into the two behavioral states. The results of 996 

classification for train set (Train), test set (Test), and shuffled control (Shuffled) are shown. 997 

Data represent averages across entire sessions (17,970 time points each). The boxes represent 998 

the 25th, 50th, and 75th percentiles, and the whiskers represent the range except for outliers. 999 

The dashed line indicates the chance level defined as an overall average of time spent in 1000 

locomotion (58.7 %). ***P < 0.001, vs. Shuffled. Wilcoxon rank-sum test with Bonferroni 1001 

correction. n = 35 classifiers each. 1002 

(B) Dynamics of SVM classification of FC during locomotion onset and cessation. Y-axis 1003 

indicates classification index (1, classified into locomotion state; 0, classified into resting state). 1004 

The magenta and green bars on the top indicate the periods during locomotion (Loco) and rest, 1005 

respectively. The gradation bar from -1 to 1 indicates that the time window during this period 1006 

contained FC from both locomotion and rest periods. Data represents mean ± SEM (n = 35 1007 

classifiers).  1008 

(C) Importance index of each cortical area. The index was defined as the number of the 1009 

appearance of FCs connected to each area in the top 0.5 % and bottom 0.5 % features (see 1010 

STAR Methods for details). The dashed line indicates a chance level defined as an average of 1011 
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100-times random sampling of 1 % features. (Inset) Functional networks of the top 0.5 % and 1012 

bottom 0.5 % features (important index: ≥ 0.2). **P < 0.01, vs. chance level. Wilcoxon rank-1013 

sum test with Bonferroni correction. n = 35 classifiers each. 1014 

(D) Classification accuracy using the top 0.5 % and bottom 0.5 % features (Top+Bottom) and 1015 

randomly selected 1 % features (Random). ***P < 0.001, vs. Random. Wilcoxon rank-sum test. 1016 

n = 35 classifiers each.  1017 
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Figure 6. Hyperconnectivity and lower modularity of functional cortical networks in 1019 

Emx1G615q dup mice during behavioral state transitions. 1020 

(A) Representative trajectory (left) and locomotion behavior (right) for Emx1G6 mice and 1021 

Emx1G615q dup mice. Locomotion speed, periods of locomotion (Loco), and the rest of each 1022 

genotype are shown from top to bottom in the right panel.  1023 

(B) Locomotor activity of Emx1G6 mice and Emx1G615q dup mice during 10-min sessions. Data 1024 

represent mean ± SEM. P-value by t-test. n = 89 sessions from 7 Emx1G6 mice and 88 sessions 1025 

from 9 Emx1G615q dup mice.  1026 
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(C) Percentages of time spent for each episode in Emx1G6 mice and Emx1G615q dup mice. Data 1027 

represent averages across all sessions.  1028 

(D) Cortical activity of Emx1G615q dup mice during the behavioral transitions. The convention 1029 

of the figure is the same as in Figure 2A.  1030 

(E) Dynamics of correlations between activities of ROI pairs during the transitions in 1031 

Emx1G615q dup mice. FC graphs (r > 0.8) were generated using the data shown in (D). The 1032 

convention of the figure is the same as in Figure 2B.  1033 

(F, G) Changes in node degree (F) and betweenness centrality (G) during the transitions in each 1034 

ROI of Emx1G615q dup mice.  1035 

(H, I) Mean node degree (H) and mean betweenness centrality (I) during the transitions. Data 1036 

across all ROIs were averaged. ***P < 0.001, t-test, n = 89 sessions from 7 Emx1G6 mice and 1037 

88 sessions from 9 Emx1G615q dup mice.  1038 

(J, K) Change in CPL (J) and modularity Q (K) during the transitions in Emx1G615q dup mice. 1039 

The data for Emx1G6 mice presented in Figure 2 are again shown in black for comparison. 1040 

Data represent mean ± SEM. (CPL) Onset, Time: F(5, 1014) = 10.35, P = 1.1×10-9; Genotype: 1041 

F(1, 1014) = 19.09, P = 1.4×10-5; Time×Genotype: F(5, 1014) = 2.30, P = 0.04. Cessation, Time: F(5, 1042 

1026) = 19.60, P = 1.1×10-18; Genotype: F(1, 1026) = 47.70, P = 8.7×10-12; Time×Genotype: F(5, 1043 

