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14

Abstract Hippocampal place cells in freely moving rodents display both theta phase precession15

and procession, which is thought to play important roles in cognition, but the neural mechanism16

for producing theta phase shift remains largely unknown. Here we show that firing rate17

adaptation within a continuous attractor neural network causes the neural activity bump to18

oscillate around the external input, resembling theta sweeps of decoded position during19

locomotion. These forward and backward sweeps naturally account for theta phase precession20

and procession of individual neurons, respectively. By tuning the adaptation strength, our model21

explains the difference between “bimodal cells” showing interleaved phase precession and22

procession, and “unimodal cells” in which phase precession predominates. Our model also23

explains the constant cycling of theta sweeps along different arms in a T-maze environment, the24

speed modulation of place cells’ firing frequency, and the continued phase shift after transient25

silencing of the hippocampus. We hope that this study will aid an understanding of the neural26

mechanism supporting theta phase coding in the brain.27

28

Introduction29

One of the strongest candidates for temporal coding of a cognitive variable by neural firing is the30

‘theta phase precession’ shown by hippocampal place cells. As an animal runs through the firing31

field of a place cell, the cell fires at progressively earlier phases in successive cycles of the ongoing32

LFP theta oscillation, so that firing phase correlates with distance traveled (O’Keefe and Recce,33

1993; Skaggs et al., 1996) (see also (Schmidt et al., 2009)) (Fig. 1a&b). At the population level,34

phase precession of individual cells gives rise to forward theta sequences once starting phases35

are aligned across the population (Feng et al., 2015), where neurons representing successive lo-36

cations along the trajectory of the animal display predictable firing sequences within individual37

theta cycles (Johnson and Redish, 2007). These prospective sequential experiences (looking into38

the future) are potentially useful for a range of cognitive faculties, e.g., planning, imagination, and39

decision-making (O’Keefe and Recce, 1993; Skaggs et al., 1996; Hassabis et al., 2007;Wikenheiser40
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Figure 1. Theta sequence and theta phase shift of place cell firing. a, An illustration of an animal running on alinear track. A group of place cells each represented by a different color are aligned according to their firingfields on the linear track. b, An illustration of the forward theta sequences of the neuron population (upperpanel), and the theta phase precession of the 4th place cell (represented by the green color, lower panel). c,An illustration of both forward and reverse theta sequences (upper panel), and the corresponding thetaphase precession and procession of the 4th place cell (lower panel). The sinusoidal trace illustrates the thetarhythm of local field potential (LFP), with individual theta cycles separated by vertical dashed lines.

and Redish, 2015; Kay et al., 2020).41

Besides prospective representation, flexible behaviors also require retrospective representa-42

tion of sequential experiences (looking into the past). For instance, in goal-directed behaviors, it43

is important to relate the reward information that might only occur at the end of a sequence of44

events to preceding events in the sequence (Foster et al., 2000; Foster and Wilson, 2006; Diba and45

Buzsáki, 2007). A recent experimental study (Wang et al., 2020) described retrospective sequences46

during online behaviors (also indicated by (Skaggs et al., 1996; Yamaguchi et al., 2002)), namely, re-47

verse theta sequences, interleaved with forward theta sequences in individual theta cycles (Fig. 1c).48

Such retrospective sequences, together with the prospective sequences, may cooperate to estab-49

lish higher-order associations in episodicmemory (Diba and Buzsáki, 2007; Jaramillo and Kempter,50

2017; Pfeiffer, 2020).51

While a large number of computational models of phase precession and the associated for-52

ward theta sequences have been proposed, e.g., the single cell oscillatory models (O’Keefe and53

Recce, 1993; Kamondi et al., 1998; Harris et al., 2002; Lengyel et al., 2003; Losonczy et al., 2010)54

and recurrent activity spreading models (Tsodyks et al., 1996; Romani and Tsodyks, 2015), the55

underlying neural mechanism for interleaved forward- and reverse-ordered sequences remains56

largely unclear. Do reverse theta sequences share the same underlying neural mechanism as for-57

ward sequences, or do they reflect different mechanisms? If they do, what kind of neural architec-58

ture can support the emergence of both kinds of theta phase shift? Furthermore, since forward59

theta sequences are commonly seen, but reverse theta sequences are only seen in some circum-60

stances (Wang et al., 2020), are they commensurate with forward theta sequences? If not, to what61

degree are forward theta sequences more significant than the reverse ones?62

To address these questions, we built a continuous attractor neural network (CANN) of the hip-63

pocampal place cell population (Amari, 1977; Tsodyks and Sejnowski, 1995; Samsonovich and Mc-64

Naughton, 1997; Tsodyks, 1999). The CANN conveys a map of the environment in its recurrent con-65

nections that affords a single bump of activity on a topographically organized sheet of cells which66

can move smoothly so as to represent the location of the animal as it moves in the environment.67

