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Abstract 
 
The majority of disease-associated variants identified through genome-wide association 
studies (GWAS) are located outside of protein-coding regions, and are collectively 
overrepresented in sequences that regulate gene expression. Prioritizing candidate 
regulatory variants and potential biological mechanisms for further functional 
experiments, such as genome editing, can be challenging, especially in regions with a 
high number of variants in strong linkage disequilibrium or multiple proximal gene targets. 
Improved annotation of the regulatory genome can help identify promising variants and 
target genes for further experiments and accelerate translation of identified GWAS loci 
into important biological insights. To advance this area, we developed FORGEdb 
(https://forge2.altiusinstitute.org/files/forgedb.html), a web-based tool that can rapidly 
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integrate data for individual genetic variants, providing information on associated 
regulatory elements, transcription factor (TF) binding sites and target genes. FORGEdb 
uses annotations derived from data across a wide range of biological samples to delineate 
the regulatory context for each variant at the cell type level. Different datatypes, including 
CADD scores, expression quantitative trait loci (eQTLs), activity-by-contact (ABC) 
interactions, Contextual Analysis of TF Occupancy (CATO) scores, TF motifs, DNase I 
hotspots, histone mark ChIP-seq and chromatin states in FORGEdb are made available 
for >37 million variants, and these annotations are integrated into a FORGEdb score to 
guide assignment of functional importance. The inclusion of a wide range of genomic 
annotations, such as ABC interactions and CADD scores, provides a comprehensive 
resource for researchers seeking to prioritize variants for functional validation. In 
summary, FORGEdb provides an expansive and unique resource for the analysis of 
genomic variants associated with complex traits and diseases.   
 
 
Introduction 
 
Genome-wide association studies (GWAS) have been remarkably successful in 
identifying genetic loci associated with many different diseases and traits1. The latest 
version of the GWAS catalog (as of 2022) comprises 228,157 distinct variants associated 
with >3,000 diseases and traits2. Many loci identified from GWAS are intergenic and 
locate to non-protein-coding regions of the genome3. Although the functional mechanisms 
of some variants have been reported4,5, most genomic loci have not been studied and 
little is known about target genes, pathways or mechanisms of action. There are multiple 
reports that GWAS variants are overrepresented in sequences that regulate gene 
expression3. Therefore, to aid interpretation of GWAS variants in the context of gene 
regulation, researchers have used large-scale mapping data for enhancers and other 
regulatory elements from ENCODE6, Roadmap Epigenomics7, and other consortia8. 
Several webtools, such as Haploreg9, RegulomeDB10 and others11, have been developed 
to help researchers link these data to individual variants. However, these methods do not 
include more recent high-dimensional ENCODE data from contemporary technologies, 
such as Hi-C12, or expanded expression quantitative trait locus (eQTL) data from large 
consortia, such as the Genotype-Tissue Expression Project (GTEx)13 or the eQTLGen 
project14. Gathering information from many different data sources and linking the data to 
individual genetic variants is challenging in terms of computational resources and in terms 
of quality control and data processing. 
 
Description 
 
To address this issue and provide researchers with a state-of-the-art web tool for variant 
annotation that includes these updated resources, we have developed FORGEdb 
(https://forge2.altiusinstitute.org/files/forgedb.html, Table 1). FORGEdb incorporates a 
range of datasets covering three broad areas relating to gene regulation: regulatory 
regions, transcription factor (TF) binding, and target genes. First, using genome-wide 
epigenomic track data from ENCODE, Roadmap Epigenomics, and BLUEPRINT 
consortia, FORGEdb links SNPs with data for candidate regulatory regions (e.g., 
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enhancers or promoters). Specifically, FORGEdb annotates variants for overlap with 
DNase I hotspots, histone mark broadPeaks, and chromatin states as implemented in 
FORGE215. Second, within these candidate regulatory regions, FORGEdb integrates 
SNPs with transcription factor (TF) binding data via a) the overlap with TF motifs as 
implemented in FORGE2-TF (https://forge2-tf.altiusinstitute.org/) and b) SNP-specific 
Contextual Analysis of TF Occupancy (CATO) scores, which provide a complementary 
line of evidence for TF binding computed from allele-specific TF occupancy data 
measured by DNase I footprinting16. Third, FORGEdb links SNPs to target genes via a) 
the overlap between SNPs and enhancer-to-promoter looping regions (or other looping 
regions) using Activity-By-Contact (ABC) data17 and b) expression quantitative trait locus 
(eQTL) annotations using large-scale data from GTEx13 and eQTLGen14.  
 
