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Abstract

Invasion of the surrounding tissue is a key aspect of cancer growth and
spread involving a coordinated effort between cell migration and matrix
degradation, and has been the subject of mathematical modelling for
almost 30 years. In this current paper we address a long-standing ques-
tion in the field of cancer cell migration modelling. Namely, identify the
migratory pattern and spread of individual cancer cells, or small clusters
of cancer cells, when the macroscopic evolution of the cancer cell colony
is dictated by a specific partial differential equation (PDE).
We show that the usual heuristic understanding of the diffusion and
advection terms of the PDE being one-to-one responsible for the ran-
dom and biased motion of the solitary cancer cells, respectively, is
not precise. On the contrary, we show that the drift term of the cor-
rect stochastic differential equation (SDE) scheme that dictates the
individual cancer cell migration, should account also for the diver-
gence of the diffusion of the PDE. We support our claims with
a number of numerical experiments and computational simulations.

Keywords: Cancer invasion, multiscale modelling, hybrid continuum-discrete,
coupled partial and stochastic partial differential equations
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1 Introduction

Cancer invasion is a complex process involving numerous interactions between
the cancer cells and the extracellular matrix (ECM) (cf. the tumour microen-
vironment) facilitated by matrix degrading enzymes. Along with active cell
migration (both individual and collective) and increased/excessive prolifera-
tion, these processes enable the local spread of cancer cells into the surrounding
tissue. Any encounter with blood or lymphatic vessels (cf. tumour-induced
angiogenesis, lymph-angiogenesis) in the tumour microenvironment initiates
and facilitates the spread of the cancer to secondary locations in the host, i.e.,
metastasis or metastatic spread. A comprehensive historical overview of the
biology of metastastic spread can be found in the article by Talmadge and
Fidler [1], while an overview of the core aspects of invasion can be found in the
articles of Hanahan and Weinberg [2], [3] and the review article of Friedl and
Wolf [4]. From a mathematical modelling perspective, cancer invasion has been
a topic of interest for almost 30 years with a range of approaches and tech-
niques being used, and an overview can be found in the recent review paper by
Sfakianakis and Chaplain [5]. Broadly speaking, two different approaches have
been used to model cancer invasion-continuum approaches (i.e. using differen-
tial equations with cancer cell density as one of the dependent variables) and
individual-based or agent-based approaches (i.e. focusing on the movement of
individual cells). Some have also adopted a so-called hybrid approach e.g. [6],
deriving a discrete model governing the migration of individual cancer cells
from the discretization of an associated system of PDEs.

It is not our intention here to discuss in detail the previous modelling work
in the area. Rather the aim of this paper is to investigate mathematically
the connection between the stochastic differential and the partial differential
equations (SDEs and PDEs respectively) that are typically used to describe
the migration of living cells. The precise interplay between the SDE and PDE
approach is not yet clear and has been in the research focus the last years.
The difference between these two approaches is significant and it lies primarily
in the immediate focus of the mathematical model. Namely, whereas the SDE
approach focuses primarily on the migratory behaviour of the individual cells,
the PDE approach describes the macroscopic behavioural pattern of a large
collective of cells. As the behavioural pattern, in real life biology, of large cell
collectives is related to the migration of individual cells so should the two
mathematical approaches be connected.

By identifying the interplay between the two mathematical approaches,
we shed light in the complexity of multiscale modelling and simulations. This
has direct implications in the biological understanding of solitary cancer cell
migration and the development/growth of tumours. Such detailed knowledge
of how far individual cancer cells can penetrate into the local tissue is very
important from a surgical point of view and can help to minimise the amount
of resection required, a point initially raised and investigated in the work of
Anderson et al. [6].
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Our aim, hence, in this work is to investigate the interplay between the
SDE and PDE modeling approaches of cancer invasion and growth. Namely,
we exhibit that the terms of the numerical scheme solving the underlying SDE
are not in a one-to-one correspondence to the terms of the PDE. In more detail,
we show that a particular “correction” in the drift terms of the numerical
scheme of the SDE that improves the approximation qualities of the schemes
when compared with the numerical solution of the PDE.

These ideas are studied in the remainder paper in the following way. In
Section 2 we provide some background for the motivation to this paper stat-
ing the general forms of PDE and SDE to be considered, while in Section 3
we derive the SDE schemes in some detail. In Section 4 we undertake numer-
ical experiments and compare results from computational simulations of the
underlying cell migration PDE model with simulations of two different SDE
schemes. Finally in Section 5 concluding remarks are made.

2 Motivation

We are motivated in this work by typical continuum cancer invasion models
(e.g. [7], [8], [9]) and consider the following general Advection-Diffusion PDE

∂u

∂t
+∇ · (Au)−∇ · (D∇u) = 0, (1)

where, according to the usual practice, u : [0, T ]×Ω → R represents the space-
time dependent density of cancer cells, and where Ω ⊂ Rd, with d = 2, 3, is a
Lipschitz domain. We assume throughout this work that both the advection
and diffusion coefficients A and D are non-constant in the sense that they
depend on x ∈ Rd.