Each neuron exhibits firing rate adaptation which destabilizes the bump attractor state. When the68

adaptation is strong enough, the network bump can travel spontaneously in the attractor space,69
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which we term as the intrinsic mobility. Intriguingly, we show that, under competition between70

the intrinsic mobility and the extrinsic mobility caused by location-dependent sensory inputs, the71

network displays an oscillatory tracking state, in which the network bump sweeps back and forth72

around the external sensory input. This phenomenon naturally explains the theta sweeps found73

in the hippocampus (Skaggs et al., 1996; Burgess et al., 1994; Foster and Wilson, 2007), where the74

decoded position sweeps around the animal’s physical position at theta frequency. More specifi-75

cally, phase precession occurs when the bump propagates forward while phase procession occurs76

when the network bump propagates backward. Moreover, we find that neurons can exhibit ei-77

ther only predominant phase precession (unimodal cells) when adaptation is relatively strong, or78

interleaved phase precession and procession (bimodal cells) when adaptation is relatively weak.79

In addition to theta phase shift, our model also successfully explains the constant cycling of80

theta sweeps along different upcoming arms in a T-maze environment (Kay et al., 2020), and other81

phenomena related to phase precession of place cells (Geisler et al., 2007; Zugaro et al., 2005).82

We hope that this study facilitates our understanding of the neural mechanism underlying the83

rich dynamics of hippocampal neurons and lays the foundation for unveiling their computational84

functions.85

Results86

A network model of hippocampal place cells87

To study the phase shift of hippocampal place cells, we focus on a one-dimensional (1D) continuous88

attractor neural network (CANN) (mimicking the animal moving on a linear track, see Fig. 2a), but89

generalization to the 2D case (mimicking the animal moving in a 2D arena) is straightforward (see90

Discussion for more details). Neurons in the 1D CANN can be viewed as place cells rearranged ac-91

cording to the locations of their firing fields on the linear track (measured during free exploration).92

The dynamics of the 1D CANN is written as93

𝜏
𝑑𝑈 (𝑥, 𝑡)

𝑑𝑡
= −𝑈 (𝑥, 𝑡) + 𝜌∫

∞

−∞
𝐽 (𝑥, 𝑥′)𝑟(𝑥′, 𝑡) 𝑑𝑥′ − 𝑉 (𝑥, 𝑡) + 𝐼 𝑒𝑥𝑡(𝑥, 𝑡), (1)

𝑟(𝑥, 𝑡) =
𝑔𝑈 (𝑥, 𝑡)2

1 + 𝑘𝜌 ∫ ∞
−∞ 𝑈 2(𝑥′, 𝑡) 𝑑𝑥′

, (2)
Here𝑈 (𝑥, 𝑡) represents the presynaptic input to the neuron located at position 𝑥 on the linear track,94

and 𝑟(𝑥, 𝑡) represents the corresponding firing rate constrained by global inhibition (Hao et al.,95

2009). 𝜏 is the time constant, 𝜌 the neuron density, 𝑘 the global inhibition strength, and 𝑔 is the96

gain factor. The dynamics of 𝑈 (𝑥, 𝑡) is determined by the leaky term −𝑈 (𝑥, 𝑡), the recurrent input97

from other neurons, the firing rate adaptation −𝑉 (𝑥, 𝑡), and the external input 𝐼 𝑒𝑥𝑡(𝑥, 𝑡). The recur-98

rent connection strength 𝐽 (𝑥, 𝑥′) between two neurons decays with their distance. For simplicity,99

we set 𝐽 (𝑥, 𝑥′) to be the Gaussian form, i.e., 𝐽 (𝑥, 𝑥′) = 𝐽0∕(2𝜋𝑎) exp
[

−(𝑥 − 𝑥′)2∕(2𝑎2)
], with 𝐽0 control-100

ling the connection strength and 𝑎 the range of neuronal interaction. Such connectivity gives rise101

to a synaptic weight matrix with the property of translation invariance. Together with the global102

inhibition, the translation invariant weight matrix ensures that the network can hold a continuous103

family of stationary states (attractors) when no external input and adaptation exist (Tsodyks and104

Sejnowski, 1995; Samsonovich and McNaughton, 1997; McNaughton et al., 2006;Wu et al., 2008),105

where each attractor is a localized firing bump representing a single spatial location (Fig. 2b). These106

bump states are expressed as (see Methods. for the parameter settings and SI.2 for the detailed107

mathematical derivation):108

𝑟(𝑥, 𝑡) = 𝐴𝑟(𝑡) exp
{

−
[𝑥 − 𝑧(𝑡)]2

2𝑎2

}

, (3)
where𝐴𝑟(𝑡) denotes the bumpheight and 𝑧(𝑡) the bump center, i.e., the spatial location represented109

