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Abstract

Recent research has shown that the internal dynamics of an artificial neural network

model of sentence comprehension displayed a similar pattern to the amplitude of the N400

in several conditions known to modulate this event-related potential. These results led

Rabovsky, Hansen, and McClelland (2018) to suggest that the N400 might reflect change

in an implicit predictive representation of meaning corresponding to semantic prediction

error. This explanation stands as an alternative to the hypothesis that the N400 reflects

lexical-prediction error as estimated by word Surprisal (Frank, Otten, Galli, & Vigliocco,

2015). In the present study, we directly model the amplitude of the N400 elicited dur-

ing naturalistic sentence processing by using as predictor the update of the distributed

representation of sentence meaning generated by a Sentence Gestalt model (McClelland,

St. John, & Taraban, 1989) trained on a large-scale text corpus. This enables a quan-

titative prediction of N400 amplitudes based on a cognitively motivated model, as well

as quantitative comparison of this model to alternative models of the N400. Specifically,

we compare the update measure from the SG model to Surprisal estimated by a compa-

rable language model trained on next-word prediction. The results reported in this paper

corroborate the hypothesis that N400 amplitudes correspond to the change in an implicit

predictive representation of meaning after every word presentation. Furthermore, we ar-

gue that a comparison of the Sentence Gestalt update and Surprisal might also uncover

two distinct but probably closely related sub-processes that contribute to the processing of

a sentence.

1 Introduction

Understanding a sentence requires extracting semantic information about the events or states
that it describes. The way this is achieved by the human brain, and more specifically the nature
of the processes involved is a central question for the study of the neurobiology of language.
The identification of several language-related neural correlates – such as the N400 component
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of the event-related potential – has allowed scientists over the last decades to have a more direct
view of the neurocognition of sentence processing. Nonetheless, despite the mounting number
of studies and data collected, the nature of these processes and the computations signaled by
their neural correlates is still widely debated.

In this paper, we advance and test the hypothesis that the N400 event-related potential
(ERP) component signals the online update of the brain’s implicit predictive representation of
meaning during sentence processing, and compare it with the hypothesis that instead, it reflects
lexical prediction error. We do so by mapping the internal dynamics of an artificial neural net-
work trained on sentence comprehension onto electroencephalographic data collected during
sentence reading and by comparing the results to the effect of lexical Surprisal on the same
data. This quantitative model comparison is enabled by scaling up our cognitive model of the
N400 (Rabovsky et al., 2018) to a large scale corpus of naturalistic texts.

The N400 ERP component is a well-established correlate of meaning processing in the
brain (Kutas & Federmeier, 2011), which offers a window into the neural processes supporting
sentence comprehension. Understanding the computational processes underlying it can help
us understand language and meaning processing. The N400 is a negative deflection at centro-
parietal electrode sites peaking around 400 ms after the onset of a word or another potentially
meaningful stimulus. Its amplitude has been shown to be affected by a wide variety of lin-
guistic variables. The N400 effect was first discovered as a larger negativity for incongruent
sentence continuations (such as e.g., ”I take my coffee with cream and dog”) as compared
to congruent continuations (Kutas & Hillyard, 1980). In addition, N400 amplitudes tend to
decrease over the course of a sentence (van Petten & Kutas, 1990). Smaller amplitudes are
observed for targets after semantically similar or related as compared to unrelated primes and
for repeated words as compared to a first presentation (Bentin, McCarthy, & Wood, 1985). It
has been shown that the amplitude of the N400 is sensitive to the stochastic properties of the
word in isolation (e.g, its frequency; e.g., Rabovsky, Álvarez, Hohlfeld, and Sommer (2008))
and in relation to its context of utterance (Kutas & Hillyard, 1984; van Petten & Kutas, 1990;
Parviz, Johnson, Johnson, & Brock, 2011; Frank et al., 2015). Various theories propose for
example that the N400 reflects, among others, lexical-semantic access to individual words or
semantic integration processes at the sentence level (Kutas & Federmeier, 2011). However, in
most studies, it is difficult to unequivocally decide whether reduced N400 amplitudes reflect
facilitated lexical access due to prediction/pre-activation of upcoming input (Kutas & Fed-
ermeier, 2000; Lau, Phillips, & Poeppel, 2008), or whether reduced N400 amplitudes reflect
facilitated bottom-up semantic integration processing because the incoming input better fits the
preceding context (C. M. Brown & Hagoort, 1993). There is also a debate revolving around
the involvement of this component in predictive processes. Even though the idea of predictive
preactivation underlying N400 amplitude reductions has been traditionally linked to the idea of
facilitated lexical access rather than facilitated sentence level integration (Kutas & Federmeier,
2011), the issue of whether the N400 reflects predictive processing and preactivation is actually
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independent of the question of at which level (word or sentence level) the processes operate
(Rabovsky et al., 2018). In general, despite the large body of studies conducted on the N400
and the hypothesis that its amplitude modulations are related to meaning processing, an ade-
quate neurally-mechanistic account of the relation between the N400 and language processing
with its theorized functional sub-processes is still actively debated.

Recent developments in the field of artificial intelligence have given rise to the possibility
of using computational models as explicit hypotheses regarding the computations and mech-
anisms involved in several cognitive processes. This holds true for language processing in
general, and its neural correlates, including the N400 ERP component. In the last decade, sev-
eral studies have tried to explain the computations signaled by this component by comparing
it to the performance or mechanisms implemented by various types of computational language
models. These models can be ascribed to two broadly defined categories, (neuro)cognitively
motivated small-scale models linking the N400 to internal processes in the models (Brouwer,
Delogu, Venhuizen, & Crocker, 2021; Fitz & Chang, 2019; Rabovsky et al., 2018), and large-
scale stochastic language models trained on next word prediction in naturalistic language cor-
pora (Merkx & Frank, 2020; Michaelov & Bergen, 2020).

1.1 Next word prediction language models and the N400

Using next word prediction language processing models, Aurnhammer and Frank (2019);
Merkx and Frank (2020); Michaelov and Bergen (2020) have shown that the N400 ampli-
tude is significantly influenced by word-level Surprisal – a stochastic measure that quantifies
how unexpected a word is given its context. More recently Michaelov, Bergen, and Coulson
(2022) used Surprisal estimated by state-of-the-art language models (e.g., Gpt-3, (T. B. Brown
et al., 2020)) and showed that it explains the amplitude of the N400 better than cloze prob-
ability based on human judgement. Additionally, a set of neuroimaging experiments provide
evidence of the relation between Surprisal and processing in cortical regions responsible for
language processing (Willems, Frank, Nijhof, Hagoort, & van den Bosch, 2016; Lopopolo,
Frank, van den Bosch, & Willems, 2017). These findings are generally taken to indicate that
language processing is largely supported by predictive processes. This is reflected by the am-
plitude of the N400 and, more generally, by the activity in a large portion of the perisylvian
and temporal cortex.

Importantly, Surprisal can be estimated by a variety of language models, and thus can
be implemented in different ways. These include n-gram models (also known as stochastic
Markov models), recurrent neural networks (RNN’s) as well as transformer models (Jurafsky
& Martin, 2009). These models can be referred to as next-word prediction language models
since they are trained on predicting the next word in a sequence. In general, language models
are often used to test neuro-cognitive theories of predictive processing, which posit that the
brain constantly updates its expectations regarding incoming stimuli (including, but not limited
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to lexical units) as a function of previous inputs and conditional probabilities learned from the
environment (Bar, 2011; Bubic, von Cramon, & Schubotz, 2010; K. Friston & Kiebel, 2009).