It is biologically understood that the macroscopic patterns of a large col-
lective of cells is related to the migration of individual cells. Hence, our aim is
to understand the connection between the continuous model (1), and models
that capture the migration of solitary cancer cells. Following the ideas devel-
oped in the seminal works by Einstein [10] on the investigation of Brownian
motion, as well as by Stratonovich, Ito and Kitanidis [11–13], the motion of
the solitary cancer cells is usually described via SDEs that track the position
of the cells. These SDEs typically take the form

dXt = a(Xt, t) dt+ d(Xt, t) dWt , (2)

with t ≥ 0. Here Xt ∈ Rd is a stochastic process that represents the position of
the solitary cancer cells, and where a(Xt, t) and d(Xt, t) are the drift and the
diffusion coefficients respectively. Here Wt represents a d-dimensional Wiener
process.

The critical question that arises in this work is the following: how do the
advection and diffusion terms A, D of the deterministic PDE (1) relate to the
drift and diffusion terms a, d of the SDE (2)?
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By identifying these relations we shed light in the complexity of multiscale
modelling and simulations in general, and in the migration of solitary cancer
cells and macroscopic tumour growth within a living organism in particular.
Succeeding, hence, in identifying such relations will allow well established—
and phenomenologically verifiable—macroscopic models to be used in order to
extract, at the smaller scale, the migratory pattern of solitary cells or small
clusters of cancer cells. Vice-versa, these relations will provide an additional
validation to the use of deterministic models or even encourage ideas for a
hybrid method using both deterministic and stochastic models.

We proceed in this effort under the assumption that u represents a single
solitary cancer cell or a small cluster of cancer cells. We denote by xt ∈ Rd

the numerical approximation of the solution stochastic process Xt ∈ Rd that
represents the position of the cell’s centroid at time t. Following [11–15] we
exhibit in Section 3 that the less intuitive numerical scheme:

xt+∆t = xt +
(
A(xt) +∇ ·D(xt)

)
∆t+

√
2∆tV(xt) ξ , (3)

where ξ is a vector of d independent and normally distributed random variables
of mean 0 and variance 1, and where V given by

V(xt)V
T (xt) = D(xt) , (4)

provides a better approximation to the PDE (1) than the more intuitive
numerical scheme:

xt+∆t = xt +A(xt)∆t+
√
2∆tV(xt) ξ . (5)

Both schemes account, in the same way, for the “square root” of the diffu-
sion D in their corresponding diffusion/noise terms. As we will see in Section
3 this is derived in a very natural way.

The SDE (2) is of an Ito-type and, accordingly, the schemes (3) and (5) are
derived using the Euler-Maruyama approximation. The less intuitive scheme
(3) should not be mistaken for the equivalent scheme of a Stratonovich-type
SDE emerging from (2), cf. [15]; it should rather be understood as an Ito-type
scheme that is different from (5).

Structurally, the difference of the two schemes (3) and (5) lies in their
corresponding drift terms. In particular, in the “corrected” scheme (3) the drift
term accounts for both the advection, A, and the diffusion, D, coefficients of
the PDE (1). In the scheme (5) the drift term accounts only for the advection
term A. This final remark, the one-to-one correspondence between the terms
of the scheme (5) and the equation (2), justifies the characterisation of the
scheme (5) as “more intuitive”, cf. [15, 16].

In Section 3 we derive the scheme (3) from the PDE (1) and in Section 4
we compare it numerically with the scheme (5) and the PDE (1).
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We, hence, conclude that there is not a one-to-one relation between the
advection term of the PDE and the drift term of the SDE—unless the diver-
gence of the diffusion D vanishes; this is clearly the case when the diffusion D
does not depend on the spatial variable x.

3 Derivation of the SDE Schemes

We make the fundamental modeling assumption that a cell can be viewed
as a sufficiently small cell-cluster that satisfies the PDE (1). We furthermore
assume that, without loss of generality, such a cell-cluster has unit mass i.e.∫

V∞

u(t,x) dx = 1 , (6)

where u(t,x) is the density and V∞ the volume of the cell-cluster.
To capture the behaviour of the cell-cluster, and in particular, the position

of its centroid and spread, we use the method of moments. Accordingly, the
first and second moments of u read respectively

ν1(t) =

∫
V∞

xu(t,x) dx , (7a)

ν2(t) =

∫
V∞

xxTu(t,x) dx . (7b)

Note that ν1(t) is a d-dimensional vector and ν2(t) a d×d-dimensional matrix,
and they are both understood via their physical rather than probabilistic
interpretation. We also consider the second moment about the mean

N(t) =

∫
V∞

(x− ν1(t)) (x− ν1(t))
T
u(t,x) dx = ν2(t)− ν1(t)ν

T
1 (t) , (8)

where N(t) is d × d-dimensional matrix. The first moment ν1 in (7a) can be
interpreted as the position of the cell-cluster centroid, and, accordingly, it’s
(time) rate of change as the velocity of the cell-cluster. On the other hand, the
rate of change of the second moment ν2 in (7b) represents the spreading of the
cell-cluster. These two remarks together allow to (heuristically) identify the

drift and diffusion coefficients, a and d, of the SDE (2) as
dν1(t)

dt
and

dN(t)

dt
respectively.