1026) = 3.37, P = 0.005; Random, Time: F(5, 1050) = 1.28, P = 0.27; Genotype: F(1, 1050) = 16.18, 1044 

P = 6.2×10-5; Time×Genotype: F(5, 1050) = 0.49, P = 0.78; (modularity Q) Onset, Time: F(5, 1014) 1045 

= 25.25, P = 4.7×10-24; Genotype: F(1, 1014) = 6.73, P = 0.01; Time×Genotype: F(5, 1014) = 3.53, 1046 

P = 0.004; Cessation, Time: F(5, 1026) = 38.98, P = 1.0×10-36; Genotype: F(1, 1026) = 53.33, P = 1047 

5.6×10-13; Time×Genotype: F(5, 1026) = 5.49, P = 5.4×10-5; Random, Time: F(5, 1050) = 0.82, P = 1048 

0.54; Genotype: F(1, 1050) = 10.23, P = 0.001; Time×Genotype: F(5, 1050) = 0.52, P = 0.76, two-1049 

way ANOVA. **P < 0.01, ***P < 0.001, vs. Emx1G6, Tukey Kramer test. n = 89 sessions 1050 

from 7 Emx1G6 mice and 88 sessions from 9 Emx1G615q dup mice. 1051 
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Figure 7. Importance of motor areas and behavioral transitions in distinguishing cortical 1053 

FC between Emx1G615q dup and Emx1G6 mice. 1054 

(A, B) Statistically significant FC of Emx1G615q dup mice during locomotion onset (A) and 1055 

cessation (B) compared to Emx1G6 mice. The convention of the figure is the same as in Figure 1056 

4A. P < 0.05, NBS. 1057 

(C, D) Accuracy of SVM classification of FC into two genotypes during locomotion onset (C) 1058 

and cessation (D). Classifiers were trained with all 1,225 features (All FCs), top 0.5 % and 1059 

bottom 0.5 % features (Top+Bottom), or randomly chosen 1 % features (Random) at each time 1060 

point. The boxes represent the 25th, 50th, and 75th percentiles, and the whiskers represent the 1061 

range except for outliers. ****P < 0.001, vs. Random, Wilcoxon rank-sum test with Bonferroni 1062 

correction. n = 63 classifiers each.  1063 

(E, F) The importance index of each cortical area in the SVM classification of FC during 1064 
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locomotion onset (E) and cessation (F) was averaged across all relevant time points. Data 1065 

represent mean ± SEM (n = 6 time points). The dashed line indicates a chance level defined as 1066 

an average of 100-times random sampling of 1 % features. (Inset) Functional networks of the 1067 

top 0.5 % and bottom 0.5 % features (≥ 2 time points). *P < 0.05, **P < 0.01, vs. chance level, 1068 

Wilcoxon rank-sum test with Bonferroni correction.   1069 

(G, H) Accuracy of SVM genotype classifiers trained with FC during locomotion (G) and rest 1070 

(H) with or without transitions. The periods of locomotion were subdivided into those that 1071 

occurred immediately after locomotion onset (After-On), immediately before locomotion 1072 

cessation (Before-Ces), and outside these two types of periods (Out). Similarly, the periods of 1073 

rest were subdivided into those that occurred immediately before locomotion onset (Before-1074 

On), immediately after locomotion cessation (After-Ces), and outside these two types of 1075 

periods (Out). **P < 0.01, ***P < 0.001, vs. Out, Wilcoxon rank-sum test with Bonferroni 1076 

correction. n = 63 classifiers each.  1077 
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Supplementary information 1078 

Figure S1. Validation of regions of interest by sensory and motor mapping. 1079 

Figure S2. Estimation of the contribution of intrinsic fluorescence signals to the total signals 1080 

acquired from GCaMP transgenic mice. 1081 

Figure S3. Hierarchical clustering of cortical activity during locomotion onset and cessation.  1082 

Figure S4. Relationship between node degree, betweenness centrality, and fluorescence 1083 

changes. 1084 

Figure S5. The functional cortical network after hemodynamic correction. 1085 

Figure S6. Fluorescent signal intensities in the cortical areas of Emx1G6 and Emx1G615q dup 1086 

mice. 1087 

Figure S7. Sensory mapping of Emx1G615q dup mice. 1088 

Figure S8. Abnormal correlations and decorrelations among cortical areas during behavioral 1089 

transitions in Emx1G615q dup mice. 1090 
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