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Summary During task execution cortical dynamics must bridge sensory cues with future behavioural outcomes.
However, how cortical networks acquire such task-specific dynamics remains unclear. Here we propose that the
cerebellum drives cortical dynamics to enable rapid and flexible task acquisition. We model cerebellar networks that
are tuned through timing rules to provide cortical networks with task-outcome predictions. First, using sensorimotor
tasks we show that cerebellar feedback with fixed cortical connectivity is sufficient for rapid task acquisition and
one-shot task switching. Next, we demonstrate that, when trained in working memory tasks, the cerebellum can
also underlie the maintenance of cognitive-specific dynamics, explaining a range of optogenetic and behavioural
observations. Finally, we use our model to introduce a systems consolidation theory in which task information is
gradually transferred from the cerebellum to the cortex. In summary, our results suggest that cortico-cerebellar
loops are critical for task acquisition, switching and consolidation in the brain.

Introduction
Learning to interact with the environment requires a continuous integration of fast-changing sensory cueswith future
behavioural outcomes. Growing evidence suggests that cortical dynamics integrate the task-specific information that
is needed for such sensory-behavioural transformations1–5. One dominating view in the field assumes that cortical
networks are themselves learnt or optimised leading to the rich dynamics required for task performance6–8. However,
to help ensure that task-encoding remains stable, cortical plasticitymust be kept under control and relatively weak9,10.
This raises the question of how can the cortex acquire new task-specific dynamics in the presence of relatively fixed
connectivity?

One possible solution is to consider feedback loops that drive cortical dynamics11. Computational studies have
extended recurrent neural networks (RNNs) models of cortical networks (Fig. 1a) to incorporate feedback loops for
task acquisition. One type of feedback loop drives RNN dynamics by projecting the readout back to the RNN12–14

(Fig. 1b). Building on this line of work, two recent theoretical studies have suggested that thalamo-cortical feedback
can both prepare and control RNN dynamics to achieve flexible motor sequencing15,16. All of these studies assume
connectivity within the RNN itself remains fixed, thereby avoiding complex learning rules while being able to reuse
RNN dynamics for different contexts17. However, these approaches either assume a relatively simple feedback (i.e.
a linear combination of RNN activity) or rely on theoretically optimal, but biologically implausible , derivations for the
feedback signal. In particular, the possible role ofmore powerful, highly adaptable brain regions are often overlooked.

Here we focus on the feedback loop between two key brain regions, the cortex and the cerebellum. The cerebel-
lum is a highly plastic system and is well placed to drive cortical dynamics via a set of stereotypical, but functionally
separable cortico-cerebellar loops18,19. Indeed, an ever-growing array of clinical20, functional imaging21,22, and op-
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Figure 1. Schematic of cortical recurrent networks with different degrees of feedback. a, Model variant with no feedback:
temporal external input (xt ) is fed to a cortical RNN (grey) and a linear readout layer (blue) produces the final model output (zt ). b,
Model variant with readout-only feedback: in this scheme there is a feedback loop in which the RNN also receives readout predictions
as extra input12,14. c, Model variant with cerebellar feedback: an copy of RNN activity (ht ) is sent to a (feedforward) cerebellar network
C, which feedbacks to the cortical network its own cerebellar predictions (ct ).

togenetic23–25 studies support an important cerebellar contribution to cortical activity in both motor and non-motor
domains. Recently, two schools of thought have emerged on the computational role of cortico-cerebellar loops. The
first asserts that the cerebellum reinforces cortical-dependent goal-directed behaviour by appropriately steering or
stabilising cortical states in real-time26,27. The second also promotes the cerebellum as a facilitator of goal-directed
cortical transitions, but that it does so indirectly via teaching signals which lead to cortical plasticity28,29. Whilst these
two views may co-exist, it is the former that is well placed to operate under weakly plastic cortical networks. More-
over, the cerebellum acting as an instantaneous driver of cortical dynamics is in line with the fast activity-dependent
cortico-cerebellar interactions that have been observed experimentally23–25.

Here we put forward a computational framework in which the cerebellum learns to rapidly steer and stabilise
task-dependent cortical dynamics. We test this model on a variety of motor and non-motor tasks, proposing that
the cerebellum is optimised to support task acquisition in the cortex. This reduces the burden of learning in cortical
networks and allows a given cortical area to rapidly switch between different tasks. In line with this, we show that
a strong cortical dependence on cerebellar feedback arises after learning, consistent with recent behavioural and
optogenetic experiments. Finally, we use this model to put forward a cerebellar-to-cortical systems consolidation
theory, in which quickly learnt task-specific information encoded by the cerebellum is gradually transferred to the
cortex. Overall, we introduce a computationally and experimentally supported theory for cerebellar-supported task
acquisition, switching and consolidation in the brain.

Results
A theory of cerebellar-driven cortical dynamics for task acquisition
To study the role that cerebellar feedback can have in driving cortical dynamics during task acquisition, we explore
different variants of cortical RNNs: without feedback (Fig. 1a), with readout feedback (Fig. 1b)14,30 and with feedback
provided by a cortico-cerebellar loop (Fig. 1c). We introduce a model of cortico-cerebellar loops, in which a cortical
RNN is reciprocally connected to a feedforward cerebellar network C. In our model, temporal RNN representations
ht are passed onto the cerebellar network to compute task-specific predictions ct , which are then sent back to the
same cortical RNN. The final model output zt is then a linear readout of the RNN activity

ht = αht−1 + Whhf (ht−1) + Wihxt + WChct

zt = Wrdtf (ht)
(1)

where α denotes the cortical internal memory (or leak) of the RNN neurons, f (x) is the cortical activation function
which is set as tanh(x). Whh,Wih,WCh are the recurrent, input, and cerebellar weights onto the RNN respectively, and
Wrdt are the readout weights (see Extended Data Fig. S1 for a detailed schematic). For computational efficiency and
due to the relatively long duration of the tasks we train our model using a discrete approximation of a continuous
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RNN (see Methods). To highlight the need for optimised network connectivity rather than inherent cortical memory
mechanisms, in our experiments we generally focus on small α = 0.1 (see Methods).

The cerebellar feedback ct is a feedforward computation C on the previous RNN activity

ct = C (f (ht−1)) = WPFf
C (WMFf (ht−1)) (2)

where WMF represent the cerebellar (input) mossy fibre (MF) weights onto granule cells (GC) and WPF the parallel
fibre (PF) weights from GC to Purkinje cells (PC). Together, these constitute the main stages of processing in the
cerebellar cortex31. In general we model WMF as highly divergent with an input/output ratio of 1:20 (see Methods)
and f C(x) as a rectified linear function (ReLU), in line with the large numbers of cerebellar GCs and their relatively
linear processing32.

We use biologically plausible gradient descent33 to optimise cortical weights during the acquisition of a given task
(Eq. 1). In particular, we minimise the temporal error Et = E(zt , yt), where yt denotes the desired task outcome at
time t and E is the task error function (see Methods). These weights can all be optimised simultaneously during
learning – we refer to this case as fully plastic. However, a key idea that we put forward in this study is that it is not
the neocortex, but in fact the cerebellum, which acts as a key driver for task acquisition. For this reason we highlight
the case in which RNN plasticity is constrained. In particular, we focus on conditions in which RNN plasticity is either
absent – fixed RNN case, or in which plasticity is strictly limited to its input synapses (i.e. only Wih,WCh in Eq. 1 are
plastic) – input plastic case. The latter case considers both plasticity at sensory and cerebello-cortical input during task
acquisition, in line with experimental observations showing plasticity at cerebellar pathways to the cortex34,35.

In contrast to cortical learning, the cerebellum is always optimised, through a separate but related cerebellar error
ECt by adjusting its parallel fibre weights WPF (we assume mossy fibre weights to be fixed in line with experimental
observations). Like the cortical prediction error the cerebellar error function depends on the desired outcome y.
Importantly, to enable the cerebellum to learn to estimate future outcomes (ct ≈ yt+τ ) we formulate a temporal cere-
bellar learning rule. In this rule the cerebellum learns by comparing its own past output (within a time-window τ ) with
future desired outcomes, i.e. ECt = E(ct−τ , yt). This plasticity rule is consistent with time-dependent plasticity rules
observed experimentally at parallel fibre synapses36. For our motor-based tasks we generally consider a cerebellar
time window of τ ≈ 150ms36 and for the later cognitive tasks use longer windows τ ≈ 600ms (see Methods).

Cerebellum learns to drive cortical dynamics during a line drawing task
To study the functional consequences of cortico-cerebellar loopswe first test themodel in amotor-based line drawing
task. In this task the model receives one out of six cues at the beginning of the task and learns to either remain still
or produce one out of five possible straight lines (Fig. 2a; see Methods). Feedback provided by desired outcomes
(i.e. straight lines) is provided at each timestep. Consistent with behavioural studies on cerebellar patients37, we find
that cerebellar feedback significantly improves learning of the task and final performance (Fig. 2a,b). The ability for
cerebellar feedback to facilitate learning does not depend on the degree of plasticity and internal memory in the
cortical RNN (Fig. 2c). Interestingly, a fixed RNN with a plastic cerebellum achieves the same learning performance
as a fully plastic or input plastic RNN. In contrast, when no feedback or a simple readout feedback is provided the
network can fail to learn the task due to fading memory properties of RNNs (Fig. 2b,c). Classical cerebellar models
pose that the cerebellum can act as a direct controller of motor tasks31. To contrast this view with our model we
also train an RNN with a direct cerebellar readout, which apart from the cortico-cerebellar feedback weights uses the
same free network parameters, and find it insufficient to learn the task (Extended Data Figs. S1 and S2).