As a direct consequence of that, we will construct a numerical scheme in
line with the classical Euler-Maruyama approximation, cf. [14], as follows

xt+∆t = xt +
dν1(t)

dt
∆t+

√
dN(t)

dt
∆t ξ, (9)

where the square root in the above, should be understood in the usual matrix
notation, see e.g. (4).
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To this end, we impose the following boundary conditions that indicate an
exponential decay of u(t,x) as |x| → ∞.∫

S∞

ez
Txu(t,x)ATn dS = 0 , (10a)∫

S∞

ez
Tx(D∇u(t,x))Tn dS = 0 , (10b)∫

S∞

ez
Txu(t,x)Dn dS = 0 , (10c)

where S∞ represents the surface of the cell-cluster V∞ and z a d-dimensional
vector. Through the i-th derivative of (10a)-(10c) with respect to z and setting
z = 0 one can retrieve the boundary conditions for the i-th moment. In our case
we only need to differentiate twice since we only need the first two moments.

With all these in mind, we proceed by calculating through (7a) and (8)
the time derivatives of ν1(t) and N(t). For ν1 we multiply (1) by xi, for
i = 1, ..., n, integrate over the cell-cluster volume V∞, and obtain∫

V∞

xi

[
∂u

∂t
+∇ · (Au)−∇ · (D∇u)

]
dx = 0 ⇐⇒∫

V∞

xi
∂u

∂t
dx︸ ︷︷ ︸

=I11

+

∫
V∞

xi∇ · (Au) dx︸ ︷︷ ︸
=I12

−
∫
V∞

xi∇ · (D∇u) dx︸ ︷︷ ︸
=I13

= 0 . (11a)

We work on each of the terms I11, I12, I13 on the left hand side separately;
and obtain for I11

I11 =

∫
V∞

xi
∂u

∂t
dx =

∂

∂t

∫
V∞

xiu dx =
d(ν1)i
dt

. (11b)

For the second term I12, after invoking the Divergence Theorem and the
boundary conditions (10a)-(10c), we obtain

I12 =

∫
V∞

xi∇ · (Au) dx =

∫
V∞

∇ · (Auxi) dx−
∫
V∞

Aiu dx

=

∫
S∞

uxiA
Tn dS −

∫
V∞

Aiu dx

(10a)
= −

∫
V∞

Aiu dx , (11c)

where Ai is the i-th element of the vector A. Similarly, the third term I13
recasts into

I13 =

∫
V∞

xi∇ · (D∇u) dx =

∫
V∞

∇ · (xiD∇u) dx−
∫
V∞

(∇u)
T
Di dx
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=

∫
S∞

xi(D∇u)Tn dS −
∫
V∞

∇ · (uDi) dx+

∫
V∞

u∇ ·Di dx

(10b)
= −

∫
S∞

uDT
i n dS +

∫
V∞

u∇ ·Di dx

(10c)
=

∫
V∞

u∇ ·Di dx , (11d)

where Di is the i-th column of the diffusion matrix D. So, by combining (11a)
with (11b)-(11d) we obtain the following representation for the rate of change
of the i-th (vector) component of the first moment:

d(ν1)i
dt

=

∫
V∞

(Ai +∇ ·Di)u dx. (12)

In a similar way, we identify the relation satisfied by the ijth element of
the second moment ν2, which allows us to compute the rate of change of N(t)
in (8):∫

V∞

xixj

[
∂u

∂t
+∇ · (Au)−∇ · (D∇u)

]
dx = 0 ⇐⇒∫

V∞

xixj
∂u

∂t
dx︸ ︷︷ ︸

=I21

+

∫
V∞

xixj∇ · (Au) dx︸ ︷︷ ︸
=I22

−
∫
V∞

xixj∇ · (D∇u) dx︸ ︷︷ ︸
=I23

= 0.
(13a)

As with (11a), we employ the Divergence Theorem and the boundary condition
(10a)-(10c) and calculate these three integrals one-by-one. The first one, I21,
reads

I21 =

∫
V∞

xixj
∂u

∂t
dx =

∂

∂t

∫
V∞

xixju dx =
d(ν2)ij

dt
, (13b)

the second integral, I21, recasts into

I22 =

∫
V∞

xixj∇ · (Au) dx =

∫
V∞

∇ · (xixjAu) dx−
∫
V∞

(xjAi + xiAj)u dx

=

∫
S∞

xixjuA
TndS −

∫
V∞

(xjAi + xiAj)u dx

(10a)
= −

∫
V∞

(xjAi + xiAj)u dx, (13c)

and for the third term, I21, it holds

I23 =

∫
V∞

xixj∇ · (D∇u) dx

=

∫
V∞

∇ · (xixjD∇u) dx−
∫
V∞

[
xj(D∇u)i + xi(D∇u)j

]
dx
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=

∫
S∞

xixj(D∇u)Tn dS −
∫
V∞

∇ · (uxjDi + uxiDj) dx

+

∫
V∞

[
xj∇ ·Di + xi∇ ·Dj + 2Dij

]
u dx

(10b)
= −

∫
S∞

(uxjDi + uxiDj)
Tn dx

+

∫
V∞

[
xj∇ ·Di + xi∇ ·Dj + 2Dij

]
u dx

(10c)
=

∫
V∞

[
xj∇ ·Di + xi∇ ·Dj + 2Dij

]
u dx, (13d)

where Dij is the element in the i-th row and j-th column of the matrix D. By
combining (13a) with (13b)-(13d), we obtain the following relation for ij-th
(matrix) element of the second moment

d(ν2)ij
dt

=

∫
V∞

(xjAi+xiAj)u dx+

∫
V∞

[
xj∇·Di+xi∇·Dj+2Dij

]
u dx. (14)