by the network. For convenience, we set the external input to be of the Gaussian form, which110
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Figure 2. The network architecture and tracking dynamics. a, A 1D continuous attractor neural networkformed by place cells. Neurons are aligned according to the locations of their firing fields on the linear track.The recurrent connection strength 𝐽 (𝑥, 𝑥′) (blue arrows) between two neurons decays with their distance onthe linear track. Each neuron receives an adaptation current −𝑉 (𝑥, 𝑡) (red dashed arrows). The external input
𝐼𝑒𝑥𝑡(𝑥, 𝑡), represented by a Gaussian-shaped bump, conveys location-dependent sensory inputs to thenetwork. b, An illustration of the state space of the CANN. The CANN holds a family of bump attractors whichform a continuous valley in the energy space. c, The smooth tracking state. The network bump (hot colors)smoothly tracks the external moving input (the white line). The red (blue) color represents high (low) firingrate. d, The travelling wave state when the CANN has strong firing rate adaptation. The network bump movesspontaneously with a speed much faster than the external moving input. e, The intrinsic speed of thetravelling wave versus the adaptation strength. f, The oscillatory tracking state. The bump position sweepsaround the external input (black line) with an offset 𝑑0. g, The phase diagram of the tracking dynamics withrespect to the adaptation strength 𝑚 and the external input strength 𝛼. The colored area shows theparameter regime for the oscillatory tracking state. Yellow (blue) color represents fast (slow) oscillationfrequency. h-i, Simulated (red points) and theoretical (blue line) oscillation frequency as a function of theadaptation strength (h) or the external input strength (i).
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is written as 𝐼 𝑒𝑥𝑡(𝑥, 𝑡) = 𝛼 exp
[

−(𝑥 − 𝑣𝑒𝑥𝑡𝑡)2∕(4𝑎2)
], with 𝑣𝑒𝑥𝑡 representing the moving speed and 𝛼111

controlling the external input strength. Such externalmoving input represents location-dependent112

sensory inputs (i.e., corresponding to the animal’s physical location) which might be conveyed via113

the entorhinal-hippocampal or subcortical pathways (Van Strien et al., 2009). The term −𝑉 (𝑥, 𝑡)114

represents the firing rate adaptation (Alonso and Klink, 1993; Fuhrmann et al., 2002; Benda and115

Herz, 2003), whose dynamics is written as116

𝜏𝑣
𝑑𝑉 (𝑥, 𝑡)

𝑑𝑡
= −𝑉 (𝑥, 𝑡) + 𝑚𝑈 (𝑥, 𝑡), (4)

where 𝑚 controls the adaptation strength, and 𝜏𝑣 is the time constant. The condition 𝜏𝑣 ≫ 𝜏 holds,117

implying that the firing rate adaptation is amuch slower process compared to neuronal firing. In ef-118

fect, the firing rate adaptation increases with the neuronal activity and contributes to destabilizing119

the active bump state, which induce rich dynamics of the network (see below).120

Oscillatory tracking of the network121

Overall, the bumpmotion in the network is determined by two competing factors, i.e., the external122

input and the adaptation. The interplay between these two factors leads to the network exhibiting123

oscillatory tracking in an appropriate parameter regime. To elucidate the underlying mechanism124

clearly, we explore the effects of the external input and the adaptation on bumpmotion separately.125

First, when firing rate adaptation does not exist in the network (𝑚 = 0), the bump tracks the external126

moving input smoothly (see Fig. 2c). We refer to this as the “smooth tracking state", where the127

internal location represented in the hippocampus (the bump position) is continuously tracking the128

animal’s physical location (the external input location). This smooth tracking property of CANNs129

has been widely used to model spatial navigation in the hippocampus (Tsodyks and Sejnowski,130

1995; Samsonovich and McNaughton, 1997;McNaughton et al., 2006; Battaglia and Treves, 1998).131

Second, when the external drive does not exist in the network (𝛼 = 0) and the adaptation strength132

𝑚 exceeds a threshold (𝑚 > 𝜏∕𝜏𝑣), the bump moves spontaneously with a speed calculated as133

𝑣𝑖𝑛𝑡 = (2𝑎∕𝜏𝑣)
√

𝑚𝜏𝑣∕𝜏 −
√

𝑚𝜏𝑣∕𝜏 (see Fig. 2d&e and Methods. for more details). We refer to this as134

the “travelling wave state", where the internal representation of location in the hippocampus is135

sequentially reactivatedwithout external drive, resembling replay-like dynamics during a quiescent136

state (see Discussion for more details). This intrinsic mobility of the bump dynamics can be intu-137

itively understood as follows. Neurons around the bump center have the highest firing rates and138

hence receive the strongest adaptation. Such strong adaptation destabilizes the bump stability at139

the current location, and hence pushes the bump away. After moving to a new location, the bump140

will be continuously pushed away by the firing rate adaptation at the new location. As a result, the141

bump keeps moving on the linear track. Similar mechanisms have been applied to explain mental142

exploration (Hopfield, 2010), preplay during sharp wave-ripple events in the hippocampus (Azizi143

et al., 2013), and the free memory recall phenomenon in the brain (Dong et al., 2021).144

When both the external input and adaptation are applied to the CANN, the interplay between145

the extrinsic mobility (caused by the external input) and the intrinsic mobility (caused by the adap-146

tation) will induce three different dynamical behaviors of the network (see video 1 for demonstra-147

tion), i.e., 1) when 𝑚 is small and 𝛼 is large, the network displays the smooth tracking state; 2) when148