Next, we study how two known cerebellar features: (i) a large number of granule cells and (ii) timed plasticity
rules contribute to task proficiency36. We find that a combination of high numbers of granule cells with a learning
rule with a non-zero temporal horizon, τ , result in better cerebellar learning (Extended Data Fig. S3), which in turn
drives better cortical representations and overall task performance (Fig. 2d and Extended Data Figs. S3,S4). Moreover,
because both the cortical RNN readout and cerebellar network are trained on the same desired outcome, we observe
that cerebellar output effectively predicts cortical readout τms ahead (Fig. 2e). Our model thus provides a theory of
how the cerebellum learns to predict upcoming movements38,39.

The advantage of a large number of granule cells has been well studied is likely due to better linear separability
of its inputs40. However, what are the computational advantages of the cerebellum providing the cortical RNN with
expected future outcomes? Due to fading properties of RNNs sensory cues are rapidly forgotten. Therefore a high
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Figure 2. Cerebellum learns to drive cortical dynamics during a line drawing task. a, Given one of six possible stimuli at the
first timestep the model must learn to draw a corresponding line (dotted black line) or remain still. Model output after training
is shown for three model architectures with a fixed RNN. b, Learning curves of models in A (same colour-coding). MSE denotes
mean squared error. c, Average training error across different levels of RNN internal memory (α) and plasticity (fixed RNN, input
plastic and fully plastic) for the no feedback and cerebellar feedback models; arrow denotes cortical internal memory used in the
other panels (α = 0.1). d, Average training error of cortico-cerebellar model under varying numbers of granule cells and cerebellar
temporal windows (τ ). Orange arrow denotes default parameter choices. e, Prediction error between cortical output and itself (gray)
or cortical output and cerebellar output (orange) for different temporal delays. f, Evolution of first (upper panel) and second (lower
panel) principal components of cortical RNN for different stimuli, colour-coded as in a, using small (τ = 0ms) and large (τ = 250ms)
cerebellar time windows. g, Average variance of first two principal components across different cerebellar temporal windows, τ . h,
Model output for different periods of cerebellar ablation (blue box represents period of ablation). i, Output x and y coordinates of
the lines drawn in h. j, Average model error across all inputs for ablation periods in h,i. k, Average error for different degrees of
plasticity and ablation periods (left to right) as in h-j. All results are averaged over 5 seeds. Error bars represent standard error of
the mean.

cerebellar τ gives the cerebellar network the ability to map RNN activity to desired outcomes early on in the task.
Consistent with this we find that the predictive cerebellar output drives outcome-dependent RNN representations
(Fig. 2f,g). This result showing potent initial drive of cortical activity could provide a justification for the observed role
of the cerebellum in movement initiation41,42.

Finally, to directly examine the role of cerebellar feedback on cortical dynamics, we inhibit - or “ablate” - cerebellar
output (i.e we set ct = 0 in Eq. 1) during different stages of the task. In each case we observe significant impairment in
the model output which returns to baseline (Fig. 2h-j). Moreover, this effect is most detrimental to task performance
when ablation occurs at the start (Fig. 2k). These findings are consistent with the observed freezing effect of cerebellar
lesions on gait43. In line with both cortical and cerebellar networks working jointly to perform the task, we find that
when the RNN is fully plastic cerebellar ablations have a significant but reduced impact on the cortical dynamics
(Fig. 2k and Extended Data Fig. S5). We also observe that the cortical RNN is particularly sensitive to the presence of
noise in cerebellar output. When noise is added to its output it leads to irregular behaviour (Fig. S6), in line with the
classical motor symptoms of cerebellar ataxia44.
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Taken together, this motor-based task highlights the computational benefits of training a cerebellar network to
drive cortical dynamics, predicting that the cortex can critically depend on cerebellar feedback for successful task
execution. Furthermore, we demonstrate that cerebellar plasticity can effectively replace the need for local cortical
plasticity.

Cerebellar-mediated task switching in cortical networks

Figure 3. Context-dependent cerebellar feedback can enable multi-task learning and switching in the cortex. a, Training
error of cortico-cerebellar models originally trained for line drawing (cf. Fig. 2; α = 0.5). The models continue to execute the line-
drawing task (left) before being trained on a novel curl-field variant of the task (middle) and then finally switch back to the original
task (right). Data from behavioural experiments in macaque monkeys is reproduced here for comparison (bottom;45). b, Average
training error across different levels of parallel fibre (PF) task overlap for the different tasks for the fixed RNN (top) and fully plastic
(bottom) models. Task periods colour-coded as in a. Arrows denote degree of PF task overlap highlighted in a and c-f. c, Model
output for each of the three training periods defined in A for the zero-overlap condition; “zero-shot” output corresponds to the
model output in the first trial when task 1 is reintroduced. d, Model retention score for task 1. The retention score is computed
as the error of task 1 during baseline over the error at the first trial after switching back to task 1. e, f Change in e activity and f
covariance in the RNN population between task 1 (baseline) and after learning task 2. Mean changes in experimental data in f are
reproduced (see Methods) from neuronal recordings obtained from premotor (PMd) and primary motor (M1) cortices in macaque
monkeys45. All results are averaged over 5 seeds. Error bars represent standard error of the mean.

We have shown that cortico-cerebellar loops can enable successful task learning with minimal cortical plasticity.
This opens the possibility of reusing cortical networks across different contexts and behaviours.

To demonstrate the model’s ability to adapt and perform context-dependent task switching, we consider how
models trained in the line-drawing task can be retrained to a curl-field variant45. In particular, we analyse how the
cerebellar network can (i) successfully enable learning in a new task context and also (ii) rapidly revert, or switch, to a
previously learned context.

As expected, when the new task context is introduced to the model, there is a steep increase in error before
the model successfully learns the new task (Fig. 3a, left and middle). Notably, however, when the original task is
reintroduced, the fixed RNN model recovers the initial dynamics significantly faster than the fully plastic model and
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more faithfully captures the behavioural data frommacaque monkeys45 (Fig. 3a, right). This relatively slow switching
back suggests that the fully plastic RNN is more prone to forgetting the original task9.

We then asked how the cerebellar network might enable even faster task switching. In line with observed context-
dependent activations46 and plasticity rules47 in the cerebellum, we consider cerebellar PFs which are task-specific.
The extent of task-specificity at PFs is modelled by the PF task overlap; full overlap (100%) would imply that the same
exact PFs are used across task contexts, while zero overlap (0%) implies that a completely different set of PFs is used
for each task respectively.

Our results show that the degree of PF task overlap predicts a tradeoff between the speed of learning the new
task and the ability to rapidly switch back to the original task (Fig. 3b). Specifically, whilst maximal PF task overlap
is beneficial when a new task is introduced, rapid switching is favoured when distinct PFs are used. To highlight the
ability to immediately switch back to the original task (zero-shot switch) we focus on the zero-overlap case. For the
fixed RNN, but not the fully plastic RNN, the model achieves near-perfect switching to the original task (Fig. 3c,d).
Consistent with the need to learn a new task all models show a substantial change in the neuronal activity (Fig. 3e
and Extended Data Fig.S7a). However, we expect that models with minimal local cortical plasticity should result in
minimal changes in the underlying dynamics of both tasks. To test this, we measure changes in the the covariance of
the neuronal activity between the new task and the initial task (seeMethods and48). As predicted, only themodelswith
reduced cortical plasticity show theminimal changes observed experimentally (Fig. 3f and ExtendedData Fig. S7b). On
the other hand, the fully plastic model the dynamics acquired after switching back to the initial task are significantly
different to baseline (Extended Data Fig. S7c,d). This suggests that the fully plastic model learns a new solution to the
initial task, explaining its relative slowness in switching.

Overall, we apply ourmodels to demonstrate a cerebellar-driven solution tomulti-task learning and task switching.
We show that the underlying dynamics preserved by a fixed cortical RNN, supported by context-dependent cerebellar
feedback, can support rapid behavioural changes whilst minimising forgetting of previously acquired task knowledge.

Cerebellar temporal basis supports non-linear drawing task
Above we have modelled a case in which the cerebellum learns to drive cortical dynamics using a specific predictive
time-window (namely τ = 150ms). However, a recent study has revealed a diversity of temporal plasticity windows
to be at play in the cerebellum36,49 (Fig. 4a). Such diversity of temporal windows may enable the cerebellum to learn
a temporal basis for upcoming events, which may enhance the cerebellum’s ability to predict future outcomes.

To demonstrate the benefit of diversity in temporal windowswe consider amore realistic (and challenging) variant
of the line-drawing task in which the model is now trained to produce a digit-like output (Fig. 4b; see Methods). This
task is selected so as to produce a non-linear and highly varied set of future desired outcomes and therefore the need
for richer cerebellar predictions. In particular, we consider a cerebellar network which simultaneously learns with a
range, or “temporal basis”, of time-windows τ ∈ [0ms, 250ms] such that its prediction effectively spans a relatively long
window of upcoming desired outcomes (see Methods).

We find this heterogeneity of cerebellar time windows to enable both faster learning and higher performance
thresholds (Fig. 4b,c and Extended Data Fig. S8). As expected, when considering the simpler line-drawing task having
multiple time windows does not improve learning (Fig. S8c). Moreover, in line with the results above, a fixed RNN
achieves a performance comparable to the plastic RNN models across different degrees of internal memory in the
cortical network (Fig. 4d). When comparing the network performance across different numbers of granule cells and
time-windows, we find that higher numbers of granule cells combined with multiple time-window learning achieves
the best average learning performance (Fig. 4e). Finally, as with the simpler line-drawing task, we find that cerebellar
ablation is detrimental to the maintenance and development of these representations (Fig. 4f-h and Extended Data
Fig. S9).