Summing up (12) and (14), we deduce the following set of equations in a
vector form for any given advection and diffusion terms A and D in (1)

dν1

dt
=

∫
V∞

(A+∇ ·D)u(t,x) dx (15)

dν2

dt
=

∫
V∞

(
x(A+∇ ·D)T + (A+∇ ·D)xT + 2D

)
u(t,x) dx (16)

dN

dt
=

∫
V∞

(
x(A+∇ ·D)T + (A+∇ ·D)xT + 2D

)
u(t,x) dx

− ν1(t)

(∫
V∞

(A+∇ ·D)u(t,x) dx

)T

−
(∫

V∞

(A+∇ ·D)u(t,x) dx

)
νT
1 (t). (17)

We retrieve (17) by taking the time derivative of (8) and substituting equations
(15) and (16).

Assuming that the mass of the cell-cluster is concentrated, at time t, in a
single point xt, we can represent the density of the cell-cluster as

u(t,x) = δ (x− xt) ,

where δ is the Dirac function centered at xt. Then the velocity of the cell-
cluster in (15), is given as the sum of the advection A and the divergence of
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Table 1 Parameters used in Experiments 1 and 2.

- t0 T N a b x0 realisations

Experiment 1 0 1 1000 0.01 0.001 (1, 1)T 102

Experiment 2 0 1 1000 0.01 0.001 (1, 1)T 105

the diffusion matrix D at xt:

dν1

dt
= A(xt) +∇ ·D|xt . (18)

Accordingly, the rate of change of second moment about the mean in (17)
recasts into

dN

dt
= xt(A+∇ ·D)T

∣∣∣∣
xt

+ (A+∇ ·D)

∣∣∣∣
xt

xT
t + 2D

∣∣∣∣
xt

− xt(A+∇ ·D)T
∣∣∣∣
xt

− (A+∇ ·D)

∣∣∣∣
xt

xT
t

= 2D

∣∣∣∣
xt

, (19)

which clearly indicates that the rate of spreading of the cell-cluster is given by
the diffusion matrix at the point xt.

We close this section by substituting (18) and (19) into (9) to obtain the
corrected numerical scheme

xt+∆t = xt +
(
A(xt) +∇ ·D(xt)

)
∆t+

√
2∆tV(xt)ξ2, (20)

where V(xt)V
T (xt) = D(xt) and where ξ2 is a vector of d independent and

normally distributed random variables with 0 mean and variance 1.
The scheme (20) that we have just derived, is different from the one without

the correction of the drift term, i.e. (5), which we repeat here for completion:

xt+∆t = xt +A(xt)∆t+
√
2∆tV(xt)ξ1, (21)

where, as before, ξ1 is a vector of independent and normally distributed
random variables with mean 0 and variance 1.

In the next section we numerically investigate the two schemes (21) and
(20) and provide evidence of their differences and their fitting with the
corresponding/underlying PDE (1).

4 Numerical Experiments

We have seen in the previous section that the drift term of the SDE scheme
(20) incorporates a diffusion-based contribution/correction that is not found
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in the more intuitive scheme (21). This is a significant difference between the
two schemes and is central in our numerical investigations. Namely our aim in
this section is to numerically investigate the impact that this correction has on
the simulations of these two schemes. To this end, we consider three specific
numerical settings that highlight the difference of the two schemes, and com-
pare their predictions with each other and with the corresponding/underlying
PDE (1).

In more detail, in Experiment 1, we investigate the behaviour of the two
schemes, (21) and (20), on a particular application where the corresponding
noise terms ξ1, ξ2 are the same. This allows to csompare the two schemes as
a result of their differences on the drift terms alone.

In Experiment 2, we consider the same computational setting as in Experi-
ment 1, with the only difference being that the two SDE schemes (21), (20) are
augmented with different noise terms ξ1, ξ2. With a large number of scheme
realisations we extract information on the full spectrum of differences between
the two schemes.

In Experiment 3 we consider a more generic, and common in the cancer
invasion modelling literature, experimental setting where the advection and
diffusion terms A, D of (1) depend on the spatial variable x ∈ Rd through
their dependence on the non-uniform tumour microenvironment v : Rd → R.
For both SDE schemes (21) and (20), we perform a large number of realisations
and compare them with the solution of the underlying PDE (1). We accord-
ingly conclude that the corrected SDE scheme (20) provides a much better
approximation to the PDE (1) than the more intuitive SDE scheme (21).

For the numerical solution of the PDE (1) we use a numerical method
that was previously developed in [17, 18] and which we briefly discuss in the
Appendix A. All algorithm implementations, simulations, and visualisations
were conducted in MATLAB [19].