𝑚 is large and 𝛼 is small, the network displays the travelling wave state; 3) when both 𝑚 and 𝛼 have149

moderate values, the network bump displays an interesting state, called the “oscillatory tracking150

state", where the bump tracks the external moving input in an oscillatory fashion (Fig. 2f&g). In-151

tuitively, the mechanism for oscillatory tracking can be understood as follows. Due to the intrinsic152

mobility of the network, the bump tends tomove at its own intrinsic speed (which is faster than the153

external moving input, see Fig. 2d), i.e., the bump tries to escape from the external input. However,154

due to the strong locking effect of the external input, the bump can not run too far away from the155

location input, but instead, is attracted back to the location input. Once the bump returns, it will156

keep moving in the opposite direction of the external input until it is pulled back by the external157
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input again. Over time, the bump will sweep back and forth around the external moving input,158

displaying the oscillatory tracking behavior.159

Our study shows that during oscillatory tracking, the bump shape is roughly unchanged (see160

Sec. for the condition of shape variability), and the bump oscillation can be well represented as161

the bump center sweeping around the external input location. The dynamics of the bump center162

can be approximated as a propagating sinusoidal wave (Fig. 2f), i.e.,163

𝑧(𝑡) = 𝑐0 sin(𝜔𝑡) + 𝑑0 + 𝑣𝑒𝑥𝑡𝑡 = 𝑠(𝑡) + 𝑣𝑒𝑥𝑡𝑡, (5)
where 𝑧(𝑡) is the bump center at time 𝑡 (see Eq. 3). 𝑠(𝑡) denotes the displacement between the bump164

center and the external input, which oscillates at the frequency 𝜔 with the amplitude 𝑐0 > 0 and a165

constant offset 𝑑0 > 0 (see Methods. for the values of these parameters and SI.3 for the detailed166

derivation). When the firing rate adaptation is relatively small, the bump oscillation frequency can167

be analytically solved to be (see also Fig.S1):168

𝜔 =

√

√

√

√

2
√

𝜋𝛼𝑎𝑘(1 + 𝑚)

𝜏𝜏𝑣(𝐽0 + 2
√

𝜋𝑎𝑘𝛼)
. (6)

We see that the bumposcillation frequency𝜔 increases sublinearly with the external input strength169

𝛼 and the adaptation strength𝑚 (Fig. 2h&i). By setting the parameters appropriately, the bump can170

oscillate in the theta band (6-10Hz), thus approximating the experimentally observed theta sweeps171

(see below). Notably, LFP theta is not explicitly modelled in the network. However, since theta172

sweeps are bounded by individual LFP theta cycles in experiments, they share the same oscillation173

frequency as LFP theta. For convenience, we will frequently use LFP theta below and study firing174

phase shift in individual oscillation cycles.175

Oscillatory tracking accounts for both theta phase precession and procession of176

hippocampal place cells177

In our model, the bump center and external input represent the decoded and physical positions of178

the animal, respectively, thus the oscillatory tracking of the bump around the external input natu-179

rally gives rise to the forward and backward theta sweeps observed empirically (Fig. 3a&b) (Wang180

et al., 2020). Here we show that oscillatory tracking of the bump accounts for the theta phase181

precession and procession of place cell firing.182

Without loss of generality, we select the neuron at location 𝑥 = 0 as the probe neuron and ex-183

amine how its firing phase changes as the external input traverses its firing field (Fig. 3c). In the184

absence of explicitly simulated spike times, the firing phase of a neuron in each theta cycle is mea-185

sured by the moment when the neuron reaches the peak firing rate (see Methods. for modeling186

spike times in the CANN). Based on Eqs. 3 & 5, the firing rate of the probe neuron, denoted as 𝑟0(𝑡),187

is expressed as188

𝑟0(𝑡) = 𝐴𝑟(𝑡) exp
[

−
[0 − 𝑧(𝑡)]2

2𝑎2

]

= 𝐴𝑟(𝑡) exp

[

−

(

𝑣𝑒𝑥𝑡𝑡 + 𝑐0 sin𝜔𝑡 + 𝑑0
)2

2𝑎2

]

≡ 𝐴𝑟(𝑡) exp
[

−
ℎ(𝑡)2

2𝑎2

]

, (7)
where 𝐴𝑟(𝑡) is the bump height, and ℎ(𝑡) is an oscillatory moving term denoting the displacement189

between the bump center and the location of the probe neuron. It is composed of a moving signal190

𝑣𝑒𝑥𝑡𝑡 and an oscillatory signal 𝑐0 sin𝜔𝑡 + 𝑑0, with 𝑐0 the oscillation amplitude, 𝜔 the frequency and 𝑑0191

an oscillation offset constant. It can be seen that the firing rate of the probe neuron is determined192

by two factors, 𝐴𝑟(𝑡) and ℎ(𝑡). To simplify the analysis below, we assume that the bump height 𝐴𝑟(𝑡)193

remains unchanged during bump oscillations (for the case of time-varying bump height, see Sec. ).194