To integrate and summarize these annotations, we developed a new scoring system 
combining all datasets relating to gene regulation: FORGEdb scores. FORGEdb scores 
are designed to prioritize genetic variants for functional validation. Given the need to 
ensure that no single dataset would dominate or skew this scoring system, we chose a 
points-based approach that scored distinct experimental or technological approaches 
separately. FORGEdb scores are thus computed based on the presence or absence of 5 
different lines of evidence for regulatory function:   
 

1. DNase I hotspot, marking accessible chromatin (2 points) 
2. Histone mark ChIP-seq broadPeak, marking different regulatory states (2 points)    
3. TF motif (1 point) and CATO score, marking potential TF binding (1 point) 
4. Activity-by-contact (ABC) interaction, marking gene looping (2 points) 
5. Expression quantitative trait locus (eQTL), marking an association with gene 

expression (2 points) 
 
All of these different features are independently associated with gene regulation and are 
thus scored separately. FORGEdb scores are calculated by summing the number of 
points across all lines of evidence present for each SNP and range between 0 and 10. A 
score of 9 or 10 suggests a large amount of evidence for functional relevance, whereas 
0 or 1 indicate a low amount of evidence. For example, SNP rs1421085 shows data 
regarding eQTLs (including for IRX3, a key target gene4), chromatin looping, TF motifs, 
DNase I hotspots, and histone mark broadPeaks, but does not have a CATO score 
(Figure 1). Together, these data sources provide strong evidence for a regulatory role for 
this SNP, and the SNP has a FORGEdb score of 9 (Figure 1). This high score for 
rs1421085 is consistent with independent experimental analyses, which have 
demonstrated a regulatory role for this SNP.4 
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Figure 1: Example FORGEdb results for rs1421085. For this SNP, there is evidence 
for eQTL associations (with IRX3, shown to be a key target gene4), chromatin looping 
(ABC interactions), overlap with significant TF motifs, DNase I hotspot overlap, as well as 
overlap with histone mark broadPeaks. The only regulatory dataset that this SNP does 
not have evidence for is for CATO score (1 point). The resulting FORGEdb score for 
rs1421085 is therefore 9 = 2 (eQTL) + 2 (ABC) + 1 (TF motif) + 2 (DNase I hotspot) + 2 
(histone mark ChIP-seq). Independent experimental analyses by Claussnitzer et al. have 
demonstrated a regulatory role for this SNP in the regulation of white vs. beige adipocyte 
proliferation via IRX3/IRX5.  
 
 
In addition to regulatory datasets, FORGEdb also has datasets that aid interpretation of  
protein-coding changes (CADD scores, which measure the deleteriousness of SNPs 
using experimental data and simulated mutations18). 
 
Conclusion 
 
In summary, FORGEdb is a new web-based tool to aid genetic variant interpretation and 
prioritization for experimental analysis. FORGEdb includes a number of features from 
novel technologies not available in commonly used webtools (Table 1), providing a more 
comprehensive analysis of potential regulatory function. All of these features are 
accessible via a simple, easy-to-use search engine that can be found at 
https://forge2.altiusinstitute.org/files/forgedb.html. Annotations from FORGEdb can be 
accessed from https://ldlink.nci.nih.gov/?tab=ldproxy, 
https://ldlink.nci.nih.gov/?tab=ldassoc, https://ldlink.nci.nih.gov/?tab=ldmatrix, and 
https://forge2.altiusinstitute.org/. 
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Table 1: A comparison of features across FORGEdb, Haploreg and RegulomeDB: 
 
  FORGEdb Haploreg RegulomeDB 
Roadmap Chromatin states yes yes yes 
TF motifs yes yes yes 
SNP Scoring system yes no yes 
Roadmap DNase-seq yes yes no 
Roadmap H3 histone mark data yes yes no 
3D genomic data (ABC Hi-C-
based data) yes no no 

CADD v1.6 data yes no no 
GTEx v8 data yes no no 
QTLGen data  yes no no 
BLUEPRINT DNase-seq yes no no 
Allele-specific TF binding data 
(CATO) yes no no 
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