These results suggest that the diversity of cerebellar temporal windows observed experimentally36,49 can be ben-
eficial when in the presence of more challenging task conditions.

Cerebellar-driven cortical dynamics maintains beliefs in an evidence accumulation task
So far we have focused purely on motor-based tasks, but growing evidence strongly suggests that the cerebellum
also plays important roles in functions that go beyond direct motor control19,50. To demonstrate this we model an
evidence accumulation task that has been shown to be cerebellar-dependent24. In this study Deverett et al. 24 showed
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Figure 4. Cerebellar temporal basis supports cortical dynamics of a non-linear digit drawing task. a, Schematic of cerebellar
learning with a temporal basis. We consider multiple populations of Purkinje cells with different learning time windows τ . b, Model
output after training for different input examples of the digit drawing task (fixed RNN; α = 0.1). c, Learning curves of models in b
together with readout feedback model (blue). d, Average training error across different levels of RNN cortical internal memory (α)
and plasticity assumptions. e, Performance of cerebellar feedback for different numbers of granule cells and and cerebellar time
windows. Orange arrow indicates default parameter choices with a single cerebellar time window; red arrow indicates temporal
basis model with multiple time-windows. f, Model output under control and cerebellar ablation conditions for example inputs
(digit 2 in upper panels and digit 4 in lower panels); dashed red line represents model output during and after ablation period. g,
Average model error across all inputs for control (left) and ablation (right) conditions. h, Average error for different degrees of
cortical plasticity and ablation periods (middle period illustrated in (F,G)). All results are averaged over 5 seeds. Error bars represent
standard error of the mean.

that optogenetic inhibition of the cerebellar output nuclei disrupts the ability of mice to determine whether the left
or right cheek received more air puffs over a period of time (Fig. 5a). Unlike the previous tasks, here the desired
outcome is only provided at the end of the task, making error-related signals highly sparse.

Similar to the motor tasks studied above, cerebellar feedback improves task learning relative to models without
feedback or with readout feedback (Fig. 5b). Moreover, a fixed RNN achieves performance comparable or even su-
perior to the fully plastic models across a range of degrees of cortical internal memory (Fig. 5c and Extended Data
Fig. S10). These results suggest that weakly plastic cortical networks driven by the cerebellum may also be sufficient
for learning cognitive-based tasks with sparse error information.

Next, our ablation analysis reveals strong similarities to the optogenetic observations by Deverett et al. 24 . In
particular, cerebellar ablation greatly impairs the model’s capacity to maintain and develop beliefs, mirroring the
behavioural effects observed experimentally (Fig. 5d and Extended Data Fig. S11). The general trend observed ex-
perimentally – that later cerebellar ablation is particularly detrimental to task performance – is also captured by our
model (Fig. 5e). Indeed, using the same behavioural regression performed by Deverett et al. 24 (see Methods), we
show that cerebellar ablation in latter periods leads to a final choice in which information about previously seen in-
puts is greatly reduced (Fig. 5f), in linewith experimental findings. We further quantified this inability to integrate prior
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Figure 5. Cortico-cerebellar model mimics mouse behaviour during evidence accumulation task. a, Schematic of evidence
accumulation task24: a random sequence of non-zero inputs (“air puffs”) is delivered in the leftward (-) or rightward (+) direction.
The model must integrate this input and decide at the end of the task which side received more input overall. b, Learning curves of
models (fixed RNN; α = 0.1) without feedback (grey), with readout feedback (blue) and with cerebellar feedback (orange). c, Change
in average training error of the cortico-cerebellar model with respect to the no feedback model across different levels of cortical
internal memory (α) and degrees of cortical plasticity (see Extended Data Fig. S10b). d, Model beliefs over time without (orange) and
with complete cerebellar ablation (purple) in model (upper panels) and data-derived behavioural model (lower panels) reproduced
from Deverett et al. 24 . Thin model lines represent one example seed. Belief P denotes model output probability. e, Model and
data error under different ablation periods and degrees of cortical plasticity. f, Normalised regression weights at different periods
of input presentation (cue) during control (left) and ablation (right) conditions for both model (orange line) and behavioural data
(black line). All model results are averaged over 5 seeds. Error bars represent standard error of the mean.

input by analysing performance specifically for “history-centric” trials, which rely on remembering the history of in-
put in the first third period of the cue presentation (see Methods). As expected, late cerebellar ablation is particularly
detrimental for these trials (Extended Data Fig. S11).

Overall, our model predicts that the proper maintenance of model selectivity depends critically on cerebellar
feedback during evidence accumulation. Consistent with behavioural results, these effects are emphasised when
cerebellar ablation occurs in the later stages of the task.

Cerebellar feedback sustains cortical dynamics in a delayed association task
Next we aim to demonstrate that cerebellar networks can also effectively drive cortical dynamics in tasks with long
delay periods, while capturing both neuronal and behavioural observations. To achieve this we model a delayed
association task which was recently shown to dependent on cortico-cerebellar loops23. In this study mice were pre-
sented with one of two stimuli (left or right) followed by a delay period, after which they were trained to lick in the
corresponding direction (Fig. 6a, top). At the same time neural selectivity was recorded both in the anterior lateral
motor cortex (ALM) - a working memory and planning region - as well as the cerebellar output nuclei (Fig. 6a, bottom).
Timed photoinhibition was used to reveal ALM selectivity to strongly depend on the cerebellar output nuclei, and vice
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cognitive 
cerebellar 
module

working 
memory 
region

Figure 6. Cerebellar network sustains cortical dynamics during delayed association task in line with optogenetic exper-
iments. a, (Top) Delayed association task; a sensory cue is presented followed by a delay and decision period23. (Bottom) The
cortico-cerebellar loop models the interactions between a working memory region and a cognitive module of the cerebellum. b,
Learning curves of model without feedback (grey), readout feedback (blue) or cerebellar feedback (orange) for models with an input
plastic RNN (α = 0.1) . c, Change in average training error of the cortico-cerebellar model with respect to the no feedback model
across different levels of cortical internal memory (α) and degrees of plasticity in the cortical RNN (see Extended Data Fig. S12b). d,
Cue selectivity during the delay period without (left) and with cerebellar ablation (right; blue area denotes period of ablation and
thin line shows control) in the model (upper panels) and optogenetic experiments (lower panels) reproduced from Gao et al. 23 . e,
Model error during the delay period without (left) and with (right) cerebellar ablation. Dotted line denotes chance level. f, Average
error from cerebellar ablation at different points during the delay period and different degrees of cortical plasticity. Experimental
data is shown in black. Results are shown across 5 seeds. Error bars represent standard error of the mean.

versa.
To model this task we follow the same protocol used experimentally23, where one of two possible cues are pre-

sented followed by a delay period, after which the model makes a cue-based response (left or right; see Methods).
Given the lack of sensory or teaching information during the delay period the cortico-cerebellar network it is particu-
larly vital in this task to sustain stimulus representations. It is important to note that a standard randomly initialised
RNN is unlikely to achieve this property, since memories of previous inputs naturally fade17 in the absence of task-
induced plasticity.

We observe that cerebellar feedback consistently enables task acquisition (Extended Data Fig. S12), and identify a
particularly interesting casewhenplasticity in the RNN is limited strictly to its input synapses (input plastic). In this case
cerebellar feedback significantly improves cortical learning to reach near-perfect performance, whilst also enabling
a high degree of stability in task selectivity throughout the delay period (Fig. 6b-d and Extended Data Fig. S12). We
speculated that for this task input plasticity is particularly important, because the cerebellum is required to sustain
task-specific predictions in the RNN throughout the entire delay period. We verified this stronger cerebello-cortical
drive by using concepts from control theory51. In particular, we can explicitly relate cerebello-cortical optimisation to
a quantitative increase in the impact, or energy, of cerebellar feedback onto RNN activity (Extended Data Fig. S13; see
Methods). Moreover, the ability of the cerebellum to drive cortical dynamics should depend on the cortical network’s
ability to express those dynamics. In line with this view our results show that (even untrained) cortical recurrent
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Figure 7. A large granular layer enables the cerebellum to decode fading cortical memories. a, Model error for different
numbers of cerebellar granule cells (GCs) and delay period lengths in the delayed association task (fixed RNN; α = 0.1). b, Signal-to-
noise ratio (SNR) of RNN activities (left y-axis) and number of GCs needed to decode the stimulus from these activities (right y-axis).
c, Number of GCs needed for distinct granular population responses for different SNRs using synthetic inputs; dashed black line is
theoretical prediction (seemain text), markers are results from numerical simulation. Results in a are averaged over 5 seeds; results
in b,c are averaged over 10 seeds. Error bars represent standard error of the mean.

weights are important in maintaining cerebellar predictions over time (Fig. S14).
Next, to demonstrate that the cerebellum helps drive task-specific dynamics in the cortical RNN we performed a

simulated ablation in which the cerebellum is transiently removed during the delay period. We find that cerebellar
ablation drastically disrupts cortical task selectivity, whilst cerebellar selectivity is also highly disrupted by cortical
ablation (Fig. 6d-f and ExtendedData Fig. S15). These ablation results are consistent with changes in cortical dynamics
observed during optogenetic-mediated ablation23 (Fig. 6d, bottom and Extended Data Fig. S15a, bottom). Our model
predicts that this effect should depend on the degree of plasticity in the cortical RNN. Consistent with this view in the
presence of a fully plastic RNNwedonot observe the strong cerebellar dependence thatwas observed experimentally
(Fig. 6f and Extended Data Fig. S16). Taken together our results suggest that the cerebellum, not the neocortex, is the
primary site of learning during the acquisition of this working memory task23.