Thus, the firing rate only depends on ℎ(𝑡), which is further determined by two time-varying terms,195

the oscillation term 𝑐0 sin𝜔𝑡 and the location of the external input 𝑣𝑒𝑥𝑡𝑡. The first term contributes196
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Figure 3. Oscillatory tracking accounts for theta sweeps and theta phase shift. a, Snapshots of the bumposcillation along the linear track in one theta cycle (0 ms - 140 ms). Red triangles indicate the location of theexternal moving input. b, Decoded relative positions based on place cell population activities. Upper panel:experimental data, adapted from Wang et al. (2020). Lower panel: the relative locations of the bump center(shown by the 10 most active neurons at each timestamp) with respect to the location of the external input(horizontal line) in five theta cycles. c, Upper panel: the process of the animal running through the firing fieldof the probe neuron (large black dot) is divided into three stages: the entry stage (green), the phase shiftstage (red) and the departure stage (blue). Lower panel: the displacement between the bump center and theprobe neuron as the animal runs through the firing field. The horizontal line represents the location of theprobe neuron, which is 𝑥 = 0. d, The firing rates of the probe neuron as the animal runs through the firingfield. Colored points indicate firing peaks. The trace of the firing rate in the phase shift stage (the dashed box)is enlarged in the sub-figure on the right hand-side, which exhibits both phase precession (red points) andprocession (blue points) in successive theta cycles. e, The firing phase shift of the probe neuron in successivetheta cycles. Red points progress to earlier phases from 𝜋∕2 to −𝜋∕2 and blues points progress to laterphases from 𝜋∕2 to 3𝜋∕2.

to firing rate oscillations of the probe neuron, and the second term contributes to the envelope197

of neuronal oscillations exhibiting a waxing-and-waning profile over time, as the external input198

traverses the firing field (the absolute value |𝑣𝑒𝑥𝑡𝑡| first decreases and then increases; see Fig. 3d,199

also video 2). Such a waxing-and-waning profile agrees well with the experimental data (Skaggs200

et al., 1996). In each LFP theta cycle, the peak firing rate of the probe neuron is achieved when201

|ℎ(𝑡)| reaches a local minima (Fig. 3c&d). We differentiate three stages as the external input passes202

through the probe neuron (i.e., the animal travels through the place field of the probe neuron), i.e.,203

• the entry stage. As the external input enters the firing field of the probe neuron (moving204

from left to right), ℎ(𝑡) < 0 always holds (Fig. 3c). In this case, the peak firing rate of the205

probe neuron in each oscillatory cycle is achieved when ℎ(𝑡) reaches the maximum (i.e., |ℎ(𝑡)|206

reaches the minimum). This corresponds to 𝑐0 sin𝜔𝑡 = 𝑐0, i.e., 𝜔𝑡 = 𝜋∕2 (Fig. 3e). This means207

that the firing phase of the probe neuron at the entry stage is constant, which agrees with208

experimental observations (O’Keefe and Recce, 1993; Skaggs et al., 1996).209

• the phase shift stage. As the external input moves into the centre of the firing field, ℎ(𝑡) = 0210

can be achieved in each oscillatory cycle (Fig. 3c). Notably, it is achieved twice in each cycle,211

once as the bump sweeps over the probe neuron in the forward direction and the other as212

the bump sweeps over the probe neuron in the backward direction. Therefore, there are213

two firing peaks in each bump oscillation cycle (Fig. 3d), which are expressed as (by solving214

𝑣𝑒𝑥𝑡𝑡 + 𝑐0 sin𝜔𝑡 + 𝑑0 = 0):215

𝜙𝑓 = −arcsin
[𝑑0 + 𝑣𝑒𝑥𝑡𝑡𝑓

𝑐0

]

, 𝜙𝑏 = 𝜋 + arcsin
[

𝑑0 + 𝑣𝑒𝑥𝑡𝑡𝑏
𝑐0

]

, (8)
where 𝑡𝑓 and 𝑡𝑏 denote the moments of peak firing in the forward and backward sweeps,216
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respectively, and 𝜙𝑓 and 𝜙𝑏 the corresponding firing phases of the probe neuron. As the217

external input travels from (−𝑐0 − 𝑑0) to (𝑐0 − 𝑑0), the firing phase 𝜙𝑓 in the forward sweep218

decreases from 𝜋∕2 to −𝜋∕2, while the firing phase 𝜙𝑟 in the backward sweep increases from219

𝜋∕2 to 3𝜋∕2 (Fig. 3e). These give rise to the phase precession and procession phenomena,220

respectively, agreeing well with experimental observations (Skaggs et al., 1996; Wang et al.,221

2020; Yamaguchi et al., 2002).222

• the departure stage. As the external input leaves the firing field, ℎ(𝑡) > 0 always holds223

(Fig. 3c), and the peak firing rate of the probe neuron is achieved when ℎ(𝑡) reaches its mini-224

mum in each oscillatory cycle, i.e., 𝑐0 sin(𝜔𝑡) = −𝑐0 with 𝜔𝑡 = 𝜋∕2 (Fig.3e). Therefore, the firing225

phase of the probe neuron is also constant during the departure stage226

In summary, oscillatory tracking of the CANN well explains the firing phase shift of place cells227

when the animal traverses their firing fields. Specifically, when the animal enters the place field,228

the firing phase of the neuron remains constant, i.e., no phase shift occurs, which agrees with ex-229

perimental observations (O’Keefe and Recce, 1993; Skaggs et al., 1996). As the animal approaches230

the centre of the place field, the firing phase of the neuron starts to shift in two streams, one to ear-231

lier phases during the forward sweeps and the other to later phases during the backward sweeps.232