Experiment 1. In the first experiment, we consider a modelling setting where
the advection and diffusion terms, A and D, of the PDE (1) have an explicit
dependence on the space variable x, namely:

A(x) =

(
ax7

1

ax7
2

)
, D(x) =

(
bx7

1 0
0 bx7

2

)
, (22)

where x = (x1, x2) ∈ R2 and a, b ∈ R are constants. Accordingly, the PDE (1)
reads as

∂u

∂t
+∇ ·

[(
ax7

1

ax7
2

)
u

]
−∇ ·

[(
bx7

1 0
0 bx7

2

)
∇u

]
= 0, (23)

where t ∈ [0, T ]. Similarly, the SDE schemes (21) and (20) are re-formulated,
for

V(xt) =

(√
bx7

1 0

0
√

bx7
2

)
, (24)
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Fig. 1 – Exp. 1. Showing here the cell migration tracks/sample paths of 100 realisations
of the SDE schemes (25), in orange, and (26), in light blue, with the same random noise. The
initial position of the cells is set at (1,1) for all realisations and the total travelling time is
T = 1. Note that the sample paths of the two schemes are parallel shifts of one another. The
shift between the two schemes is due to the adaptation of the drift term of the scheme (26).

as follows:

xt+∆t = xt +

(
ax7

1

ax7
2

)
∆t+

√
2∆t

(√
bx7

1 0

0
√

bx7
2

)
ξ1, (25)

xt+∆t = xt +

[(
ax7

1

ax7
2

)
+∇ ·

(
bx7

1 0
0 bx7

2

)]
∆t+

√
2∆t

(√
bx7

1 0

0
√

bx7
2

)
ξ2.

(26)

These two SDE schemes are augmented with the same noise terms ξ1, ξ2 to
allow for a direct, one-to-one, comparison of their realisations.

The parameters used in this numerical experiment can be found in Table 1
and the simulation results are presented in Figure 1. In more detail, we perform
100 realisations of the two schemes (25), (26)—each pair of experiments with
the same noise—starting from the same initial position (x1, x2) = (1, 1) and
running over the time t ∈ [0, 1]. These results show that the realisations of the
two schemes appear to be—in a one-to-one conformation—slightly shifted and
parallel to each other. More specifically, as can be seen, the corrected scheme
(26) introduces an additional displacement of the cell migration track/sample
paths directed towards larger values of x1 and x2. This is due to the nature and
structure of the drift term as well as the diffusion-based correction introduced
in (26) and the positivity of the parameter b, cf. Table 1.

Experiment 2. The intuition we have gained from Experiment 1, namely
the way the adaptation of the drift term in the corrected scheme (26) affects
the distance and direction of the cell migration, can be investigated further
by considering independent noise terms for the two schemes. Hence, in the
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(a) (b)

(c)

Fig. 2 – Exp. 2. Comparison of the migration tracks traversed the cells following the SDE
schemes (25) and (26). For both schemes, we considered initial position at (1, 1) and a total
travelling time T = 1. (a) & (b) The full migration tracks of 105 cells following the SDE
scheme (25) and (26) respectively. (c) Superimposing the migration patterns of (a) and (b)
clearly reveals that the corrected scheme (26) introduces additional migratory bias.

current experiment, we choose independent noise terms ξ1, ξ2 for the two SDE
schemes (25) and (26) and perform 105 new realisations with each, all start
from the initial point (x1, x2) = (1, 1) and running over time t ∈ [0, 1]. We
otherwise consider the same setting and parameters as in Experiment 1; the
parameters for this experiment can be found in in Table 1.

The simulation results are presented in Figures 2 and 3. In Figure 2, in
particular, we see that cells migrate further away from the origin and in a
more biased fashion when they follow the corrected scheme (26) rather than
the scheme (25). This is clearly the result of the additional bias introduced in
the drift term of the corrected scheme (26). The qualitative difference between
the two schemes can be further seen in Figure 3 where we present the final
positions of the cells at time T of both schemes, along with their corresponding
convex hulls.

To measure the quantitative difference of the two schemes (25) and (26),
we first measure the average distance traversed by the cells from their initial
position until the final time T . In more detail, we perform K realisations of the
schemes and calculate, for each one, the distance between the initial and the
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Fig. 3 – Exp. 2. Showing here the final positions of the cells migration after 105 realisa-
tions of the SDE schemes (25) and (26)—in orange and light blue respectively—as shown
in Figure 2. All realisations start from (1, 1) and run for time t ∈ [0, 1]. The corresponding
convex hulls of these final positions are also shown. Note that the adaptation in the drift
term of the corrected scheme (26), as opposed to the scheme (25), induces additional migra-
tion of the cells and spread of their final positions.

final position. We then calculate the average distance the cells have traversed
by the formula

d =
1

K

K∑
i=1

√
(xi

1,T − xi
1,t0

)2 + (xi
2,T − xi

2,t0
)2, (27)

where
(
xi
1,t0 , x

i
2,t0

)
and

(
xi
1,T , x

i
2,T

)
represent the initial and final positions of

the cells in the realisation i = 1, ...,K. We apply the above formula for the two
schemes (25) and (26), after performing K = 106 realisations of each, calculate
their respective average distances d1 and d2 respectively, and evaluate the
signed relative difference between the two to obtain

E =
d2 − d1

d1
≈ 0.076 . (28)

To further quantify the difference between the two schemes, we perform a
uniform binning approach of the final positions of the cancer cells as described
in [20]. Namely, we consider a partition of the x1-axis into non-overlapping
bins of fixed size r, and assign to each bin the quantity:

Ui =

Ni∑
j=1

Ii,j , (29)

where Ni is the total number of positions (x1, x2) in the i-th bin and Ii,j is
the j-th element of the set Ii = {x2 : for positions (x1, x2) in the i-th bin}.