Overall, these results demonstrate that our model can capture working memory tasks and the observed depen-
dency of cortical dynamics on cerebellar input. Moreover, our model makes the prediction that the cerebellum is a
key site of plasticity during acquisition of delayed association tasks.

Computational power of cerebellum can decode fading cortical memories
A prevalent feature in classical cerebellar theories is that the divergence provided by the granular layer enables better
separation of its inputs52. This is particularly important for cases in which input activity shows little variance across
conditions and the original task-related signal is only weakly encoded, for which a large dimensional expansion at the
granular cell layer would help to recover the original task-related signal53.

In the delayed association task, for which memory of the initial stimulus quickly fades with time in the untrained
RNN, we observe that as the delay period increases so does the need for more granule cells (Fig. 7a). Indeed, by
considering the cerebellar network as a direct readout of the RNN, we observe an inverse relationship between the
signal-to-noise ratio (SNR) of the RNN activity and the required number of granule cells to decode the signal (Fig. 7b).
We formalise this relationship analytically, and show under reasonable assumptions that the required number of
granule cells for distinct stimulus encodings is approximately C√

SNR
, where C = − π√

2
log(1− θ) and θ ∈ [0, 1) denotes

the level of confidence (see Methods). We find this relationship consistent with our simulations (Fig. 7c) and (as ex-
pected) that these distinct population responses enable successful downstream discrimination of the initial stimulus
(Fig. S17). With the cerebellar granular layer consisting of vast numbers of cells – > 50 billion in the human brain54 –
receiving distinct combinations of input, it is therefore well placed to decode the potentially rapidly fading memories
in cortical networks. This suggests a key cerebellar role in decoding overlapping, long-lasting temporal cortical dy-
namics, and supports experimental findings showing that cerebellar inhibition is more detrimental for learning when
in the presence of long delay periods55.

10 of 35

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2022. ; https://doi.org/10.1101/2022.11.14.516257doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.14.516257
http://creativecommons.org/licenses/by-nc/4.0/


Cerebellar task knowledge can be consolidated in the cortex

pre-consolidation consolidation phase post-consolidation

RNN RNNRNN

(cerebellar driven) (CC knowledge transfer) (indepedent RNN)

Figure 8. Cerebellum can mediate task consolidation in the cortex. a, Schematic of proposed theory of cerebellar-to-cortical
task consolidation. During the initial learning phase (left), task representations are primarily driven by the cerebellum and RNN
connectivity is not yet task-specialised. During the consolidation phase there is a period of cerebellar-to-cortical (CC) task informa-
tion transfer (middle), whereby CC interaction drives plasticity in the cortical RNN. After consolidation (right), the RNN can operate
effectively without the need for cerebellar input. The colour of the structures reflects the importance of each component through-
out consolidation. b, Model accuracy in the delayed association task (Fig. 6) throughout consolidation with (purple) and without
(orange) cerebellar ablation. For reference an optimal consolidation model is also given (green). Dotted black line denotes chance.
c, Strength of the cerebellar-to-cortical pathway (WCh) over the period of consolidation. d, Model selectivity with and without cere-
bellar ablation at different stages of the consolidation process; titles colour coded according to arrows in b. e, Cosine similarity
between cortico-cortical input and total cortical input (i.e. cerebellar-cortical and cortico-cortical inputs) pre-consolidation. Similar-
ity of the consolidation model is shown in orange and the optimal consolidation model in green. Results are averaged over 5 seeds.
Error bars represent standard error of the mean.

In each of the previous tasks, cerebellar feedback is shown to mediate learning and the maintenance of task-
specific cortical dynamics. However, the neocortex is known to encode long-term representations of tasks56. This
suggests a need for a “consolidation” period, during which the memory stored in the cerebellum may be transferred
to cortical areas.

To demonstrate cerebellar-to-cortical systems consolidation in ourmodel we develop consolidation-specific learn-
ing rules. To achieve consolidation we train cortical recurrent weights to mimic cerebellar input (see Methods). Given
that (i) the RNN state h is of significantly higher dimensionality than the cerebellar output c, and that (ii) c is a function
of h (Eq. 2), several solutions that enable the RNN to capture the cerebellar input should exist. We also gradually
decay the cerebellar-to-cortical input weights so that over training the cerebellum stops driving the cortical network,
thereby giving full control of the task to the cortical RNN (Fig. 8a).

We tested this computational theory of consolidation on the cortico-cerebellar models (input plastic condition)
trained on the previous delayed association task (Fig. 6d, top left). We consider two types of learning rule: (i) a
simple biologically plausible rule, which depends on the ratio of cerebellar-to-cortical input and total RNN activity
and (ii) a theoretically optimal rule based on a least squares solution (see Methods). In both cases, we observe that
the RNNs gradually learn to perform the task without the need for cerebellar input (Fig. 8b-d). Indeed, as expected,
we observe that the newly learned recurrent weights faithfully replicate the cerebellar input of the original network.
(Fig. 8e). In addition, we find that a model with fixed RNN connectivity does not perform as well as the input plastic
condition (Extended Data Fig. S18). This is likely due to better network stability when in the presence of the input
plastic, compared to the purely fixed RNN (Extended Data Fig. S16a,b).

In summary, the framework we introduce here suggest that the cortico-cerebellar loops may play an important
role in systems consolidation by gradually transferring the rapidly learnt cerebellar knowledge to the cortex.
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Discussion
Growing experimental evidence suggests that cortico-cerebellar loops support behaviour, but their computational
roles have remained unclear. Here we have introduced a systems-level modelling framework in which a feedforward
cerebellar network receives the state of a cortical RNN and provides task-specific predictions in return. In our model,
cerebellar feedback facilitates learning by shaping the underlying cortical dynamics during motor and cognitive tasks
in a way that is consistent with both behavioural and optogenetic studies. Our work suggests that the cerebellum is
a key site of learning in the brain, allowing for rapid context-switching of cortical dynamics that underlie behaviour.
We finish by introducing a theory of cerebellar-to-cortical system consolidation, in which task-specific knowledge is
gradually transferred to the cortical network.

Our model is related to previous network architectures in that it uses feedback to enhance neuronal representa-
tions and selectivity in a otherwise fixed RNN, thereby facilitating task-relevant downstream processes13,14. However,
in contrast with previous work in our model feedback does not stem directly from the (cortical) readout, but from a
large cerebellar network with time-predictive learning rules (Fig. 1). The resulting architecture suggests a symbiotic
cortico-cerebellar learning strategy: as cerebellar representations improve through rapid learning so do cortical rep-
resentations, and as cortical representations improve cerebellar decoding becomes easier. According to our model
the cortical RNN relies on cerebellar feedback to maintain appropriate representations. Therefore, one can consider
the cerebellum as a controller of cortical dynamics. Indeed, two recent theoretical studies have shown how the thala-
mus, the intermediary in cerebellar-to-cortical communication, can optimally control cortical dynamics during motor
preparation and execution15,16. In contrast to existing theories, our work suggests that cerebellar-thalamic-cortical
pathways do not have the ability, or indeed need, to provide highly precise control of cortical dynamics. Instead our
work suggests that the cerebellum can only provide the cortex with relatively general predictions which can be reused
across the cortex.

By retraining cortico-cerebellar networks in a novel task we propose a key role of the cerebellum in task switching
(Fig. 3). In particular, we show that cerebellar feedback may provide a solution to the problem of context-dependent
adaptation, which requires (i) an ability to learn a new context but also (ii) an instant retrieval of appropriate response
to previously learned contexts57,58. Interestingly, we observe that while recurrent cortical plasticity enables adapta-
tion to a new task context there is catastrophic forgetting of the original context. This is at odds with well-known
behaviour in the primate, and provides a computational explanation for why cortical modifications in the monkey
cortex during motor adaptation are limited45.

A unifying model of the cortico-cerebellar loop, and indeed the cerebellum itself, must extend to non-motor tasks.
Recent task-based fMRI studies have revealed functional diversity of the cerebellar cortex across a range of cogni-
tive functions21. Our model inherently implies a high degree of heterogeneity – it suggests that different modules
would be required to drive different parts of the cortex that in turn underlie different cognitive functions. In this
study we modelled recent behavioural and optogenetic experimental observations23,24 which directly implicate the
cerebellum in supporting cortical dynamics during evidence accumulation and delayed association tasks (Figs. 5 and
6). In particular, our results show that cortico-cerebellar interactions are enough to learn tasks with highly sparse
teaching signals (i.e. only at the end of the task). By combining simulations and theoretical analysis we show that this
is enabled by the sheer computational power of the cerebellum (Fig. 7). Moreover, we can best capture experimental
observations in conditions in which RNN plasticity is limited, making the prediction that the cerebellum is the primary
site of learning for these tasks. This provides an alternative to the commonly assumed view that cortical areas are
optimised for specific tasks6–8.

In ourmodel the cerebellumdrives cortical dynamics based on prediction error signals that depend on the desired
task outcome. In the case of the working memory tasks and in line with the experimental task setup, the desired
outcome can be interpreted as a reward signal. Therefore, from this perspective, the cerebellum learns to predict
future rewarding events. This is consistent with the growing literature showing that the cerebellum encodes reward-
related signals59. However, it remains to be tested exactly how the reward-predictive representations developed by
our model compare to those found experimentally.