Finally, when the animal leaves the place field, the firing phase of the neuron stops shifting and233

remains constant. Over the whole process, the firing phase of a place cell is shifted by 180 degrees,234

which agrees with experimental observations (O’Keefe and Recce, 1993; Skaggs et al., 1996).235

Different adaptation strengths account for bimodal and unimodal cells236

The results above show that during oscillatory tracking, a place cell exhibits both significant phase237

precession and procession, which are associated with two firing peaks in a theta cycle. These238

neurons have been described as bimodal cells (Wang et al., 2020) (Fig. 4a). Conversely, previous239

experiments have primarily focused on the phase precession of place cell firing, while tending240

to ignore phase procession, which is a relatively weaker phenomenon (O’Keefe and Recce, 1993;241

Skaggs et al., 1996). Place cells with negligible phase procession have been described as unimodal242

cells (Fig. 4b).243

Here, we show that by adjusting a single parameter in the model, i.e., the adaptation strength244

𝑚, neurons in the CANN can exhibit either interleaved phase precession and procession (bimodal245

cells) or predominant phase precession (unimodal cells). To understand this, we first recall that246

the firing rate adaptation is a much slower process compared to neural firing and its timescale is247

in the same order as the LFP theta (i.e., 𝜏𝑣 = 100 ms while 𝜏 = 5 ms). This implies that when the248

bump sweeps over a neuron, the delayed adaptation it generates will suppress the bump height249

as it sweeps back to the same location. Furthermore, since the oscillatory tracking always begins250

with a forward sweep (as the initial sweep is triggered by the external input moving in the same di-251

rection), the suppression effects are asymmetric, that is, forward sweeps always strongly suppress252

backward sweeps. On the contrary, the opposite effect is much smaller, since neuronal activities in253

backward sweeps have already been suppressed, and they can only generate weak adaptation. Be-254

cause of this asymmetric suppression, the bump height in the forward sweep is always higher than255

that in the backward sweep (see Fig. 4c and Fig.S2a ). When the adaptation strength 𝑚 is small, the256

suppression effect is not significant, and the attenuation of the bump height during the backward257

sweep is small (Fig. 4d). In such case, the firing behavior of a place cell is similar to the situation as258

the bump height remains unchanged as analyzed in Sec. , i.e., the neuron can generate two firing259

peaks in a theta cycle at the phase shift stage, manifesting the property of a bimodal cell of having260

both significant phase precession and procession (Fig. 4e&g and video 2 ). When the adaptation261

strength 𝑚 is large, the bump height in the backward sweep attenuates dramatically (see Fig. 4c&d262

and the video demonstration). As a result, the firing peak of a place cell in the backward sweep263

becomes nearly invisible at the phase shift stage, and the neuron exhibits only predominant phase264

precession, manifesting the property of a unimodal cell (Fig. 4f&h and video 3).265
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Figure 4. Different adaptation strengths account for the emergence of bimodal and unimodal cells. a, Thefiring rate trace of a typical bimodal cell in our model (upper panel) and the experiment data (lower panel,adapted from (Skaggs et al., 1996)). Blue boxes mark the phase shift stage. Note that there are two peaks ineach theta cycle. b, The firing rate trace of a typical unimodal cell. Note that there is only one firing peak ineach theta cycle. c, The averaged bump heights in the forward (blue curve) and backward windows (red curve)as a function of the adaptation strength 𝑚. d, Variation of the bump height when the adaptation strength isrelatively small (blue line) or large (red line). e-f, Relative location of the bump center in a theta cycle whenadaptation strength is relatively small (e) or large (f). Dashed line separate the forward and backwardwindows. g-h, Theta phase as a function of the normalized position of the animal in place field, averaged overall bimodal cells (g) or over all unimodal cells (h). −1 indicates that the animal just enters the place field, and 1represents that the animal is about to leave the place field. Dashed lines separate the forward and backwardwindows. The lower panels in both g and h present the rescaled colormaps only in the backward window.
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In summary, different adaptation strengths explain the emergence of bimodal and unimodal266

cells. In fact, there is no sharp separation between bimodal and unimodal cells. As the firing rate267

adaptation gets stronger, the network bump is more attenuated during the backwards sweep, and268

cells with the bimodal firing property will gradually behave more like those with the unimodal fir-269

ing property (see Fig.S2b). Moreover, our model confirms that even though phase procession is270

weak, it still exist in unimodal cells (Fig. 4h lower panel), which has been reported in previous stud-271

ies (Wang et al., 2020; Yamaguchi et al., 2002). This implies that phase procession is not a character-272

istic feature of bimodal cells, but instead, is likely a common feature of hippocampal activity, with273

a strength controlled by adaptation. Furthermore, the experimental data (Fernández-Ruiz et al.,274