An advantage of these large-scale natural language processing (NLP) models is that they
are trained on large linguistic datasets, approximating human language exposure so that they
can be linked directly to empirical N400 data. However, the measure used to predict N400 am-
plitudes, Surprisal, is an output measure of the models that can be computed in many different
ways. Thus, it does not directly speak to the internal cognitive processes and neural activation
dynamics underlying N400 amplitudes, which is our main interest here. Surprisal, as obtained
by these language models, is a measure of the performance of the model on the task it is asked
to perform – and not the internal mechanisms aimed at performing it – therefore offering only
a “computational” explanation of the electrophysiological correlate.

1.2 Cognitively motivated models of the N400

On the other hand, cognitively motivated computational models of language comprehension
that have been used to model the N400 (Laszlo & Plaut, 2012; Cheyette & Plaut, 2017;
Brouwer, Crocker, Venhuizen, & Hoeks, 2017; Brouwer et al., 2021; Fitz & Chang, 2019;
Rabovsky & McRae, 2014; Rabovsky et al., 2018; Rabovsky & McClelland, 2020; Rabovsky,
2020) link N400 amplitudes to internal hidden layer activation processes and dynamics. This
provides an explicit and mechanistic explanation of the (neuro)cognitive processes giving rise
to the N400. In other words, the link established by (neuro)cognitively motivated small-scale
models between their internal processes and the N400 might instead offer an “algorithmic”
(and partly “implementational”) explanation of the underlying processes.

In the first study that attempted to link neuro-cognitively motivated computational mod-
els with insights from electrophysiological studies of language processing, Laszlo and Plaut
(2012) proposed that the N400 corresponds to the magnitude of the activation of a semantic
representation arising from the dynamic interaction between excitatory and inhibitory connec-
tions between layers of a connectionist model of visual word recognition, and successfully
simulated influences of orthographic neighborhood on N400 amplitudes. On the other hand,
Rabovsky and McRae (2014) proposed that N400 amplitudes reflect an implicit prediction error
at the level of meaning, which they simulated as the network error in a feature-based attrac-
tor model of word meaning. Using this model, they simulated seven empirical N400 effects,
namely influences of word frequency, semantic richness, repetition, orthographic neighbor-
hood, semantic priming, as well as interactions of repetition with both word frequency and
semantic richness. Subsequently, Cheyette and Plaut (2017) addressed the same range of N400
effects as Rabovsky and McRae (2014) using a model building on Laszlo and Plaut (2012)’
proposal. The different models are not necessarily incompatible though and could be seen as
complementary as the models by Laszlo and Plaut (2012) and Cheyette and Plaut (2017) ad-
dress primarily the implementational level while the model by Rabovsky and McRae (2014)
targets the algorithmic level of analysis according to Marr’s classification. Both models fo-
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cused on N400 effects observed during the processing of single words and word pairs.
Among the small-scale models addressing N400 effects during sentence processing, Brouwer

et al. (2017, 2021) tested the hypothesis that the N400 component reflects the retrieval of word
meaning from semantic memory, and the P600 component indexes the integration of this mean-
ing into the unfolding utterance interpretation. They did so by implementing the two processes
– retrieval and integration – in two separate modules of a recurrent neural network-based model
trained on sentence comprehension. Patterns of ERP amplitudes were compared to the internal
activity of the retrieval and integration modules. Specifically, they monitored the dynamics
of the model’s modules during the processing of reversal anomalies. Reversal anomalies are
sentences such as ”Every morning at breakfast, the eggs would only eat...”, where N400 am-
plitudes are small despite the semantic incongruity, while amplitudes of the subsequent P600
component are increased. They observed that, in this situation, the amplitude of the N400 dis-
plays similar behavior with the activity of the retrieval module (i.e., both were small), therefore
leading to their proposal that the N400 signal lexical-semantic retrieval mechanisms. On the
other hand, the P600 was instead observed behaving similarly to the activity of the integration
module in the sense that both were large (see Section 4 for further discussion).

Rabovsky et al. (2018) proposed an explanation of the N400 ERP component in terms of
update of an implicit predictive representation of meaning as captured by the change of the
inner states of the Sentence Gestalt (SG) model, a connectionist model of predictive language
processing that maps a sentence to its corresponding event (McClelland et al., 1989). At every
given moment during sentence processing, this representation not only contains information
provided by the words presented so far, but also an approximation of all features of the sen-
tence meaning based on the statistical regularities in the model’s environment internalized in
its connection weights. Rabovsky et al. (2018) showed that the SG model update (referred
to as Semantic Update, or SU for short) simulates a number of N400 effects obtained in em-
pirical research. These included the influences of semantic congruity, cloze probability, word
position in the sentence, reversal anomalies, semantic and associative priming, categorically
related incongruities, lexical frequency, repetition, and interactions between repetition and se-
mantic congruity. These results foster the idea that N400 amplitudes reflect surprise at the level
of meaning, defined as the change in the probability distribution over semantic features in an
integrated representation of meaning occasioned by the arrival of each successive constituent
of a sentence. This surprise at the level of meaning has also been shown to correspond to a
learning signal driving adaptation and learning in the SG model. Specifically, because at any
given point in sentence processing, the model attempts to predict all aspects of meaning of the
described event, the change in SG activation induced by each new incoming word corresponds
to the prediction error contained in the previous SG representation. Based on the idea that
prediction errors drive learning, Rabovsky et al. (2018) used the difference in SG activation
between the current and the next word as a learning signal to adjust connection weights in the
model (simulation 16). This was taken to suggest that N400 amplitudes reflect an implicit error
based learning signal during language comprehension (Rabovsky et al., 2018). Thus, the model
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by Rabovsky et al. (2018) refined the notion of an implicit prediction error at the level meaning
proposed by Rabovsky and McRae (2014) by extending it to the sentence level, directly linking
it to neural activation, and implementing it dynamically as a change in an implicit predictive
representation of meaning.

Fitz and Chang (2019) extended the perspective that N400 amplitudes reflect a learning
signal also to the P600. Specifically, they proposed that both the N400 and P600 arise as side
effects of an error-based learning mechanism that explains linguistic adaptation and language
learning (Gehring, Goss, Coles, Meyer, & Donchin, 1993; Holroyd & Coles, 2002). Their
model is based on Chang’s Dual-path model – a connectionist model of language acquisition
and sentence production (Chang, 2002). The model decouples sequence and meaning process-
ing in two distinct pathways, which – during training – learn syntax and semantic regularities.
Their theory is instantiated by observing how the model’s processing error simulates data from
several studies on the N400 (amplitude modulation by expectancy, contextual constraint, and
sentence position), and on the P600 (agreement, tense, word category, sub-categorization and
garden-path sentences).

These cognitively motivated models proposed to account for N400 amplitudes have as of
yet been only trained on small artificial language corpora. This has some advantages with
respect to the models’ transparency but also entails important limitations. Specifically, the
models’ N400 correlate – its internal dynamics – can be related to empirical N400 data only in
a qualitative way and only concerning specific experimental manipulations.

For instance, even though Rabovsky et al. (2018) showed that the SG model covers a wide
range of distinct N400 effects, including ones that could not be accounted for by lexical sur-
prisal, quantitative assessment of the relation between its activity and the amplitude of the
N400 itself as well as quantitative model comparison was impossible. This is because it was
trained only on a small synthetic language and therefore it could not be presented with the same
stimuli presented in empirical experiments. For this reason, the relation between the model’s
N400 correlate and empirical N400 data remained somewhat abstract.