Here we have also introduced a theory of cerebello-cortical task consolidation. Our theory suggest that cerebellar
and cortical learning may operate at different timescales: after an initial fast stage of learning driven by the cerebel-
lum, a period of consolidation might ensue in which the cortex gradually acquires task-specific knowledge encoded
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in the cerebellum (Fig. 8). Such combination of fast and gradual learning is reminiscent of recent experimental re-
sults which suggest significantly faster timescales of plasticity in the hippocampus compared to the prefrontal cortex
during a cognitive task60. Moreover, the consolidation period can be related to the idea that a task-optimised cere-
bellum can be utilised as a cortical teacher28,29. It is in principle possible for cerebellar-thalamo-cortical projections to
support this dual role of the cerebellum as both a driver and teacher of cortical states. Indeed, anatomical evidence
suggests that this could occur by providing “driving” and “teaching” input to basal and apical dendrites of cortical
pyramidal cells, respectively61.

Our work highlights commonalities of cortico-cerebellar interactions in motor and cognitive tasks alike. However,
it also suggests interesting differences. The first marked distinction relates to the increased significance of cerebellar-
to-cortical (input) plasticity during pure working memory (Fig. 6). This is in line with recent experimental evidence
showing stronger plasticity at higher-order thalamo-cortical pathways35. Indeed, because of the need to sustain
information during the delay period without sensory or teaching input, it is advantageous for the network to encode
a point attractor-like state (see Extended Data Fig. S16, left). Cerebello-cortical plasticity34,35 may thus enable greater
controllability of cerebellar feedback to push the network to these states during working memory tasks, but less so
in motor-based tasks51 (Fig. S13).

Related to the point above, the second difference we highlight is about cerebello-cortical consolidation being
more readily achieved when in the presence of networks with stable dynamics (cf. Fig. 8 and Extended Data Fig. S18).
We speculate that unstable network dynamics make cerebellar-to-cortical consolidation less stable. Therefore, we
predict that while cerebellar-to-cortical systems consolidation might be possible for tasks which involve discrete sta-
ble representations (e.g. working memory tasks), for tasks which involve faster, more dynamic responses (as often
required in the motor domain) cerebellar control is likely to be required throughout life.

Overall, ourwork provides a theoretical frameworkwithwhich to study the function andmechanisms of cerebellar-
driven cortical dynamics for rapid task acquisition, switching and consolidation.
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Methods
Model architecture and training

No feedback Readout feedback Cerebellar feedback No feedback
(cerebellar readout)

ht αht−1 + Whhf (ht−1)

+ Wihxt

αht−1 + Whhf (ht−1)

+ Wihxt+ Wzhzt

αht−1 + Whhf (ht−1)

+ Wihxt+ WChct

αht−1 + Whhf (ht−1)

+ Wihxt

zt Wrdtf (ht) Wrdtf (ht) Wrdtf (ht) C(f (ht))

ct NA NA C(f (ht−1)) NA

Table S1. Dynamics of the different model variants, where ht is the cortical RNN state, zt the readout and ct cerebellar feedback.
For the experiments presented here we set f = tanh and C is the cerebellar feedforward network with one hidden layer, C (f (h)) =

WPFf
C (WMFf (h)). Whh , RNN recurrent weights;Wih , stimulus-to-RNN weights;Wrdt, (cortical) readout weights;WCh , cerebellar-to-

RNN weights;WMF, cerebellar mossy fibre weights;WPF, cerebellar parallel fibre weights; f C set as ReLU.

The complete dynamics of eachmodel architecture that we consider (Extended Data Fig. S1; no feedback, readout
feedback, cerebellar feedback, no feedback with cerebellar readout) are given in Table S1. In all of our simulations
we use a recurrent neural network (RNN) with 50 time-discrete units (see section below).

Unless otherwise stated, the feedforward cerebellar network contains a single hidden layer with 1000 units (gran-
ule cells), but other hidden layer sizes are also considered (Figs. 2d and 4e). This yields a divergence from the cortical
RNN to the cerebellar granular layer of 50:1000 = 1:20. The cerebellar output layer, which we interpret as Purkinje
cells, on the other hand, mirrors the desired task outcome and is therefore of significantly lower dimensionality (3 in
evidence accumulation task and 2 in all other tasks).

For each task simulation, network parameters are initialised as follows. The RNN input, recurrent and cerebellar
feedback weights Wih, Whh, WCh are drawn from a uniform distribution W init ∼ U(−a, a) where a = 1√

size(RNN)
= 1√

50
.

The readout weightsWrdt and cerebellar weights,WMF,WPF, are initialised asW init ∼ U(−a, a), where a is normalised
according to the respective number of input neurons, a = 1√

size(input)
. Note that the readout weightWrdt includes a bias

term. We conducted each task simulation with 5 random seeds for initialisation, except for the theoretical analysis
done in Fig. 7b,c and Extended Data Fig. S17 for which we use 10.

During the learning of a task model parameters are updated using gradient descent from the task error signal
E =

∑
t Et with respect to to themodel parameters (see section below). For each dataset each training session covers

1000 random examples, presented to the model in batch sizes of 10 which we call a “trial”. The test set (used after
training) also covers 1000 randomly generated examples. When analysing the learned network dynamics (e.g. model
output with and without cerebellar ablation) the model with the best validation error during training was selected.
An ADAM optimiser62 was used with initial learning rate η = 0.001 for the RNN (when plastic), readout and cerebellar
network, except for the delayed association task for which we found an RNN learning rate of η = 0.0025 to provide
more stable learning. The different plasticity constraints of the entire model - termed “fixed RNN”, “input plastic”, and
“fully plastic” - are defined with respect to the cortical parameters of Eq. 1 as follows. For the fixed RNN case, only
the cortical readout weightsWrdt are learned. For the input plastic case, RNN input weights andWih andWCh are also
learned. Finally, for the fully plastic case, the recurrent weightWhh is also learned. In all of these cases the cerebellar
“parallel fibres” WPF are learned, whilst the “mossy fibres” WMF remain constant, in line with mossy fibres synapses
being (relatively) stable31,63.

Continuous dynamics of RNN model
A continuous version of our RNN can be expressed as

τM ḣ = −h + Rm (Whhf (h) + Wihx + WChc)

z = Wrdtf (h)
(3)
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where τM is themembrane time constant (not to be confusedwith the cerebellar timewindow τ ), Rm is themembrane
resistance, and f is the rate-based non-linearity which we set as f = tanh. Discretising Eqs. 3 with timesteps of ∆t

yields equations in Table S1, where α = exp(− ∆t
τM

). Note that as in33 we ignore the (1− α)Rm. This simplifies notation
and has no effect on dynamics if model weights are scaled accordingly. In general we use τM ≈ 20ms and ∆t = 50ms
for the drawing tasks (Figs. 2,3 and 4) and a higher τM ≈ 90ms with ∆t = 200ms for the cognitive tasks (Figs. 5,6,7 and
8) in line with6). In both cases this gives us a cortical internal memory α = 0.1.

Cortical and cerebellar learning rules
When the desired task outcome yt is provided the associated error is computed as Et = E(zt , yt) for the cortical
network and ECt = E(ct−τ , yt) for the cerebellar network, where E denotes the task error function (mean squared
error and cross-entropy loss for regression and classification tasks respectively) and τ is the cerebellar time window.
The error gradients for the readout and cerebellar weightsWrdt,WPF can then be obtained locally with a simple delta-
rule on the gradient of the error signal. That is,

∆Wrdt = η
dE

dWrdt
= η

dEt

dzt
f (ht)

>

∆WPF = η
dECt
dWPF

= η
dEC

dct−τ
GC>t−τ

(4)

Where η denotes the learning rate of the cortico-cerebellar network and GC denotes the hidden granule cell activity
of the cerebellar network which is computed as GCt = f C (WMFf (ht−1)) (cf. Eq. 2).

For the input/recurrentweightsWih,WCh,Whh - whenplastic - obtaining error gradients ismore difficult as temporal
dependencies need to be considered. To improve biological feasibility in this work we avoid backpropagation through
time (BPTT) and instead use the eprop algorithm33. Details can be found in33, but the main idea is that BPTT can be
approximated with a mixture of locally computed synaptic eligibility traces and current learning signal. Specifically,
the error gradient for a given synapse wji from neuron i to j is computed as

∆wji = η
dE

dwji
= η

∑
t

Lt
j ε

t
ji (5)

where for ease of notationwe nowuse the superscript to denote timestep t and Lt
j = dEt

dhtji
is the neuron j learning signal

(obtained by one-step backpropagation through space except for the cerebellar readout architecture in Extended
Data Fig. S1D). εtji is the synaptic eligibility trace of wji which is defined recursively by

εtji =
∂ht

j

∂ht−1
j

εt−1
ji +

∂ht
∂wji

(6)

where ε0
ji is initialised as zero. Note that the terms in Eq. 6 are locally available to the synapse. In the case of our

network dynamics (Eq. 1), the eligibility trace is simply defined by εtji = αεt−1
ji + ai , where ai is the activation of the

presynaptic neuron i (e.g. tanh(hi ) or ci ).
For all weights, the error gradients are accumulated across multiple examples (i.e. batch update) and timesteps

before the weights themselves are updated.

Learning rules for cerebellar-to-cortical consolidation
A period of “consolidation” is considered for the trained models of the delayed association task (Fig. 8 and Extended
Data Fig. S18). During this period themodel is presented with further trials (batch size 10) of training data but without
their associated targets. The forwarddynamics of themodel then run as normal (Eq. 1) but nowweuse a consolidation
learning rule for the RNN weights. We consider both an optimal learning rule which uses the least-squares algorithm
and also a simple biological learning rule.