2017) has indicated that there is a laminar difference between unimodal cells and bimodal cells,275

with bimodal cells correlating more with the firing patterns of deep CA1 neurons and unimodal276

cells with the firing patterns of superficial CA1 neurons. Our model suggests that this difference277

may come from the different adaptation strengths in the two layers.278

Constant cycling of multiple future scenarios in a T-maze environment279

Wehave shown that ourmodel can reproduce the forward and backward theta sweeps of decoded280

position when the animal runs on a linear track. It is noteworthy that there is only a single hypo-281

thetical future scenario in the linear track environment, i.e, ahead of the animal’s position, and282

hence place cells firing phase can only encode future positions in one direction. However, flexible283

behaviors requires the animal encoding multiple hypothetical future scenarios in a quick and con-284

stant manner, e.g., during decision-making and planning in complex environments (Johnson and285

Redish, 2007;Wikenheiser and Redish, 2015). One recent study (Kay et al., 2020) showed constant286

cycling of theta sweeps in a T-maze environment (Fig. 5a), that is, as the animal approaches the287

choice point, the decoded position from hippocampal activity propagates down one of the two288

arms alternatively in successive LFP theta cycles. To reproduce this phenomenon, we change the289

structure of the CANN from a linear track shape to a T-maze shape where the neurons are aligned290

according to the location of their firing fields in the T-maze environment. Neurons are connected291

with a strength proportional to the Euclidean distance between their firing fields on the T-maze292

and the parameters are set such that the network is in the oscillatory tracking state (see details in293

Methods. ). Mimicking the experimental protocol, we let the external input (the artificial animal)294

move from the end of the center arm to the choice point. At the beginning, when the external295

input is far away from the choice point, the network bump sweeps back and forth along the center296

arm, similar to the situation on the linear track. As the external input approaches the choice point,297

the network bump starts to sweep onto left and right arms alternatively in successive theta cycles298

(Fig. 5b and video 4). The underlying mechanism is straightforward. Suppose that the bump first299

sweeps to the left arm from the current location, it will sweep back to the current location first due300

to the attraction of the external input. Then in the next round, the bump will sweep to the right301

arm, since the neurons on the left arm are suppressed due to adaptation. This cycling process302

repeats constantly between the two upcoming arms before the external input enters one of the303

two arms (i.e, before the decision is made). At the single cell level, this bump cycling phenomenon304

gives rise to the “cycle skipping" effect (Kay et al., 2020; Deshmukh et al., 2010; Brandon et al.,305

2013), where a neuron whose place field is on one of the two arms fires on every other LFP theta306

cycle before the decision is made (Fig. 5c left panel and Fig. 5d upper panel). For example, a pair of307

cells with firing fields on each of the two arms will fire in regular alternation on every other theta308

cycle (Fig. 5c right panel and Fig. 5d lower panel). These cell-level firing patterns agree well the309

experimental observations (Kay et al., 2020).310

In summary, our model, extended to a T-maze structure, explains the constant cycling of two311

possible future scenarios in a T-maze environment. The underlying mechanism relies on delayed312

adaptation, which alternately causes neurons on one arm to be more suppressed than those on313

the other arm. Such high-speed cycling may contribute to the quick and continuous sampling314

among multiple future scenarios in real-world decision-making and planning (see Discussion for315

10 of 27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2023. ; https://doi.org/10.1101/2022.11.14.516400doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.14.516400
http://creativecommons.org/licenses/by-nc-nd/4.0/


a

Probe neuron A Probe neuron B

Left arm Right arm

c

b

d

0 0.5 1 1.5 2 2.5
0

4

D
ec

od
ed

 p
os

iti
on

Left arm

Right arm

Time (s)

0 0.5 1 1.5

Time (s)
0

12 probe neuron A
probe neuron B

-0.4 -0.2 0 0.2 0.4

Time (s)

0

1

cr
os

s-
co

rr

0

1

au
to

-c
or

r

0 0.5 1 1.5

Time (s)
0

12

Fi
rin

g 
ra

te
 (H

z)

0 ms 7.5 ms 15 ms 22.5 ms 30 ms 37.5 ms 45 ms

52.5 ms 60 ms 67.5 ms 75 ms 82.5 ms 90 ms 97.5ms

105 ms 112.5 ms 120 ms 127.5 ms 135 ms 142.5 ms 150 ms

157.5 ms 165 ms 172.5 ms 180 ms 187.5 ms 195 ms 202.5 ms

-0.4 -0.2 0 0.2 0.4

Center arm

Figure 5. Constant cycling of future positions in a T-maze environment. a, An illustration of an animalnavigating a T-maze environment with two possible upcoming choices (the left and right arms). b, Upperpanel: Snapshots of constant cycling of theta sweeps on two arms when the animal is approaching the choicepoint. Red triangle marks the location of the external input. Note that the red triangle moves slightly towardsthe choice point in the 200 ms duration. Lower panel: Constant cycling of two possible future locations. Theblack, red and blue traces represent the bump location on the center, left and right arms, respectively. Thegreen line marks the location of the external moving input. c, Left panel: the firing rate trace of a neuron A onthe left arm when the animal approaches the choice point. Right panel: the firing rate traces of a pair ofneurons when the animal approaches the choice point, with neuron A (red) on the left arm and neuron B(blue) on the right arm. Dashed lines separate theta cycles. d, Upper panel: the auto-correlogram of the firingrate trace of probe neuron A. Lower panel: the cross-correlogram between the firing rate trace of neuron Aand the firing rate trace of neuron B.