1.3 The present study

In the present study we overcome this limitation and quantitatively investigate the hypothesis
that N400 amplitudes might reflect predictive processes at the level of sentence meaning based
on our cognitively motivated SG model trained on a large scale corpus. Moreover, we quantita-
tively compare this hypothesis with the alternative hypothesis that they instead signal prediction
error at the word level. These hypotheses are tested by quantitatively comparing two alterna-
tive artificial neural network-based models of language processing: the SG model and a next
word prediction LM. From the SG model we estimate the change over successive words of its
internal representations of the meaning of the sentence, otherwise known as Semantic Update
(SU). Whereas, the LM, trained on next word prediction, is employed to estimate word-level
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Surprisal, a measure that has already been shown to correlate with this ERP component (e.g.,
Frank et al., 2015). Using SU based on the internal dynamics of the SG model implies that
N400 amplitudes reflect predictive processes at the level of sentence meaning. Whereas, using
Surprisal derived from a next word prediction language model (LM) implements the idea that
the N400 reflects lexical prediction and prediction error.

In the analyses conducted in the present study, we use these measures to directly predict
the amplitude of the N400 generated during sentence processing. Moreover, in order to make
the quantitative comparison between the effects of SU and Surprisal meaningful and fair, we
compute this latter measure from a language model having an architecture as similar as possi-
ble to the SG model and that has been trained on the same linguistic material. This ensures,
in our view, that the models’ different performances with regard to the EEG data are not due
to differences in training data or (as far as possible) basic architectural features, but that these
differences are ascribable to differences in training task (next word prediction versus predic-
tive meaning comprehension) and to the comparison between a performance-oriented measure
(Surprisal) and an internal-processing one (SU).

The results reported in this paper show that SU significantly predicts the amplitude of the
N400 and the time course of EEG activity between 300 and 500 ms post-word onset. This is
true even when controlling for lexical Surprisal (and vice versa), hinting at the fact that these
2 measures might tackle different aspects or processes within the wider spectrum of activity
elicited by sentence comprehension. As compared to lexical Surprisal, our measure of semantic
update shows a more sustained temporal similarity to brain activity which also expands beyond
the typical N400 time-window. The significant results of both SU and Surprisal, we argue, can
be potentially explained as suggesting two distinct – yet presumably closely intertwined –
processes.

1.4 The Sentence Gestalt model

The Sentence Gestalt (SG) model is a model of language comprehension which maps sen-
tences to a description of the meaning of a utterance approximated by a list of arguments
encompassing the action, the various participants (e.g., agent and patient) as well as informa-
tion concerning, for instance, the time, location, and the manner of the situations or events
conveyed by the speaker (McClelland et al., 1989). The model implements a theory of sen-
tence processing centered around the computation of an internal representation of meanings
informed and constrained by the sentence uttered by the speaker.

For instance, when processing the sentence “the boy opened the door slowly”, the task
of the SG model is to recognize that opened is the action, and that the boy and door are its
agent and patient respectively and that slowly is a modifier specifying the way in which the
event takes place. In order to process such a sentence, the model implements a mechanism
consisting in building internal representations (here referred to as Sentence Gestalts) that can
be used as a basis to respond to probes regarding the meaning of the sentence approximated by
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the argument structure of the utterance in terms of role filler pairs.

The model is probabilistic in the sense that it can be conceptualized as approximating a
function computing a conditional probability distribution between role-filler pairs, represent-
ing the arguments of the sentence’s event, and string of words composing the sentence itself:
P(< r, f > |w1:n), where r refers to the role (e.g., agent) and f to the filler (e.g., boy) of an
argument, and w1:n is the sequence of the first n words of a sentence. For instance, given the
sequence the, boy, opened, the model learns the conditional probability of the role-filler pair
< agent,boy >. This is done on the basis of the statistical properties of the training environ-
ment and by using probes. Given a sentence and a probe, the training environment specifies a
probability distribution over the possible answers to the probe and the goal of processing is to
form a representation that allows the model to match this probability distribution. Moreover,
the SG model is predictive in light of its training regime, which forces it to estimate role-filler
pairs representing arguments of the whole sentence event structure word-by-word, even before
the actual lexical items that correspond to the probed argument fillers are available. The model
is therefore expected to attempt to use the representation to anticipate the expected responses to
these probes. Section 2.2 below contains the details regarding the training procedure adopted
in this study. Finally, the predictive and probabilistic processing at the level of meaning is
internally represented in the model by the hidden Sentence Gestalt representations. These rep-
resentations are implicit in that they represent sentence meaning using features that do not
correspond to symbolic features, either semantic or grammatical. That makes them formally
comparable to semantic representations obtained from vector-space models such as the ones
produced by distributional semantics and deep neural network word embeddings.

The SG model differs from next word prediction language models (LMs) with regard
to aspects of the theory of language processing that it implements. Despite the fact that both
models are predictive, LMs implement a theory of processing at the level of lexical items alone.
In contrast, as seen above, SG models are trained to predict sentence meanings from sequences
of words. In line with this, both models approximate functions estimating a conditional prob-
ability distribution. If the SG model estimates conditional probabilities between lexical cues
and role-filler pairs of event arguments, an LM instead estimates such probabilities between
sequences of words and their following word. Given a sequence of words of length n, an LM
assigns a probability P(wn+1|w1:n) to the next word wn+1.

2 Materials and methods

2.1 The implementation

The SG model is constituted of two components: an update network (encoder) and a query
network (decoder), as described in Fig. 1. The update network sequentially processes each
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Fig. 1: The architecture of the Sentence Gestalt Model, with the update network on the left
hand-side and the query network on the right hand-side.

incoming word to update activation of the Sentence Gestalt layer, which represents the mean-
ing of the sentence after the presentation of each word as a function of its previous activation
and the activation induced by the new incoming word. The query network, instead, extracts
information concerning the event described by the sentence from the activation of the Sentence
Gestalt layer. The sentence comprehension mechanism is implemented in the update network.
The query network is primarily used for training.

The update network of the SG model is composed of an input layer, which generates a
vectorial representation w⃗t for each input word of the incoming sentence, and a recurrent layer
implemented as a long short-term memory (LSTM) unit generating a Sentence Gestalt repre-
sentation s⃗gt as a function of the current input word w⃗t and its previous Gestalt representation
s⃗gt−1 (Hochreiter & Schmidhuber, 1997). LSTM have the advantage of being better at pro-
cessing long and complex sentences compared to traditional recurrent layers, and being still
simpler in structure and number of parameters compared to even more performative types of
deep learning components (e.g. Transformers). The update network is essentially a recurrent
neural network encoding a string of words as a function of the current presented word and the
words preceding it.

The query network is composed by an hidden layer h⃗t which combines the Sentence
Gestalt vector s⃗gt and a probe vector p⃗i. The output ⃗̂oi of the query network is generated
from the hidden state h⃗t .

The task the SG model is asked to perform is to map a sentence to its corresponding situa-
tion or event, defined as a list of role-filler pairs representing an action or state, its participants
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(e.g. agent, patient, recipient), and eventual modifiers. A sentence is defined as a sequence
of words, each represented as an integer it , defined on a lexicon associating a unique index to
every word. Figure 2 exemplifies the mapping from words to event performed, word-by-word,
by the SG model. In this example, given the sentence the boy opened the door, the model tries
to identify the filler of the patient role. The sentence is presented word-by-word. The model is
first presented only with the words the boy, leading to a list of wrong predicted patient fillers.
As soon as the model is presented with word opened, its prediction is adjusted to produce a list
of potentially correct fillers. When the model is presented with the whole sentence, it converges
on the correct patient of the described event: door.

Fig. 2: Example of how the SG model processes the sentence the boy opened the door. The
model is trained on identifying the roles and fillers constituting the event described in the
sentence. Here, for reasons of space, we focus only on mapping filler to role patient, but
the model also estimates the agent and action of the event. Sentences are presented word-
by-word. Initially (a), the model is first presented only with the words the boy, leading to a
list of wrong predicted patient fillers. Subsequently (b), the model is presented with word
opened, causing the prediction of potentially correct fillers. Finally (c), when the model is
presented with the whole sentence, it converges on the correct patient of the described event:
door.