We first present the optimal consolidation learning rule, since thismotivates the biological rule. Wewant to change
the recurrent (cortico-cortical) input to match the cerebellar-cortico input over the task. To this end we concatenate
the time-dependent RNN activitiesH =

⊕
t≥1 ht and cerebellar output activities C =

⊕
t≥1 ht , where⊕ denotes vector
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concatenation. We then set the change in recurrent weight ∆consWhh with ∆consWhh = ηcons
RNNF

lsq where ηcons
RNNis the RNN

consolidation learning rate and F lsq is the least-squares solution

F lsqf (H) = WChC (7)

At the same time the cerebellar-cortical weightsWCh decay according to

∆W cons
Ch = −ηcons

Ch WCh (8)

Where ηcons
Ch is the rate of cerebellar-cortical decay. In the experiments shown we select ηcons

Ch = ηcons
RNN = 0.1.

For the biological learning rule, the cerebellar-cortical weight decays as in Eq. 8 but now the RNN weights are
updated according to the ratio of cerebellar feedback against the whole population activity. That is, for the recurrent
weight from neuron i to neuron j we have

∆conswij = ηcons
RNN

cerebellar input to j

total RNN activity
= ηcons

RNN

W j
Chct∑

k f (hk,t)
(9)

For arbitrary timestep t and whereW j
Ch denotes the jth row of the cerebello-cortical weightWCh.

To demonstrate that Eq. 9 leads to changes in cortico-cortico input which are proportional to the cerebello-cortical
input, we see that the change in recurrent input to a given RNN neuron j at time t becomes

∆W j
hhf (ht)︸ ︷︷ ︸

∆ recurrent input

=
∑

i∈RNN

∆w
(hh)
ij f (hi ,t)

=
∑

i∈RNN

ηcons
RNN

(
W j
Chct∑

k∈RNN f (hk,t)

)
f (hi ,t)

∝ 1∑
k∈RNN f (hk,t)

W j
Chct

∑
i∈RNN

f (hi ,t)

= W j
Chct︸ ︷︷ ︸

cerebellar input

That is, we recover a solution (up to proportionality) to Eq. 7. For this biological learning rule, to improve network
stability, we found it beneficial to increase the RNN consolidation learning rate such that ηcons

RNN = 3ηcons
Ch = 0.3 (where

∆conswij is accumulated over the whole sequence). This explains the initially faster learning (over the first few trials)
for the biological learning rule (Fig. 8e).

For this consolidation learning period a learning optimiser is not used (i.e. ADAM is not used). Note that these
consolidation learning rules do not require information about the desired task outcome (i.e. target) and are in that
sense unsupervised.

Task details
1. Line drawing task
For the line drawing task, the model has to transform one of six possible 10-dimensional binary inputs x ∈ [0, 1]10 at
timestep 1 into an associative “go” 2-dimensional line yline (for five of the inputs) or a “no-go” stay at the origin (for one
of the inputs). The starting point for each line is the origin, and the endpoints of each line are evenly spaced on the
edge of the unit circle (see Fig. 2a, black dashed line). The model learns to draw the line over 20 discrete timesteps,
with the intermediate target points spaced evenly, i.e. for a line with endpoint yend we have yline = {0, y1, y2, ... , yend} =

{0, 1×yend
19

, 2×yend
19

, ... , 19×yend
19
}.

For the stimulus timestep (timestep 1) as well as the remaining 19 timesteps, the model receives (through itsWih

connection) zero-mean Gaussian noise ξ ∼ N (0; 0.12). Model errors are computed as the mean-squared error to
the target response. Unless otherwise stated a cerebellar time window τ = 3 timesteps (≈ 150ms when α = 0.1) is
used. The prediction error across time delay t0 between cortical output and cerebellar (or cortical) output (Fig. 2e) is
computed as the cue/time average ||ct+t0 − zt ||, where ||.|| is the Euclidean norm.
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To analyse the effects of cerebellar ablation we consider partial cerebellar ablation at the start, middle, and end of
the sequence (Fig. 2h-k and Extended Data Fig. S5). The specific time windows of these ablation periods are timesteps
[1-6, 8-13, 15-20] (inclusive), respectively.
Curl-field variant: Once the models of the line drawing task are trained, we tested whether they could re-translate the
same external inputs to a curl-field variant of the task (see e.g.45). For this we selected models with cortical internal
memory α = 0.5, since we found this resulted in faster learning which was comparable to the presented experimental
data45, but we find α = 0.1 (as presented in Fig. 2) also learns but more slowly. Switching and learning this curl-field
new task “context” involved retraining the models to new desired outcomes (central grey curves in Fig. 3c).

Specifically, the curl-field target responses have the same end-point for each line (or same “no-go” zero cue),
but intermediate target points now form a semi-ellipse between the origin and the respective end-point. Given the

desired endpoint yend =

(
y 0

end

y 1
end

)
, this can be parameterised by

yt =

(
y 0
t

y 1
t

)
=

(
y0

end
2

+ 1
2

cos θ cos t − 1
2

sin θ sin t
y1

end
2

+ 1
2

sin θ cos t + 1
2

cos θ sin t

)
(10)

where θ = arctan(
y1

end

y0
end

) is the angle to the end point and t runs uniformly between 0 and π (or, for direction towards
(xend, yend) as in our experiments, from π to 2π).

To test how context-dependent cerebellar processing could enable rapid task switching, we considered the extent
to which parallel fibre (PF) weights are shared across task contexts. In particular, we label the percentage of PFs used
for each context as the PF task overlap. For example, if the PF task overlap is 25%, then 25% of the PFs used for
cerebellar processing apply to both task contexts, whilst 75% specifically apply (and are trained) to the current context.
Before learning, the PFs which are not shared (i.e. only apply to the curl-field context) are initialised randomly as in
the original line-drawing task.

Neuronal activity and covariance during task switching: The change in activities and change in covariances (Fig. 3d-f
and Extended Data Fig. S7) are computed as in48. We record the RNN time-dependent activities (post non-linearity)
given 1000 input examples in multiple periods: task 1 baseline, task 2 and task 1 switching (Fig. 3a). For the latter two
periods these are recorded at their respective end, whilst we take two samples of the baseline period at its start and
end. The change in activity between any two periods P1 and P2 is the average change in activity for a given neuron i ,
which is given by

∆
(P1,P2)
act hi =

|hP2
i − hP1

i |
stdi

(11)

where hP1
i , hP2

i are the time-varying input-dependent activities of neuron i for periods P1, P2 respectively, and stdi is
the standard deviation of that neuron in the start of the task 1 baseline period. Here |.| denotes the average (absolute)
difference in activity across timesteps and input examples.

For each period, we also compute the covariancematrix of the RNNpopulation. The change in covariance between
two sessions ∆

(P1,P2)
cov is then computed as 1 minus the Pearson correlation between their respective covariance ma-

trices48.
For the task 2 and task 1 switching periods we report changeswith respect to the start of the task 1 baseline period.

To account for natural variability in the network and better compare to the neural data in45, we normalise the changes
by taking away the changes observed within the baseline period itself. For example, the change in covariance in the
task 2 period is ∆

(B1,T2)
cov −∆

(B1,B2)
cov , where B1, B2, T2 are the start of the task 1 baseline, end of task 1 baseline, and

(end of) task 2 respectively. We apply the same normalisation to the reported experimental changes in the monkey
M1 and PmD45; this normalisation leads to (average) near-zero change for the M1 activity and PmD (Fig. 3f).

2. Digit drawing task
For the digit drawing task the inputs are the same as the 10-dimensional binary vectors used in the line drawing task,
except now the model must draw an associative digit over 20 timesteps instead of line (Fig. 4a). The targets ydigit are
constructedmanually within the space [0, 1]2 and resemble the digits from 0 to 5 (inclusive). For exact implementation
refer to the provided code (see below).
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For the standardmodelwith cerebellar feedback a cerebellar timewindow τ = 3 timesteps (≈ 150mswhenα = 0.1)
is generally used. For the model using cerebellar feedback with a temporal basis, we model the cerebellum with a
range of time windows, i.e. τ = {τi}i for some distinct τi ≥ 0ms. In this task we consider τ = {τi}i=5

i=0 with τi = i

timesteps (i.e. 0-250ms), so that the final cerebellar output is a concatenation of task predictions which span over
the proceeding 250ms period. Explicitly, after training we have cerebellar feedback, ct ≈

⊕i=5
i=0 yt+i , where ⊕ denotes

vector concatenation.
Zero-mean Gaussian noise ξ ∼ N (0; 0.12) is added to the input at each timestep. Model errors are computed as

the mean-squared error to the target response.
To analyse the effects of cerebellar ablation we consider the same partial cerebellar ablation periods as in the

line-drawing task. That is, we consider cerebellar ablation at the start, middle, and end of the sequence (Fig. 4 and
Extended Data Fig. S9), which correspond to timesteps [1-6, 8-13, 15-20] (inclusive), respectively.

3. Evidence accumulation task
In the evidence accumulation task the model receives 2-dimensional binary inputs (i.e. x ∈ [0, 1]2) over a presentation
period of T pres = 45 timesteps. A non-zero input can occur for at most one of the two dimensions; that is, xt ∈
{(1 0)>, (0 1)>, (0 0)>}, where the rate of zero inputs xt = (0 0)> defines the sparsity of input ρ (ρ = 0.7 in our
simulations). After this presentation of input there is then a delay period of T del = 5 timesteps after which the model
must classify at which dimension more non-zero input was received (or whether the number at each dimension was
the same). That is, the desired outcome y takes one of three values which respectively correspond to more input in
the first dimension, more input in the second dimension, or the same. This task resembles the experimental structure
of24, in which mice were trained to select the side of their whiskers which received more air puffs .