Springer Nature 2021 LATEX template

14 Stochastic differential equation modelling of cell migration and invasion

The quantification was made by computing the J2 criterion which is defined
as follows

J2 =
|Sw + Sb|

Sw
, (30)

where

Sw =

M∑
i=1

PiSi, Sb =

M∑
i=1

Pi(µi − µ0)(µi − µ0)
T ,

Pi =
ni

K
, Si = E

[
(x− µ0)(x− µ0)

T
]
, µ0 =

M∑
i=1

Piµi

(31)

where ni is the number of positions in the i-th bin, K is the number of reali-
sations, and µi is the mean value of i-th bin. After computing the J2 values of
both schemes (25) and (26), we compute the signed relative error for different
values r of the size of the bins

Er =
J2,r
2 − J1,r

2

J1,r
2

, (32)

where J1,r
2 , J2,r

2 are the values of the J2-criterion for schemes (25) and (26)
respectively. Larger values of J2 correspond to better separated data. For the
choice of r = 0.01 + kh , where h = 0.001, for k = 1, ..., 60 , we observe that
for smaller sizes of the bins we get larger values of J2 and that J1,r

2 < J2,r
2 for

all the values of r. The average value of the k−different values of Er is

Er ≈ 0.0082. (33)

This result provides a second confirmation that (26) introduces additional
migratory bias to the one side of the plane.

Experiment 3. In this experiment we consider a PDE that is more common in
the field of cancer invasion than the PDE in equation (23). Namely, we consider
here a model where the growth of the tumour depends on the extracellular
environment. This could represent, e.g. an extracellular chemical signal, the
density of the extracellular matrix, or a completely different extracellular bio-
chemical queue. Still, for the sake of simplicity of presentation, we do not
make any particular biological assumptions on the nature of the extracellular
environment and rather refer to it simply as “environment”.

Furthermore, we assume that this environment is non-uniform in space,
does not change in time, and influences the growth of tumour in a very specific
fashion. These assumptions are incorporated in the following model:

∂u

∂t
(t,x)−∇ ·

(
∇v(x)u(t,x)

)
−∇ ·

(
(v(x)− 1)∇u(t,x)

)
= 0, (34)
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(a) (b)

(c)

Fig. 4 – Exp. 3. Numerical solution of the PDE (34). (a) Showing here the isolines of
the concentration u at time t = 0; they serve as initial conditions for the PDE (34). (b) The
structure of the (fixed) extracellular environment v that participates in the advection and
diffusion terms of (34); the formula of v is given in (36). (c) Isolines of the solution u of the
PDE (34) at the final time t = 10; they reveal a higher concentration of the cancer cells in
the “valleys” of the (fixed) extracellular environment v shown in (b).

where t ≥ 0, x = (x1, x2) ∈ Ω = [−12, 12]
2
, and where u : [0,∞) × Ω → R

represents the density of the cancer cells. As previously mentioned, we do
not investigate the biomedical realism of this model, nor do we interpret its
findings under this light.

The PDE (34) is augmented with the initial condition

u(0,x) = u(0, x1, x2) = 3× 105 e−20(x2
1+x2

2), (35)

for x ∈ Ω as shown in Figure 4, and zero-Neumann boundary conditions over
∂Ω. Furthermore, the (fixed) extracellular environment v : Ω → R, shown in
Figure 4, is given by

v(x) = v(x1, x2) = 1 + 0.5
(
sin2(x1) + cos2(x2)

)
. (36)

Note that, for v given in (36), the diffusivity v(x)− 1 of (34) is non-negative
for all x ∈ Ω.
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(a) (b)

(c) (d)

Fig. 5 – Exp. 3. Simulations and comparison of 104 realisations of SDE schemes (37a)
and (37b). (a) & (b) Full set of tracks/sample paths for the more intuitive scheme (37a) and
the corrected scheme (37b) respectively. It can be clearly seen that the spread in (37b) is
much wider than in (37a); this is justified by the adaptation introduced in the drift term of
the corrected scheme (26). This remark is confirmed by superimposing the cell tracks of (a)
in (b) in (c). (d) This shows the final positions of the 104 realisations of (37a) and (37b), in
orange and light blue respectively, along with the convex hulls of the corresponding points.
It is clearly seen that the cells concentrate in the “valleys” of the environment v, cf. with
the solution of the PDE (34) in Figure 4, and that the final positions of (37b) (shown in
light blue) spread more than those of (37a). The final positions of (37a) are not visible as
they are overlapped by the final positions of (37b).

We plot in Figure 4 the isolines of the solution of the PDE (34) at the final
time t = 10. These illustrate clearly a significantly higher concentration of the
cancer cells in the “valleys” of the extracellular environment v.