As shown in Fig. 3.a, the event consists of a set of role-filler vectors o⃗i, each of which
consists of the concatenation of the feature representation of a word and a one-hot vector of the
role of that word in the context of the event described by the sentence. Therefore, the sentence
“the boy opened the door slowly” will consist of a sequence of 6 one-hot word representation
vectors. Its event contains 4 role-filler combinations representing each role of the event (agent,
action, patient, manner) with its corresponding concept filler (boy, open, door, slowly).

During training, the model is presented with sentences (fed word by word to the input
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Fig. 3: The role-filler vector o⃗i (a), and its corresponding two types of probes p⃗i (b) and
(c). The left hand-side of the vectors correspond to the embedding representation of the
filler concept, whereas the right hand-side to the one-hot representation of the thematic role
played by the filler. When probing for the thematic role, probe (b) is presented. When
probing for the filler instead, probe (c) is presented. In both cases the SG model is expected
to produce the full role-filler vector (a).

layer) such as “he opened the door slowly”. Every time a word is presented, the model is
probed concerning the event described by the sentence. The model is probed concerning the
complete event after each presented word, even if the relevant information has not yet been pre-
sented at the input layer, allowing the model to learn to predict sentence meaning from partial
input based on the statistical regularities of its environment. A probe consists of a vector p⃗i of
the same size of a corresponding role-filler vector p⃗i, but with either the thematic role identifier
zeroed (Fig. 3.b) – if probing for roles –, or filler features zeroed (Fig. 3.c) – if instead probing
for fillers. Responding to a probe consists therefore of completing the role-filler vector. When
probed with either a thematic role (e.g., agent, action, patient, location, or situation; each rep-
resented by an individual unit at the probe and output layer) or a filler, the model is expected
to output the complete role-filler vector. Fillers are represented using word embeddings ob-
tained by binarizing Fasttext, a computational semantic model representing 1 million words
and trained on both the English Wikipedia and the Gigaword 5 corpora (Bojanowski, Grave,
Joulin, & Mikolov, 2017). The discrepancies between the observed role-filler vector o⃗i and
generated output⃗̂oi is computed using cross-entropy and is back-propagated through the entire
network to adjust its parameters in order to minimize the difference between model-generated
and correct output. Binarization of the filler semantic feature representations was performed in
order to allow for a probabilistic interpretation of the model generated activation of semantic
feature units afforded by the cross-entropy error used during training.

Besides being very powerful and widespread tools in natural language processing (NLP),
next word prediction LMs have been used, as mentioned in the introduction, in numerous
studies of language processing in humans, in psycholinguistics and neurobiology of language
(Frank et al., 2015). RNN implementations of the LMs share significant similarities in the
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way they treat the linguistic input and in internal architecture with the SG model. In both
cases language – for instance, sentences – are treated as sequences of words which are feed
to an input layer which generates a per-word vectorial representation which is then integrated
with a contextual representation by the internal recurrent layer. The LM is composed of an
input layer, which generates a vectorial representation w⃗t for each input word of the incoming
sentence, and a recurrent layer implemented as a long short-term memory (LSTM) computing a
recurrent representation r⃗t as a function of the current input word w⃗t and its previous activation
r⃗t−1. The hidden layer h⃗t takes the recurrent representation r⃗t and feeds it to the output⃗̂ot which
consist of a probability distribution over the model’s lexicon representing the likelihood of the
next word wt+1.

2.2 Training the models

Both LM and SG model are trained on the same data, the Rollenwechsel-English (RW-eng)
corpus (Sayeed, Shkadzko, & Demberg, 2018). The only crucial difference is – as mentioned
above – the task the two models are called to perform: predict the next lexical item (i.e. map-
ping sequences to words), or understanding and predicting the meaning of the sentence (i.e.
mapping sentences to role-filler pairs).

The SG model was trained on the whole Rollenwechsel-English (RW-eng) corpus (Sayeed
et al., 2018). The RW-eng corpus is annotated with semantic role information based on Prop-
Bank roles (Palmer, Gildea, & Kingsbury, 2005) and obtained from the output of the SENNA
semantic role labeller (Collobert et al., 2011; Collobert, 2011) and the MALT syntactic parser
(Nivre, 2003). Each sentence annotation consists of the list of event frames it describes. An
event frame is defined by its main predicate (usually a finite verb) and its arguments. Follow-
ing PropBank, RW-eng frames can contain arguments of 26 types spanning from agent, patient,
benefactive, starting and end point and a series of modifiers describing the temporal, locational,
causal, final and modal circumstances of the event. Therefore, the SG model in this study is
trained on mapping each RW-eng sentence to its PropBank-style event structure as provided
in the RW-eng corpus. For more detail on the argument structure proposed by PropBank we
refer to Palmer et al. (2005). A sentence can contain multiple event frames. For instance, the
following sentence (taken from the RW-eng corpus):

she took great heaving breaths as though she had come up a hill
frame 1 agent action patient manner
frame 2 action agent
frame 3 agent action direction

The sentence is composed by 13 lexical items and describes 3 nested events represented
by 3 separate PropBank-style frames. The first, color-coded in red, contains a patient (“great
heaving breaths”) and a manner modifier (“as though she had come up a hill”) which in turn are
frames on their own right (color-coded in green and blue respectively). It is worth noting that
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the SG model is a model of language comprehension in general, and that it is trained not only
on events. The training dataset includes also other types of utterances such as stative sentences,
questions and commands among others. This example illustrates how the SG model is trained
on naturalistic, complex, English sentences, by presenting it with one word at a time, follow-
ing the sentential order, and probed each time for the role-fillers of the argument of potentially
several events at the same time.

Instead, the LM was trained only on the raw sequences of words (sentences) contained in
the RW-eng corpus, disregarding the semantic annotation based on PropBank. When trained
on the example sentence above, the model is asked to predict the simple linear sequence of
lexical items. It is presented, for instance with the input sequence “...she took great heaving”
and asked to match it with the next lexical item “breaths”, as per the example sentence above.

The parameters of both models were optimized using Adamax (Kingma & Ba, 2015) with
learning rate equal to 0.01 for the SG model and 0.002 for the LM (after hyper-parameters
optimization on 5% of the data). The whole dataset was split in mini-batches of 32 sentences
each. Training was conducted for a maximum of 150 epochs on 90% of the batches, the
remaining 10% was kept for validation. Only sentences having between 6 and 15 words and
having a maximum of 8 frames were used for training. Sentence length and number of frames
were constrained in order to limit the number of complex subordinate events and to facilitate
the mini-batch training.

The size of the input layers of both model was equal to 600 and their recurrent layers size
equal to 1200 (the Sentence Gestalt layer for the SG model), implemented as a 1-layer LSTM.
The SG model’s probe and output layers had size 328 due to the concatenation of the 300-size
binarized embedding vector, the frame number and the argument type. Instead the output layer
of the LM was equal to the extension of its lexicon: 300000.

2.3 Model-based predictors

The goal of these two modelling approach is to investigate the relation between brain activity
(more specifically N400 amplitudes and the related EEG time-course post word onset) and the
update of an internal predictive representation of sentence meaning, on one hand, and lexical
prediction error, on the other. For this reason we compute two main measures from our models:
semantic update (SU) and Surprisal.

Semantic update (SU) is the update of the SG model’s recurrent layer’s internal represen-
tations after the presentation of each word composing a sentence. It is computed as the mean
absolute error between the activation of the Sentence Gestalt layer after the presentation of a
word and its activation before the presentation of that word. It represents the amount of change
driven by the new incoming word to the implicit predictive representation of sentence meaning
computed by the SG model.
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Surprisal instead is the negative log-probability of the new incoming word given the pre-
vious words: surp(wt) =−log(P(wt |w1:t−1)). It is estimated from the probability distribution
generated as output of the LM. Surprisal operates on lexical items, and not on the semantic
representations, and is taken to represent the error in predicting such items in a sequential
input.