Zero-mean Gaussian noise ξ ∼ N (0; 0.12) is added to the input at each timestep. Model errors are defined by
the cross-entropy loss to the target response.. Model “belief” (Figs 5D and S11) is defined as the model probability
(obtained by applying a softmax on the readout) of the correct classification. Unless otherwise stated a cerebellar
time window τ = 3 timesteps (≈ 600ms when α = 0.1) is used. For both readout and cerebellar feedback models, we
apply a softmax operation to the feedback returned to the RNN so as to bound its values between 0 and 1.

To analyse the effects of cerebellar ablation we consider full cerebellar ablation (for the entire sequence 1-50;
see Fig. 5d and Extended Data Fig. S11a-c, left) and also partial periods of ablation: at the start, middle, and end
of the sequence (Fig. 5e,f and Extended Data Fig. S11a-c, right). The specific time windows of these partial ablation
periods are timesteps [1-15, 15-30, 30-45] (inclusive), respectively. To improve readability of our results, the mean
error presented in the training curves for this task is smoothed using a Savitzky-Golay filter with window length 25
and polynomial order 3.

To compute the dependence ofmodel choice on inputs over different temporal bins (Fig. 5f), we follow themethod
in24. In particular, we divide the presentation period evenly into 3 time windows - [1-15, 16-30, 31-45] - and fit the
model choice according to a logistic regression model

ŷ = S(β1E1 + β2E2 + β3E3) (12)

Where ŷ denotes the predicted model choice probability, S is the sigmoid logistic function, Ei = #Ri − #Li is the
different in the total number of ‘right’ and ‘left’ inputs in window i , and βi is the respective weight on that window. ŷ
is fitted to minimise the negative log likelihood of the observed model decisions. We present the normalised weights
of each window βi

β1+β2+β3
.

History-centric cases: In line with24, we observed cerebellar ablation to be particularly detrimental to input exam-
ples for which correct classification would depend on adequately maintaining past inputs (Fig. 5e,f and Extended
Data Fig. S11), which we refer to as “history-centric” examples. We defined an input example as being history-centric
if exposure only to the final third of the input sequence would lead strictly to the wrong answer. That is, exam-
ples (x, y) such that the “final-third target” yfinal third = max(

∑T=50
t=33 x0

t ,
∑T=50

t=33 x1
t ) is not equal to the desired outcome

y = max(
∑T=50

t=1 x0
t ,
∑T=50

t=1 x1
t ).

4. Delayed association task
In the delayed association task the model must associate one of two 10-dimensional binary inputs at timestep 1 to
a desired binary response y at timestep T , where T is the sequence length or “delay” period23. We select T = 15
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timesteps but also consider other lengths (Fig. 7a). The task error (as presented in the main text) is defined at the
end of the sequence. For stability, we train the network output 5 timesteps from the end of the sequence (timestep
10 onwards when T = 15).

Zero-mean Gaussian noise ξ ∼ N (0; 0.12) is added to the input at each timestep. Model errors are defined by
the cross-entropy loss to the target response. Model “selectivity” is defined as the model output (readout) at the
dimension of the correct classification (prior to the softmax operation). Unless otherwise stated a cerebellar time
window τ = 3 timesteps (≈ 600ms when α = 0.1) is used. For both readout and cerebellar feedback models, we apply
a softmax operation to the feedback returned to the RNN so as to bound its values between 0 and 1.

To analyse the effects of cerebellar ablation we consider cerebellar ablation within a particular time window be-
tween timesteps 8-12 (inclusive) which approximately mirrors the timings in23 (Fig. 6d,e and Extended Data Fig. S16)
and also partial ablation periods during the start, middle, and end of the sequence (Fig. 6f). The specific time windows
of these partial ablation periods are timesteps [1-5, 6-10, 11-15], respectively. To improve readability of our results,
the mean error presented in the training curves for this task is smoothed using a Savitzky-Golay filter with window
length 25 and polynomial order 3.

Control-theoretic estimation of cerebellar feedback
For the delayed association task we analyse cerebellar-to-cortical input from a control-theoretic point of view. In
particular, we quantify the effect of plasticity in the pathway between the cerebellar network and cortical RNN (WCh)
on cortical activations by estimating the energy cerebellar feedback induces in RNN state space51. This level of energy
reflects the potency of feedback onto the RNN: a low energywould reveal a suppressed RNN response, whereas a high
energy would reveal an amplified response. We speculated that these two cases would arise from a non-optimised
WC〈 and optimisedWC〈, respectively (Extended Data Fig. S13A).

As per Kao and Hennequin 51 , we compute the energy of cerebellar feedback through the controllability Gramian
P associated with RNN dynamics. Informally, P describes the “intrinsic manifold” of the RNN and describes the direc-
tions in which the RNN is most (or least) likely to visit. Formally, given a direction v in state space, the average energy
generated along direction v is

σ(v) = v>Pv (13)
In general, the Gramian matrix P is only defined for linear systems. In this work we therefore generalise the notion
of controllability for the non-linear RNN dynamics as defined in Eq. 1. Here we use the noise covariance matrix Σ in
its place, which for linear systems is shown to be equivalent to the Gramian, Σ = P 51. Explicitly, we compute Σ as
the time-course average covariance of RNN hidden activations ht under noisy inputs which follow a Wiener process.
That is, Σ = Et [cov(Ht)] where Ht = {h1

t , h2
t , · · · , hN

t } is a set of N samples of RNN states which each evolve according
to

ht = αht−1 + Whhf (ht−1) + WChct + ξt ; ξi ,t ∼Wiener process (14)

In our experiments we use N = 500 samples and simulate Eq. 14. To ignore intrinsic RNN transients that occur at the
start of simulation, we discard the RNN states during the first 5 simulation timesteps when computing Σ. The energy
generated from cerebellar feedback is then σ(hC) = (hC)>ΣhC , where hC = WChc

||WChc||
is the normalised direction being

driven by the cerebellum in RNN state space. We report the energy generated (during the noise dynamics of Eq. 14)
by cerebellar feedback at timestep 10, a time chosen strictly after the initial RNN transient phase (Extended Data
Fig. S13b). For comparison we compare this to the energy generated by 100 random sample directions v ∼ N (0, I )

where I is the identity matrix. To enable greater interpretability we then normalise these energies by its highest
possible value max||v||=1 v

>Σv; i.e. the input which elicits maximal amplification of RNN dynamics. This value can be
computed as u>Σu where u is the principal eigenvector of Σ.

Cerebellum as a decoder of fading memories
For the delayed association task we discussed the need for a greater number of hidden cerebellar units (granule cells)
to achieve good task performance (Fig. 7a). In particular, we find that the number of granule cells (GCs) required is
inversely proportional to the signal-to-noise (SNR) of the RNN hidden neurons.

# GCs needed ∝ 1√
SNR(RNN)

(15)
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Under reasonable assumptions, Eq. 15 can be shown analytically. We go through the main steps of this proof; a
complete derivation can be found in supplementary note 1.

First, we note that we express the RNN activations f (h) as the sum of “task-agnostic” and “task-relevant” features,
or components. The formermight incorporate general network connectivity, or intrinsic neural noise, whilst the latter
depends solely on the task condition. We take these components to be independent of each other, so that the total
variance of RNN activations σ2

rnn = Var(f (h)) can then be expressed as

σ2
rnn = σ2

ω + σ2
ζ (16)

Where σ2
ω and σ2

ζ denote the variance caused by the task-agnostic and task-relevant components, respectively. Assum-
ing each component is centred around zero (which we observe using simulations), the ratio of these two quantities
then represents the SNR of the RNN population, SNR(RNN) =

σ2
ζ

σ2
ω
. With a further assumption that this RNN popula-

tion is centered at zero (which we observe as reasonable) and the mossy fibresWMF are normally distributed, it can
then be shown that the general cerebellar GC input IGC can be expressed as

IGC = Iω + Iζ Iω ∼ N (0, (kσ2
MF)σ2

ω), Iζ ∼ N (0, (kσ2
MF)σ2

ζ) (17)

Where k is the number of neurons in the RNN population and σ2
MF is the variance of the mossy fibre weights, σ2

MF =

Var(WMF). Given this distribution for the input, the key step is considering the probability that the task-relevant input
Iζ can drive a sub-threshold GC activation (IGC < 0) in one task-setting but super-threshold activation (IGC > 0) in the
other. We term this as the probability of a “unique activation”; it can then be shown that for small SNR values

P(unique activation) ≈
√

2

π

(kσ2
MF)σζ

(kσ2
MF)σω

=

√
2

π

σζ
σω

=

√
2

π

√
SNR(RNN) (18)

In other words, whether or not there is a unique activation in the GC is simply governed by SNR-depedent chance.
Intuitively, therefore, given a large enough GC layer the likelihood is that at least one GC will have a unique activation.
In fact, it can be shown that the number of neurons needed to have at least one unique activation with confidence θ
can be expressed as (which is the result cited in the main text)

# GCs needed = − π√
2

log(1− θ)
1√

SNR(RNN)
(19)

To estimate SNR(RNN) in the models for the delayed association task (Fig. 7b, left axis), we compute the variance of
the task-agnostic component as the (average) variance of the population under the same task stimulus s , i.e. σ2

ω =

Es [Var(f (h)|s]. Be equally calculating the total variance σ2
rnn = Var(f (h)), the variance of the task-relevant component

is then simply computed as the difference to the total variance, i.e. σ2
ζ = σ2

rnn − σ2
ω. To determine the minimum

number of granule cells required to decode the stimulus from the RNN activity (Fig. 7b, right axis), we tested whether
the cerebellar network could be trained to successfully discriminate the stimulus after 40 training sessions for varying
quantities of granule cells (quantities as described below). The cerebellar networkwas deemed to successfully decode
the stimulus if, for at least 9 of the 10 seeds, the average error during the last 4 training sessions was less than 5%.