Based on the advection and diffusion terms of the PDE (34), we rewrite
the SDE schemes (21) and (20) as follows:

xt+∆t = xt −∇v(xt)∆t+
√
2∆t

√
v(xt)− 1ξ1, (37a)

xt+∆t = xt +
√
2∆t

√
v(xt)− 1ξ2. (37b)

Note that the corrected SDE scheme (37b), which corresponds to the corrected
scheme (20), lacks a drift term; this is a result of the particular structure of the
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(a) (b)

Fig. 6 – Exp. 3. Qualitative comparison of the numerical solution of the PDE (34)
against the predictions of the SDE schemes (37a) and (37b). (a) Isolines of the final time
solution u of the PDE (34), cf. Figure 4, superimposed with 104 (final time) realisations of
the SDE scheme (37a). (b) Isolines of the final time solution u of the PDE (34), cf. Figure
4, superimposed with 104 (final time) realisations of the SDE scheme (37b). We note that
the cells described by the SDE scheme (37a) are concentrated, at the final time, almost
exclusively in the “valleys” of the (fixed) environment v, cf. Figure 4, much more than cells
described by the corrected SDE scheme (37b), and much more than the final time solution
u of the PDE (34). The results confirm that the corrected scheme (37b) offers a much better
approximation of the PDE (34) than the more more intuitive scheme (37a).

advection and diffusion terms of the PDE (34) and the way they are combined
in the drift term of the corrected scheme (20).

The simulations that we perform for Experiment 3 are shown in Figure 5
and are similar to the ones for Experiment 2 (cf. Figures 2 and 3). We note
that the cell tracks of the more intuitive scheme (37a) spread out from the
origin in a lesser extend than the corrected scheme (37b). This is due to the
presence of the drift term in the scheme (37a) which leads almost all cancer
cells to high densities of the extracellular environment v. On the other hand,
the final positions of the sample paths given by (37b) concentrate less in the
“valleys” of the extracellular environment.

In Figure 6 we present a direct qualitative comparison between the numer-
ical solution of the PDE (34) and the SDE schemes (37a) and (37b). What
this figure shows is that, at the final time t = 10, the positions of the cells of
104 realisations of the SDE scheme (37a) are much more concentrated than
the corresponding solution of the PDE (34). On the other hand, the distribu-
tion at the same final time t = 10, of 104 realisations of the corrected scheme
(37b) is more spread out and much closer to the solution of the PDE (34).
In effect, these simulation results indicate that the corrected scheme (37b) is
a better approximation to the numerical solution of the PDE (34) than the
scheme (37a).

Similarly to Experiment 2, we quantify the difference between the two
schemes by measuring the corresponding average distances traversed by the
cells from their initial position. In more detail, we performK = 104 realisations
for each scheme, calculate the average distances d1 and d2 using the formula
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(27), and their relative difference via:

E =
d2 − d1

d1
≈ 0.516 . (38)

To further quantify the difference of the two schemes, we perform a uniform
binning and calculate the relative error of the J2-criterion for (37a) and (37b)
for k−different values of the size r of the bins as in (32). We noticed that, for
smaller values r we have that again J1,r

2 < J2,r
2 . We choose r = 0.01 + kh,

where h = 0.001, for k = 1, ..., 140, and calculate the average value of the
k−different values of the signed relative error Er which is

Er ≈ 3.0692 . (39)

This confirms, yet again, that (37b) brings an additional migratory bias to the
movement of solitary cancer cells to the entire plain.

5 Discussion

In this paper we have investigated the long-standing question of bridging the
scales in problems of multiscale modelling and simulations. As we are moti-
vated by the study of cancer growth and invasion models, we can rephrase
this question as follows: how does one identify the correct SDEs (2) that
dictate the migratory pattern of solitary cancer cells or small clusters of can-
cer cell, when the macroscopic evolution of the cancer cell colony follows the
advection-diffusion PDE (1)?

We have exhibited in this paper, that the answer to this question is not
trivial. The usual heuristic understanding that the advection and diffusion
terms of the PDE (1) are responsible for the biased and random motion of
the cancer cells, respectively, is not precise. Were this correct, the drift term
in the SDE schemes that describe the migration of the cells in the solitary
cell regime would have been solely dependent on the advection term A of
the PDE (1), as e.g. is the case in the numerical scheme (5). We have seen
with the derivations of the SDE schemes in Section 3 and with the numerical
investigations in Section 4 that this is not the case. On the contrary, we have
shown with (3) that the drift term of the correct SDE schemes should account
for the advection A as well as the divergence of the diffusion D of the PDE
(1) in a very specific way.

When comparing the corrected scheme (3) with the more heuristically
expected one (5), we see that their difference depends solely on the divergence
of the diffusion D. This clearly indicates that the two schemes would be/are
identical in the case of space independent diffusion D. If though, both the
advection and diffusion terms depend on the spatial variable—as is typically
the case in cancer invasion models—then, identifying the inconsistency of the
SDE schemes with the underlying PDE is not trivial and quite often is not
readily apparent due to the inherent stochasticity.
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From a biological/oncological perspective this is important in determining
accurately how far individual cancer cells can penetrate the local tissue, and so
from a clinical point of view the model results have much predictive potential.
It is known that resection margins (i.e. how much tissue is removed surgically)
and the pattern of cancer invasion are predictors both of local recurrence and
of survival in patients who undergo surgery [21], [22], [23], [24], [25], [26]. With
further refinement, accurate parameterisation and testing, using the results
from the model would enable quantitative estimates to be made of the likely
extent of local spread by an invasive cancer. This would then enable a surgical
oncologist to tailor the radicality of surgical excision for a given individual
situation. Further, more accurate estimation of metastatic spread (with the
associated implications for adjuvant systemic therapy) will also be possible.