2.4 EEG dataset

The elecrophysiological recordings of the N400 were obtained from an EEG dataset provided
by Frank et al. (2015). The dataset consists of data collected from twenty-four participants (10
female, mean age 28.0 years, all right handed and native speakers of English) while they were
reading sentences extracted from English narrative texts.

The stimuli consisted of 205 sentences (1931 word tokens) from the UCL corpus of read-
ing times (Frank, Monsalve, Thompson, & Vigliocco, 2013), and originally from three little
known novels. The sentences were presented in random order, word by word. About half of
the sentences were paired with a yes/no comprehension question to ensure that participants
read attentively. The sentence stimuli were not manipulated to control or elicit any particular
linguistic phenomenon.

The sentences were presented in random order, word-by-word. Each word was presented
in the center of the screen for a variable amount of time, depending on their length as number
of characters. Word presentation duration equalled 190 ms plus 20 for each characters in the
word. Each word was followed by a 390 ms interval before appearance of the next word.

The EEG signal was recorded continuously at a rate of 500 Hz from 32 scalp sites (Easycap
montage M10) and the two mastoids. Signal was band-pass filtered online between 0.01 and
35 Hz. Offline, signals were filtered between 0.05 and 25 Hz (zero phase shift, 96 dB roll-off).
The N400 amplitude for each subject and word token was defined as the average scalp potential
over a 300-500 ms time window after word onset at electrode sites in a centro-parietal region
of interest (ROI).

For further details regarding the stimuli see Frank et al. (2013). More detailed information
regarding the EEG dataset, its stimulation paradigm, preprocessing, and the electrode positions
contained in the ROI can instead be found in Frank et al. (2015).

3 Analyses

In this study we want to test the hypotheses that language-elicited EEG activity, specifically the
amplitude of the N400 component, reflects prediction errors at the level of sentence meaning
or lexical-items.

In Section 3.1 we fit a linear mixed effect model with the aim of predicting the amplitude
of the N400 (average activity over a 300-500 ms time window after word onset at centro-
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Fig. 4: This study aims to model the amplitude of the N400 and the electrophysiological
activity locked to the presentation of each word during sentence comprehension as a func-
tion of the update of an implicit predictive semantic representation (SU) generated by a SG
model trained on a large scale corpus of naturalistic texts. The effect of SU is compared to
the one of Surprisal as computed by an LM.

parietal electrodes) as a function of the update of the semantic representation generated by the
SG model during language processing (the Semantic Update or SU). The SU is computed as
the mean absolute error between s⃗gt and s⃗gt−1 generated by the Sentence Gestalt layer of the
update network. Fig. 4 presents a graphical summary of our approach. Since the N400 is a
negative deflection of the electrophysiological signal, the SU is multiplied by −1.

Since the information reflected by the SU might go beyond the time window of the N400
most typically defined as the average per-trial activity between 300 and 500 ms post-word
onset, and to demonstrate the specificity of the observed relationship between SU and N400
amplitudes, in Section 3.3 we predict the complete time-course of the EEG signal in order to
explore whether earlier or later latencies also correlate with the SG model’s internal dynamics.
These analyses are compared and contrasted to the effect of lexical Surprisal on the same
electrophysiological measurements. In Section 3.2, we assess the contribution of the SU above
and beyond purely lexical predictive processing, and directly compare how well SU versus
surprisal predict N400 amplitudes.

Finally, in Section 3.4, we investigate the effect of model training, i.e. the amount of
exposure to the training data, of the fit between SU and the amplitudes of the N400.

3.1 Predicting the N400

Tab. 1 contains the results of a linear mixed effect model predicting the N400 ERP component
amplitude obtained from Frank et al. (2015) as a function of the SU over the stimulus words.
SU is included together with the ERP baseline (the activity of the 100 ms leading to the onset
of each word). In order to avoid potential artefacts, the baseline is not subtracted directly from
the dependent variable, but instead included as a variable of no interest in the model. The
model is fit with per-subject and per-word random intercepts. The N400 was computed as the
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average activity between 300 and 500 milliseconds after word onset in central, posterior and
lateral electrodes.

β t p
ERPbase -0.09 -21.00 < 0.0001
SU 7.15 8.27 < 0.0001

Tab. 1: Linear mixed effect model fitted with the SU and aimed at predicting the amplitude
of the N400 component.

The results in Tab. 1 clearly indicate that SU significantly predicts the amplitude of the
N400 (β = 7.21, t = 8.27, p < 0.0001 FDR corrected). This indicates that larger word-wise
updates of the Sentence Gestalt layer representation correspond with stronger negative devia-
tion of the ERP signal in the N400 time segment.

3.2 Comparing Surprisal and SU as predictors of the N400

In order to assess the contribution of the SU on the amplitude of the N400 above and beyond
the effect of Surprisal, we fitted two nested linear mixed effects models, one containing as
predictors only Surprisal, the other containing also SU. Both models were fit with per-subject
and per-word random intercepts. The results of the log-likelihood test between the two models
show the difference in model fit to be significant (χ2 = 71.08, p < 0.001), the ∆AIC amounts
to 70.6.

β t p
ERPbase -0.09 -21.00 < 0.001
Surprisal 0.05 4.52 < 0.001
SU 7.28 8.45 < 0.001

Tab. 2: Results of a Full model fitted with both Surprisal and SU and aimed at predicting
the amplitude of the N400 component.

Table 2 contains the β estimates for the Full model predictors. Even with the presence of
Surprisal (β = 0.05, t = 4.52, p < 0.001 FDR corrected), SU makes a significant contribution
to the amplitude of the N400 (β = 7.28, t = 8.45, p < 0.001 FDR corrected).

We additionally compared two linear-mixed effect models predicting the N400 either as
a function of Surprisal or SU, both fit with per-subject and per-word random intercepts. The
results of the log-likelihood test between the two models yield the following results: The re-
sults of the log-likelihood test between the two models show the difference in model fit to be
significant (χ2 = 50.89, p < 0.001). The ∆AIC between the SU and Surprisal models amounts
to 59.5 and indicates a general better fit for SU as compared to Surprisal.
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3.3 Predicting the EEG time-course and topographical distribution

In order to delineate the relation between SU and Surprisal with brain activity besides the
N400, we fit a series of linear mixed effect models on each time-point of the EEG signal
averaged across a region of interest defined over posterior-lateral electrodes (the same as used
for the N400 analyses reported in the previous sections). The linear models followed the same
structure as in Section 3.1, controlling for the baseline defined as the pre-word onset activity
and with either SU or Surprisal as predictor of interest. We report the t-values over time (from
0 to 650 ms after word onset) relative to the estimates of SU or Surprisal.

Figure 5 shows the time course of the fit of SU and Surprisal to the EEG activity aver-
aged over lateral-posterior electrodes, corresponding to the electrodes employed by Frank et
al. (2015) to define the N400. The solid red line indicates the effect of SU, and the solid blue
line the one of Surprisal.

Fig. 5: The time-wise results of a series of independent linear mixed effect models predicting
the EEG signal in a ROI defined over N400-sensitive electrodes as a function of the SU (red)
and Surprisal (blue) from the LM.

SU significantly explains EEG activity from 300 ms onward after stimulus onset. Two
separate peak appear at 375 ms (t = 6.51, p < 0.0001 FDR corrected) and at 500 ms after stim-
ulus onset (t = 7.21, p < 0.0001 FDR corrected). Interestingly, and in line with the previous
literature, Surprisal shows a strong effect peaking at 388 ms after stimulus onset (t = 7.51,
p < 0.0001 FDR corrected). The effect of Surprisal, compared to SU, decreases rapidly after
this time point.