We also generated synthetic inputs to directly test the ability of the cerebellar network for different SNRs (Fig. 7c
and Extended Data Fig. S17). In this case the network must classify one of two 10-dimensional input of the form
x = xω + xζ . Both xω and xζ are drawn randomly from normal distributions of zero mean, but only xζ changes for
each task condition (i.e. once sampled xω is fixed). The distributions xω , xζ have distinct variances σ2

ω , σ2
ζ respectively.

The SNR of the input data is then simply σ2
ζ

σ2
ω
, where we set σ2

ω = 1 and vary σ2
ζ across a range of values (see below).

The architecture of the cerebellar network remains the same as in the main cortico-cerebellar model, except that a
spiking activation function is used at the granular layer; that is, fC = fspike in Eq. 2 where fspike(I ) = 1 if I > 0 and 0
otherwise.

To verify whether Eq. 19 indeed holds empirically, we ran the network on the dataset described above over a range
of different SNRs s and network sizesm. We considered s = ( 1

2
)k andm = 2k for k between 0 and 14 inclusive (i.e. 225

distinct SNR/size configurations). We ran each configuration over 10 random seeds. To determine the number of GCs
needed for a given SNR s , we considered the minimum m needed such that 1. the GC population vector is distinct
for the two task inputs x1, x2 (Fig. 7c and Extended Data Fig. S17a) and correspondingly 2. the cerebellar readout
(Purkinje cells) can successfully learn to classify the initial input (Extended Data Fig. S17a). Classification was again
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deemed successful if the average error during the last 4 training sessions out of 40 was less than 5%. Importantly,
the final success for that number of GCs would require a ratio of the confidence θ random seeds to be successful (e.g.
to have confidence θ = 0.6 would required 6/10 seeds to have distinct responses). Naturally we observed a strong
relationship between 1. and 2. (Extended Data Fig. S17c), since the ability to successfully discriminate at the readout
level depends on discrimination at the hidden GC level. In these experiments we selected θ = 0.9.

Data and code availability
We used the PyTorch library for all neural network models. The code and respective simulated data used for our
experiments is available at https://github.com/neuralml/ccLoops.
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Figure S1. Different model architectures (extension of Fig. 1). a, No feedback; temporal input is fed to a cortical RNN (grey) and
a linear readout layer (blue) produces the final model output. b, Readout feedback; now there is a feedback loop in which the RNN
also receives readout predictions as extra input12,14. c, Cerebellar feedback; a copy of RNN activity is sent to a distinct but connected
cerebellar network C, which then returns its predictions back to the RNN as extra input. d, No feedback with cerebellar readout; like c
a cerebellar network is attached to the RNN, but now it is used directly as the final readout and there is no “cortico-cerebellar loop”.
Model activity and weight vectors are represented with the same notation as Eqs. 1 and 2 (see also Table S1).
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Figure S2. Model learning in the line drawing task. a, Training curves (cortical internal memory α = 0.1) for the different models
with fixed (left), input plastic (middle) and fully plastic (right) RNN. Green denotes themodel where no feedback is applied to the RNN
but the readout network (usually linear) now has the same architecture as the cerebellar network. b, Average error over training
across different cortical internal memory α.
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Figure S3. Training curves over different cerebellar parameters. We show the learning curves for the cortical network (solid
line) and cerebellar network (dotted line) for the line drawing task. On each miniplot the x-axis represents the training session and
y-axis the mean-squared error.
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Figure S7. Multi-task learning and switching across different levels of parallel fibre (PF) overlap. a, b, Change in a activity and
b covariance in RNN population between the line-drawing task 1 (baseline) and task 2 which is a curl-field variant. (C, D) Change in
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Figure S8. Model learning in the digit drawing task. a, Training curves (cortical internal memory α = 0.1) for the different models
with a fixed (left), input plastic (middle) and fully plastic (right) RNN plasticity assumptions. Green denotes the model where no
feedback is applied to the RNN but the readout network (usually linear) now has the same architecture as the cerebellar network.
b, Average error over training across different cortical internal memory α. c, Model error (fixed RNN; α = 0.1) at the end of training
(averaged over last 10 training sessions) for different cerebellar time windows for (left) line drawing task (cf. Fig. 2) and (right) digit
drawing task.
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Figure S10. Model learning in the evidence accumulation task. a, Training curves (cortical internal memory α = 0.1) for the
different models with a fixed RNN (left), input plastic (middle) and fully plastic (right) RNN. Green denotes the model where no
feedback is applied to the RNN but the readout network (usually linear) now has the same architecture as the cerebellar network.
b, Average error over training across different levels of cortical internal memory α.
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Figure S11. Additional cerebellar ablation results for evidence accumulation task. a-c, Model output (left) and error (right) with
and without cerebellar ablation (model output shows full cerebellar ablation case) for a fixed, b input plastic, and c fully plastic RNN.
d, The error for different ablation periods across these RNN plasticity conditions over all test examples. e, The error for different
ablation periods across different RNN plasticity conditions, but only over “history-centric” inputs. f, The difference between d and
e.
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Figure S12. Learning curves in the delayed association task. a, Training curves (cortical internal memory α = 0.1) for the
different models with a fixed (left), input plastic (middle) and fully plastic (right) RNN. Green denotes the model where no feedback
is applied to the RNN but the readout network (usually linear) now has the same architecture as the cerebellar network. b, Average
error over training across different cortical internal memory α.
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Figure S13. A control-theoretic perspective of the cortico-cerebellar loop. a, Illustrative schematic of cerebellar (orange) and
cortical (grey) activities. Depending on the cerebello-cortical connectivity WCh , the same cerebellar output c might suppress (top
right) or amplify (bottom right) RNN trajectories. b, The energy (see Methods) generated by random and cerebellar feedback for
models trained with varying degrees of plasticity in the delayed association task (Fig. 6). The energy is normalised by the maximum
possible energy generated by inputs that achieve the greatest cortical response (see Methods).
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Figure S14. Cerebellar feedbackwith cortical recurrent connectivity is necessary to learn long-range temporal associations.
a, Training curves (cortical internal memory α = 0.1) with cerebellar feedback but zero recurrent weights (Whh = 0) with a fixed (left)
and input plastic (right) RNN b, Average error over training across different cortical internal memory α.
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Figure S15. Cortical ablation in the delayed association task. a, Cue selectivity in the cerebellar network during the delay
period without (left) and with cortical ablation (right; blue area denotes period of ablation; 75% of the cortical RNN neurons are
silenced) conditions for example input in model (upper panels) and experimental data (lower panels) reproduced from Gao et al. 23 .
b, (Cortical) model error during delay period with (left) and without (right) cortical ablation. c, Average error from cortical ablation
at different periods during the task delay period and different degrees of plasticity. Experimental data shown in black.
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Figure S16. Additional cerebellar ablation results for the delayed association task. a-c, Model output (top) and error (bottom)
for the delayed association task without (left) and with (right) cerebellar ablation with a a fixed, b input plastic, and c fully plastic
RNN. Thin line after ablation shows control model. d, Model error as a function of ablation length (centred around the middle of
the delay period). Experimental data reproduced from Gao et al. 23 . Dotted black line denotes chance.
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Figure S17. Analytical and numerical relationship between input signal-to-noise ratio (SNR) and number of granule cells
(GCs) for a, distinct population encoding (Fig. 7c) and b, successful readout learning; C/
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SNR denotes the theoretical prediction

(see early section on the cerebellum decoding fading memory). c, Tight coupling between a and b.
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Figure S18. Cerebellar-to-cortical consolidation of the delayed association taskwith fixed RNNmodels. a, Accuracy of control
and cerebellar ablation conditions (dotted line denotes chance) and the corresponding b, strength of the cerebellar-cortical pathway
(WCh) over consolidation. Green denotes control condition with theoretically optimal learning rule. c, Cosine similarity between
cortico-cortical input and total cortical input (i.e. cerebellar-cortical and cortico-cortical inputs) pre-consolidation. Similarity of the
consolidation model is shown in orange and the optimal consolidation model in green. d, Model selectivity for example (external)
input in control and cerebellar ablation conditions at different stages of the consolidation process; colour coded by arrow times in
a.

35 of 35

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2022. ; https://doi.org/10.1101/2022.11.14.516257doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.14.516257
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Results
	A theory of cerebellar-driven cortical dynamics for task acquisition
	Cerebellum learns to drive cortical dynamics during a line drawing task
	Cerebellar-mediated task switching in cortical networks
	Cerebellar temporal basis supports non-linear drawing task
	Cerebellar-driven cortical dynamics maintains beliefs in an evidence accumulation task
	Cerebellar feedback sustains cortical dynamics in a delayed association task
	Computational power of cerebellum can decode fading cortical memories
	Cerebellar task knowledge can be consolidated in the cortex

	Discussion
	Acknowledgements
	Author contributions

	Methods
	Model architecture and training
	Continuous dynamics of RNN model
	Cortical and cerebellar learning rules
	Learning rules for cerebellar-to-cortical consolidation

	Task details
	1. Line drawing task
	2. Digit drawing task
	3. Evidence accumulation task
	4. Delayed association task

	Control-theoretic estimation of cerebellar feedback
	Cerebellum as a decoder of fading memories
	Data and code availability

	Supplementary Information