Future work in further developing the insights gained from the current
modelling will focus on parameterising the model more accurately in order to
make quantitative comparison with any available data. A promising avenue of
development in this regard, given the difficulty in obtaining in vivo data, is to
use in vitro data from organotypic invasion assays cf. [27], [28], [29].

Statements and Declarations

Conflicts of interest The authors declare that they have no conflict of
interest.

Supplementary Material/Appendix

A Numerical solution of
Advection-Reaction-Diffusion PDEs

We present here the main components of the numerical method we use to solve
the generic Advection-Reaction-Diffusion (ARD) system of the form

wt = A(w) +R(w) +D(w), (40)

where w = w(t,x), t ≥ 0, x ∈ Ω (domain), represents the solution vector, and
A, R, and D the advection, reaction, and diffusion operators respectively.

We denote by wh(t) the corresponding (semi-)discrete numerical
approximation—indexed here by the maximal spatial grid diameter h—that
satisfies the system of ODEs

∂twh = A(wh) +R(wh) +D(wh), (41)

where the numerical operators A, R, and D are discrete approximations of the
operators A, R, and D in (40) respectively.

We use a second order Implicit-Explicit Runge-Kutta (IMEX-RK) Finite
Volume (FV) numerical method that was previously developed in [17, 18]
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where we refer for more details, see also [30]. This method is based on a splitting
in explicit and implicit terms in the form

∂twh = I(wh) + E(wh). (42)

The actual splitting depends on the particular problem in hand but in a typical
case, the advection terms A are treated explicitly in time, the diffusion terms
D implicitly, and the reaction terms R partly explicit and partly implicit.

After splitting, we employ a diagonally implicit RK method for the implicit
part, and an explicit RK for the explicit part. They are combined in the
following scheme

W∗
i = wn

h + τn

i−2∑
j=1

āi,jEj + τnāi,i−1Ei−1, i = 1 . . . s

Wi = W∗
i + τn

i−1∑
j=1

ai,jIj + τnai,iIi, i = 1 . . . s

wn+1
h = wn

h + τn

s∑
i=1

b̄iEi + τn

s∑
i=1

biIi

, (43)

where s = 4 are the stages of the IMEX method, Ei = E(Wi), Ii = I(Wi),
i = 1 . . . s, {b̄, Ā}, {b, A} are respectively the coefficients for the explicit and
the implicit part of the scheme, given by the Butcher Tableau in Table 2, cf.
[31].

We solve the linear systems in (43) using the iterative biconjugate gradient
stabilised Krylov subspace method, for which we refer to [32, 33].

Table 2 Butcher tableaux for the explicit (upper) and the implicit (lower) parts of the
third order IMEX scheme (43), see also [31].

0

1767732205903
2027836641118

1767732205903
2027836641118

3
5

5535828885825
10492691773637

788022342437
10882634858940

1 6485989280629
16251701735622 − 4246266847089

9704473918619
10755448449292
10357097424841

1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

0 0

1767732205903
2027836641118

1767732205903
4055673282236

1767732205903
4055673282236

3
5

2746238789719
10658868560708 − 640167445237

6845629431997
1767732205903
4055673282236

1 1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236
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Table 3 Bin size r and J2 values in Exp. 2.

r 0.01 0.02 0.03 0.04 0.05 0.06 0.07

J2 of (25) ≈ 6.90562 1.67652 1.18584 1.07234 1.03471 1.01896 1.01138
J2 of (26) ≈ 7.24178 1.70981 1.19329 1.07589 1.03633 1.01929 1.01199

B Uniform Binning

In this section we present some graphic results of the uniform binning per-
formed for Experiment 2 in Section 4. We illustrate the binning of the final
positions of 105 realisations of both schemes (25) and (26). At the centre of
each bin we place the value Ui calculated in (29) for both schemes. We perform
this sequence with different sizes r of the bins. In addition we present in Table
3 the J2 values of the both schemes (25) and (26) for r = {0.02, 0.04, 0.06}.

(a) r = 0.06 (b) r = 0.04

(c) r = 0.02

Fig. 7 – Exp. 2. Graphical comparison of uniform binning of the final positions of the
migration tracks traversed the cells following the SDE schemes (25) and (26) respectively.
For both schemes, we considered initial position at (1, 1) and a total travelling time T = 1.
(a) Uniform binning of the final positions of migration tracks of 105 cells for the SDE schemes
(25) and (25) with bin size r = 0.06. (b) Uniform binning of the final positions of migration
tracks of 105 cells for the SDE schemes (25) and (25) with bin size r = 0.04. (c) Uniform
binning of the final positions of migration tracks of 105 cells for the SDE schemes (25) and
(25) with bin size r = 0.02.
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We also worked in a similar fashion for the schemes (37a) and (37b) in the
Experiment 3.
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