Furthermore, we replicated the same time-wise analyses on each separate electrode in the
dataset and plotted the results in a series of topographical maps representing the distribution
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of the fit between SU or Surprisal to electrophysiological activity using 50 ms wide non-
overlapping time-windows. Figures 6 and 7 display the topographical distribution of the fit
between EEG activity and SU (Figure 6) and Surprisal (Figure 7). Here it is evident again how
the effect of SU extends the whole time-span of the N400 at centro-parietal electrode positions,
in line with the N400 spatio-temporal profile. Surprisal shows a similar distribution, although
limited to the early temporal phases of the latencies of the N400 ERP component. Moreover,
both regressors display an inverse effects in frontal regions at later latencies. For SU this is
mainly limited to the 650 to 700 ms time-window and only slightly left-lateralized, whereas
for Surprisal this phenomenon starts to appear right after the N400 time-window, around 500
ms post stimulus onset and is more strongly left-lateralized.

Fig. 6: Topographical plot of the goodness of fit of a linear mixed effect model predicting
the EEG signal over time – from 0 to 600 ms post stimulus onset – as a function of SU (50
ms wide non-overlapping time-windows).

Fig. 7: Topographical plot of the goodness of fit of a linear mixed effect model predicting
the EEG signal over time – from 0 to 600 ms post stimulus onset – as a function of of RNN
language model estimated Surprisal (50 ms wide non-overlapping time-windows).

3.4 The effect of training

As humans acquire semantic knowledge about the world by experiencing their environment,
the model learns knowledge about event semantics by being exposed to the statistic regulari-
ties in its environment – in this case the sentences contained in the RW-EN corpus – during
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Fig. 8: The fit of SU on the amplitude of the N400 quantified as t-value for the SG model
during training. Each point reports the t-value relative to the SU as predictor of the N400 in
a linear mixed effect model; SU’s values are obtained from the same SG model at different
stages (epochs) of training, from after the first epoch of training to epoch 100. Please note
that epoch 0 is not displayed in this Figure and is instead reported in Table 3.

training. In order to investigate whether the amount of training affects the similarity between
the model’s internal dynamics and the N400 amplitudes, we conducted similar analyses as in
Section 3.1 using SU measures obtained from the same SG model over different training stages.

In Figure 8 we plot the effects of the Semantic Update of the SG model as predictor of the
amplitude of the N400 from after the first training epoch to epoch 100. During one training
epoch the model is exposed to the whole training data and its parameters are updated in order
to minimize its output error. The analyses, including the definition of the N400 and the linear
mixed effect model, were conducted as in Section 3.1. The observed trend indicates that the
amount of training undergone by the model affects the similarity between its internal dynamics
and the amplitude of the N400.

model chisq p ∆AIC
untrained SGM 0.23 0.6326 4.3
trained SGM 67.92 < 0.001 67.5

Tab. 3: Results of an analysis of variance and AIC reduction between a linear model of the
N400 without SU and one with SU from an untrained SG model (top) and between the same
base model and one containing the SU values from a trained SG model (bottom).

Next we compared mixed linear regressions with the previously-discussed random effects
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structure to those also including a main effect of SU from either a completely untrained SG
model and a trained one. Table 3 reports the difference in AIC and the analysis of variance.
Only the Semantic Update obtained from the trained model appears to improve the fit to the
amplitude of the N400 . The effect of the SU of the untrained SG model is not significant and
negative (β =−3.91, t =−0.48, p = 0.63 FDR corrected).

4 Discussion

Although there is a substantial amount of evidence linking the N400 to the processing of lan-
guage, there is still a great deal of debate as to the nature of the processes it represents. It is
especially true in the case of the mechanisms that give rise to it. In this study, we advanced and
tested the hypothesis that the N400 might signal the update of the implicit predictive represen-
tation of the meaning of a sentence during comprehension. This was accomplished by imple-
menting the process in the form of a cognitively motivated artificial neural network model of
predictive sentence comprehension trained on a large scale corpus, and by quantitatively map-
ping its internal dynamics (Semantic Update) to the N400 amplitude and to the EEG measured
during sentence comprehension.

We quantitatively compared this account of the N400 to the alternative hypothesis that this
signal instead reflects lexical Surprisal and is hence driven by predictive processing at the level
of lexical units. We did so by using naturalistic stimuli and models trained on large-scale
naturalistic corpora, yet based on cognitively-informed architectures. The usage of naturalistic
training material allowed the models to learn from a linguistic environment as complex and
close as possible to the one humans experience in the course of their lives. On a more technical
level, it also allowed the models to be presented with the same stimuli used during human
electrophysiological data collection, allowing for direct and quantitative comparison between
model-derived variables and brain activity.

4.1 The time-course of semantic update

Our results show a significant relationship between Semantic Update and the amplitude of the
N400 ERP component in a time window between 300 and 500 ms post stimulus (see Section
3.1). This is confirmed by time-resolved analyses (see Section 3.3), which show that SU has
a significant effect on the EEG activity in line with the latency (Fig. 5) and the topographical
distribution (Fig. 6) of the N400. More precisely, the effect of SU peaks both at 350 ms and
500 ms post-word onset, and extends beyond 500 ms post-word onset in line with studies re-
porting N400 effects extending beyond the typical N400 time window (Rabovsky et al., 2008).
These observations are in line with the results reported by Rabovsky, Hansen, and McClelland
(2016) and Rabovsky et al. (2018) which observed how the magnitude of the SU estimated
by a SG model trained on a small-scale world behaves strikingly similar to the amplitudes
of the N400 under experimental conditions manipulating semantic, stochastic and positional
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variables, among others. Overall, the results support the hypothesis that the N400 component
of the event-related brain potential reflects the change induced by an incoming stimulus in an
implicit predictive representation of meaning during sentence comprehension.

4.2 Lexical and sentence meaning prediction

The same time-wise analyses (Section 3.3, Fig. 5) show that also lexical Surprisal significantly
explains electrophysiological activity in the N400 time frame. Its fit partially overlaps with
the one of the SU, especially at early stages of activity. Nonetheless, the profiles of these
two predictors with regard to the data differ in two interesting aspects. Even though they
both show a sharp increase in fit around 300 ms post-word onset, the fit of Surprisal displays
only one strong peak around 350 ms and then a drop after 400 ms post-word onset, contrary
to the effect of SU which remains strong during the entire N400 time window and beyond.
Our results demonstrate that when looking at the complete N400 time window, SU shows a
better fit to N400 amplitudes than Surprisal (see Section 3.2). Moreover, the results reported
in this Section show a significant effect of SU on the amplitude of the N400 component after
controlling for Surprisal (and vice versa).

One possible explanation of these results is that the activity after 300 ms from the presen-
tation of a word and the amplitude of the N400, in particular, do not reflect a single monolithic
process, but rather the combined activity of multiple sub-components which are associated
with related yet distinguishable cognitive processes. It is possible that language processing is
supported by predictive processes across several levels of representation, such as at the level
of individual words (lexical level) and sentence meaning. The existence of at least two dis-
tinct predictive sub-components at the level of lexical and semantic processing might be also
compatible with a hierarchy of predictive processes (K. J. Friston, 2005; K. Friston & Kiebel,
2009). This is the hypothesis that predictions and prediction errors are passed up the hier-
archy from lower to higher processing stages. That might be reflected by initial parts of the
N400 potentially signaling primarily lexical prediction errors (explaining the high peak for
Surprisal in the initial part of the N400), while later parts of the N400 may reflect primarily
sentence meaning related prediction errors (explaining the second high peak for SU). This is
potentially in line with Nieuwland et al. (2020)’s analysis which revealed temporally distinct
(though overlapping) effects of predictability and plausibility on the N400. In particular, lex-
ical predictability negatively correlated with widespread activity peaking around 350 ms after
word onset. By contrast, plausibility was associated with a smaller, right-lateralized effect that
started after the peak of the predictability and continued after the end of the N400 time frame.
In light of these results, the authors propose that semantic facilitation of predictable words is
produced by a cascade of processes that activate and integrate contextual word meaning into
semantic representations at the level of the sentence.

This is in line with predictive coding and parallel processing theories, which have found
support also from several brain-imaging studies. Using stochastic language models trained on
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different levels of linguistic description, Lopopolo et al. (2017) showed that predictive pro-
cesses may be decomposed in separate domain-specific sub-processes mapped onto distinct
cortical areas. This hypothesis is supported also by Heilbron, Armeni, Schoffelen, Hagoort,
and de Lange (2020) who observed dissociable MEG neural signatures of lexical, syntactic,
phonemic, and semantic predictions.

SU and Surprisal are measures that represent two different processes, and they tackle these
processes from two different levels of analysis framed along the lines of Marr’s distinction
between the computational and algorithmic (Marr, 1982) levels. Generally speaking, the com-
putational level refers to the goal of the process carried out by a system (artificial or biological).
The algorithmic, on the other hand, refers to the manner this process is implemented, and, in
particular, the type of representations and operations involved. Semantic Update measures the
change over time of the SG model’s activity during sentence processing. Therefore it is con-
cerned with the representations and operations (for instance the recursive integration over time
implemented by the SG layer) used by the system to perform the task of sentence comprehen-
sion. It thus offers a description of the algorithmic level of the process. For this reason, the
observed effect of SU on the amplitude of the N400 might reflect the internal dynamics of a
meaning construction mechanism signaled by the component. Surprisal, on the other hand, is
obtained from the probability assigned by a language processing system to an incoming word
given its context of utterance. As a stochastic measure, after the presentation of a novel word,
Surprisal quantifies how much the system is off with regard to the estimation of the probability
of that word appearing. For this reason, it can also be interpreted as a lexical prediction error.
Having this in mind, it is therefore a measure of the performance of a system in solving the
task of predicting the next word, therefore making it a descriptor of the computational level of
the process, in the sense in which Marr defines it.

4.3 Relation to anterior post N400 positivity

Besides predicting N400 amplitudes, i.e., more negative amplitudes between 300 and 500 ms
post stimulus onset, SU and Surprisal appear to be have an inverse effect on activity recorded in
anterior regions following the N400 time-window (Figures /reffig7 and Figure /reffig8), indicat-
ing a relation between the processes of lexical and sentence meaning prediction as instantiated
by our predictors and a frontal post N400 positivity. This seems in line with previous evi-
dence showing positive components in anterior areas after the N400 (Thornhill & Van Petten,
2012; Petten & Luka, 2012a; DeLong, Quante, & Kutas, 2014; Brothers, Wlotko, Warnke, &
Kuperberg, 2020; DeLong & Kutas, 2020; Kuperberg, Brothers, & Wlotko, 2020). The exact
functional interpretation of these late anterior positivities in language processing is still actively
debated. Kuperberg et al. (2020) argue that the post N400 frontal positivity might reflect a suc-
cessful update of the meaning representation as a function of novel unpredicted input, whereas
Thornhill and Van Petten (2012) interpret it as a function of lexical predictability independent
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from semantic similarity. One picture that seems to be emerging is that different from the late
posterior positivity (P600; see next section), the late anterior positivity is increased for sentence
continuations that are unexpected yet not implausible.

4.4 Comparison to alternative cognitive models of the N400

Our results seem to indicate that the N400 is indexing the change induced by an incoming
stimulus to the representation of sentence meaning as recorded from the recurrent layer of an
SG model, and that larger sentence meaning update continues to predict more negative ERP
amplitudes over centro-parietal regions beyond the typical N400 segment. These conclusions
are seemingly at odds with Brouwer et al. (2017) and Brouwer et al. (2021) that claim that
the N400 instead indexes lexical retrieval, i.e. the activation from semantic memory of the
meaning of each separate word in a sentence during its processing, and that the P600, a sub-
sequent positivity over centro-parietal regions, instead, correlates with integrative processes
aimed at constructing sentence level semantic representations. It is important to note that our
results seem compatible with both word and sentence level contributions to the amplitude of
the N400, which seem to partially overlap in time, a finding that seems at least partly consistent
with Brouwer’s view on the N400 (lexical Surprisal does not exactly correspond to Brouwer
et al’s measure of the N400 because it is based on word form rather than word meaning, but
our current study cannot disentangle both measures). Importantly, however, our results provide
strong evidence against the view that the P600 reflects sentence meaning update. If the P600
would reflect sentence meaning update during naturalistic reading as suggested by Brouwer et
al. (2017, 2021), one would expect that larger SU (which reflects sentence meaning update)
would predict more positive amplitudes at centro-parietal electrode sites in the P600 time seg-
ment starting at about 500 ms and extending beyond the end of Frank et al. (2015)’s recording
segment. However, we find the opposite: Larger SU continues to predict more negative am-
plitudes at centro-parietal electrodes beyond the typical N400 window and into the P600 time
window.1

How can we explain this discrepancy that Brouwer et al. (2017, 2021) reported that larger
P600 amplitudes could be explained by larger sentence meaning update in their small-scale
model, while we find in our quantitative analysis during naturalistic reading that larger sen-
tence meaning update predicts more negative centroparietal ERPs during the P600 segment?
It is important to note that both of Brouwer’s simulations concerned very specific experimen-
tal conditions. The 2017 model focused on reversal anomalies, i.e. sentences such as “Every
morning at breakfast, the eggs would eat...” (Kuperberg, Sitnikova, Caplan, & Holcomb, 2003).
In the model, the small N400 observed in these situations is taken to reflect facilitated lexical
access due to semantic priming (from breakfast and eggs to eat) and the large P600 is taken
to reflect more effortful sentence meaning update, due to the incongruency that the eggs in the

1In the present study, we predict the EEG data from the negative of SU, in order to accommodate the fact that
the N400 is a negative component, and the fact that we expect (and find) larger SU to predict more negative N400
amplitudes.
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sentence are agents of an eating action even though they are not usually able to do so. An
alternative explanation of the same pattern of results is that the small N400 reflects an initial
semantic illusion, in which the readers temporarily take the eggs to be the patient rather than
the agent of the eating action, based on semantic priors (Kim & Osterhout, 2005; Rabovsky
et al., 2018) and in line with good enough approaches to language comprehension (Ferreira,
Bailey, & Ferraro, 2002; Ferreira, 2003). In this view, the large P600 might reflect an inter-
nal revision, i.e., the process that after the initial illusion participants detect that there is an
anomaly in the sentence and revise their internal sentence representation so that it matches the
syntactic structure. Thus, even though the large P600 can be interpreted and modeled as large
sentence meaning update (as done by Brouwer et al. (2017)), it is arguably a very specific up-
date process potentially including an internal revision process. The interpretation of the P600
as reflecting an internal revision process is compatible with long held views on the P600 (even
though this interpretation has initially focused on the P600 as reflecting syntactic revision pro-
cesses (Kaan & Swaab, 2003; Friederici, Mecklinger, Spencer, Steinhauer, & Donchin, 2001),
it has been expanded to revisions of internal representations more generally (Petten & Luka,
2012b; Rabovsky & McClelland, 2020)). The second simulation of an N400 and P600 pattern
(reported in Brouwer et al. (2021)) follows the same lines of the one above in that the observed
increased P600 might again reflect an internal revision process rather than a simple sentence
meaning update. Specifically, the experimental conditions were as follows (based on a study
conducted by Delogu, Brouwer, and Crocker (2019)):

Baseline: John entered the restaurant. Before long, he opened the menu.
Event-related violation: John left the restaurant. Before long, he opened the menu.
Event-unrelated violation: John entered the apartment. Before long, he opened the menu.

The event-related violation was the only condition that elicited a large P600. Since aspects
of the context (e.g., “the restaurant”) and event (”opened the menu”) appear to be related, it
is possible that, upon first reading, participants may initially believe that the sentence makes
sense, resulting in a reduced N400, before realizing that something is off and revising their
initial interpretation (resulting in a larger P600). Alternatively, as proposed by Brouwer et al.
(2021), the small N400 can be explained as reflecting facilitated lexical access due to priming,
while the P600 can, instead, reflect sentence meaning update. According to this latter expla-
nation, one would expect an equally large P600 for the event-unrelated violation in which the
sentence meaning update (in the absence of illusions and revisions) would be equally large.
Crucially, the data did not show this: The P600 in the event-unrelated violation was equally
small as in the baseline condition (Delogu et al., 2019). This pattern of results (of a large P600
only in the event related violation condition) makes sense from the perspective that the P600
reflects revision processes as these revision processes would be expected in the event-related
violation but not in the event unrelated violation.2

2However, Brouwer et al. (2021) claimed that there was no possible explanation for this specific pattern of

24

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2022. ; https://doi.org/10.1101/2022.11.14.516396doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.14.516396
http://creativecommons.org/licenses/by-nc-nd/4.0/


To sum up, in both experimental settings in which Brouwer et al. (2017, 2021) simulated
larger P600 amplitudes as larger sentence meaning update, the increased P600 might be alter-
natively explained as reflecting internal revision processes. Against this backdrop, our finding
that larger sentence meaning update as measured by a large scale SG model during naturalistic
reading does definitely not predict larger P600 amplitudes (instead predicting more negative
amplitudes at centro-parietal electrode sites beyond the N400 time segment) might be seen as
further evidence strengthening the view that the increased P600 observed in the specific ex-
perimental conditions targeted by Brouwer et al. (2017)’s models might rather reflect internal
revision processes and that under natural conditions larger sentence meaning update is reflected
in larger N400 amplitudes.

Our finding that N400 amplitudes are overall better predicted by SU than by surprisal (see
Section 3.2) seems to provide evidence against the model by Fitz and Chang (2019) who link
the N400 to purely lexical prediction error. However, our results seem consistent with lexical
contributions to the early part of the N400 (see Sections 3.2 and 3.3), which thus seems par-
tially consistent with their claims (please note that in the current study we do not differentiate
between lexical contributions at the level of word form versus word meaning). Our results do
not seem to speak to Fitz and Chang (2019)’s account of the P600 as a sequencing prediction
error. However, the results of reversal anomalies with two animate event participants, such
as “The fox hunted the poacher”, which do not include sequencing prediction errors but pro-
duce large P600 amplitudes (van Herten, Kolk, & Chwilla, 2005), seem inconsistent with their
implementation.

4.5 The role of training

In Section 3.4, we showed that the model’s ability to predict the N400 amplitude is strongly af-
fected by the amount of exposure to its training environment quantified in terms of the number
of training epochs. It is evident from these results that the SU obtained from a model better ap-
proximates the N400 the more the model is exposed to the statistical regularities of the training
corpus. Conversely, our results indicate that a random model, i.e. an SG model with randomly
initialized parameters fits poorly our target electrophysiological variable.

Recently, Schrimpf et al. (2021) analyzed the fit between fMRI and ECoG data in the
frontal-temporal cortex and vectorial representations generated by 43 deep learning models.
Similarly to our study, besides using fully trained models, they also evaluate the same mod-
els before training. Interestingly, they observed that untrained networks yield representations
that still significantly predict fMRI data, although training significantly improves fit. These
results led to the proposal that the architecture of the networks can work as brain models of

results and subtracted the complete activity in the N400 time segment from the activity in the P600 segment to
correct for “component overlap”. Even though the partial component overlap between the N400 and P600 might
sometimes be an issue, in this specific dataset the wave-forms from the three conditions had already rejoined after
the N400 and before the P600 time segment (see Fig. 1 in Delogu et al. (2019)). Because there was a large N400
in the event-unrelated violation condition, subtracting this negativity from the P600 time segment indeed resulted
in a large P600. Only after this major change of the data, the data fit the model’s predictions.
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language even without extensive training because the hierarchical structures implementing the
deep learning networks might resemble similar neural mechanisms implemented by the cortical
regions under analysis. We cannot conclude, based on our observations, that the architecture
of the SG model alone – i.e. without training on a cognitively plausible task – is enough to
approximate the electrophysiological processes under scrutiny. This partially diverges from
Schrimpf et al. (2021)’s position. Nonetheless, we think it is important to stress that the differ-
ence between their and our conclusions might simply be due to the fact that the most successful
models in their study were implemented using architectures – such as the multi-head attention
mechanism (Vaswani et al., 2017) – which were not used for the present iteration of the SG
model. Moreover, instead of analyzing fMRI and ECoG data, we focused on EEG activity and
in particular on the amplitude of the N400. Therefore, it could also be the case that our results
simply reiterate the fact that the N400 ERP component’s behavior evolves during an individ-
ual’s experience of the statistical regularities of their environment, paralleled by the activity
of the Sentence Gestalt layer during training epochs. Importantly, our results also emphasize
that the implicit semantic prediction error reflected in N400 amplitudes inherently depends on
the statistics of the environment as the predictions formed by the model (and presumably by
human comprehenders) are generated based on the experience of these statistics.

Previously, Rabovsky et al. (2018) also investigated the effect of training on the SG model’s
ability to simulate N400 amplitudes, specifically during the processing of sentences contain-
ing semantically incongruent nouns. They reported that the SU shows at first an increase and
later a decrease with additional training. These results are in line with the variation of the
N400 during human language acquisition, which also first increases and then decreases across
development (Friedrich & Friederici, 2004; Atchley et al., 2006; Kutas & Iragui, 1998). More-
over, Rabovsky et al. (2018) observed that the output layer activation approximates more and
more the probability distributions embodied in the training corpus. This second point is in line
with our results in confirming the role of training in improving the fit between a computational
model and human data, mediated by the fit to the statistics of the world.

5 Conclusions

In the present study, we quantitatively investigated the hypothesis that mechanisms underpin-
ning the N400 ERP component might be related to the update of an implicit predictive repre-
sentation of sentence meaning during language comprehension, and quantitatively compared
it to the alternative hypothesis that the component is instead signaling lexical prediction error.
These quantitative investigations were afforded by training an artificial neural network model
of sentence comprehension, called the Sentence Gestalt (SG) model (McClelland et al., 1989)
on a large scale naturalistic corpus, and directly comparing the update of the distributed pre-
dictive representation of sentence meaning after each incoming word (Semantic Update, or
SU) with the EEG recordings obtained during sentence reading. Our work corroborates and
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crucially extends previous studies which have shown that the Semantic Update of an SG model
trained on a small synthetic environment responds similarly to the N400 amplitude to a series
of lexical semantic manipulations, including semantic congruity, cloze probability, semantic
and associative priming, and repetition, among others (Rabovsky et al., 2018). The small scale
training prevented a direct assessment of the similarity between electrophysiological data and
the model’s dynamics as presented in the current study. In addition, our approach allowed to
quantitatively compare the effects of the SG model’s update on the electrophysiological data
with the effect of lexical Surprisal estimated by a language model trained on the same data.

The analyses reported in this paper demonstrated that there is a significant relationship be-
tween the amplitude of the N400 component and SU recorded from the SG model (Tab. 1) and
that SU predicted N400 amplitudes overall better than Surprisal (see Section 3.2). In addition,
we observed that the effect of SU on N400 amplitudes remains significant after controlling for
Surprisal, and vice versa. This seems to indicate that the activity corresponding to the N400
component might not correspond to a single monolithic process but might rather reflect at least
two distinct sub-processes at the level of lexical and sentence meaning prediction error.
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