11 of 27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2023. ; https://doi.org/10.1101/2022.11.14.516400doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.14.516400
http://creativecommons.org/licenses/by-nc-nd/4.0/


more details).316

Robust phase coding of position with place cells317
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Figure 6. Robust phase coding of position. a, Normalized spectrum of bump oscillation (black curve) and theoscillation of a bimodal cell (blue curve). The black point marks the peak frequency of the bump oscillation(i.e. LFP theta). The blue and red points mark the peak frequencies of the oscillation of the bimodal cell. b,Normalized spectrum of bump oscillation and the oscillation of a unimodal cell. Note that the unimodal cellhas only predominant phase precession and hence a single peak frequency (red point), which is higher thanthat of the bump oscillation. c, The peak frequency of bump oscillation versus moving speed (black points),and the oscillation of a bimodal cell versus moving speed (red and blue points). d, The difference in peakfrequency between the oscillation of a bimodal cell and the bump oscillation versus moving speed. e, Sameas d but for a unimodal cell. f-g, Theta phase as a function of time (f) or position (g). Each dot represents aspike generated through a Poisson process (see Method. for more details). h, Silencing the network activityfor 100 ms (gray shaded area) when the external moving input passes through the center part of the placefield of a unimodal cell. i, Theta phase shift of the unimodal cell with (black points) or without (blue curve)silencing the network.

As the firing rate shows large variability when the animal runs through the firing field (Fenton318

and Muller, 1998), it has been suggested that the theta phase shift provides an additional mech-319

anism to improve the localization of animals (O’keefe and Burgess, 2005). Indeed, (Jensen and320

Lisman, 2000) showed that taking phase into account leads to a significant improvement in the321

accuracy of localizing the animal. To demonstrate the robustness of phase coding, previous exper-322

iments showed two intriguing findings: a linear relationship between the firing frequency of place323

cells and the animal moving speed (Geisler et al., 2007), and the continued phase shift after inter-324

ruption of hippocampal activity (Zugaro et al., 2005). We show that our model can also reproduce325

these two phenomena.326

To investigate the relationship between the single cell’s oscillation frequency and the animal’s327
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running speed, we consider a unimodal cell with predominant phase precession as studied in the328

experiment (Geisler et al., 2007). Firstly, our model shows that the LFP theta frequency (the bump329

oscillation frequency 𝜔) is largely independent of the running speed of the animal (the speed of330

the external input, see Eq. 6) (Fig. 6c). The phase precession implies that the oscillation frequency331

of a place cell is higher than LFP theta frequency, since firing precesses to earlier phases over theta332

cycles (Fig. 6a&b). Secondly, we can analytically quantify how the single cell’s oscillation frequency is333

modulated by the external moving speed. As shown in Sec. , the distance the animal travels during334

the phase shift stage is 2𝑐0, which gives the travelling time 𝑇 = 2𝑐0∕𝑣𝑒𝑥𝑡 and the number of theta335

cycles for phase precession𝐾𝑓 = 𝑇𝜔. Since the total amount of phase shift over the whole process336

is 𝜋 (i.e, half of the theta cycle, Fig. 3e), it means that 𝐾𝑓 firing peaks are generated by a unimodal337

cell within 𝑇𝑓 = (𝑇𝜔 − 0.5)∕𝜔 units of time. Thus, the firing frequency of the cell is calculated to be338

𝜔𝑓 = 𝐾𝑓∕𝑇𝑓 ≈ 𝜔 + 0.25𝑣𝑒𝑥𝑡∕𝑐0 (where the condition 𝐾𝑓 ≫ 0.5 is used), which increases linearly with339

the animal speed 𝑣𝑒𝑥𝑡 (Fig. 6c-e). This linear relationship ensures that the firing phase of a unimodal340

cell in each theta cycle is locked with the relative location of the animal in the firing field of that cell,341

which supports a robust phase-position code. Notably, in our model, the speed modulation of the342

place cells’ firing frequency is not the cause of theta phase shift, but rather a result of oscillatory343

tracking. This is different from the dual oscillator model (Lengyel et al., 2003), which assumes that344

phase precession is caused by a speed-dependent increase in the dendritic oscillation frequency345

(see Discussion for more details).346

In a different experiment, (Zugaro et al., 2005) found that the firing phase of a place cell contin-347

ues to precess even after hippocampal activity was transiently silenced for up to 250 ms (around 2348

theta cycles). To reproduce this phenomenon, we also study a unimodal cell bymanually turning off349

the network activity for a few hundred milliseconds (by setting 𝑟(𝑥, 𝑡) = 0 for all neurons) and then350

letting the network dynamics evolves again with all parameters unchanged. Based on the theoret-351

ical analysis (Eq. 8), we see that the firing phase of a place cell is determined by the location of the352

external input (i.e., 𝑣𝑒𝑥𝑡𝑡), which means that as the external input moves forward on the linear track,353

the firing phase will precess accordingly in successive oscillatory cycles. Thus, once the network is354

recovered to the oscillatory tracking state and the external input conveys the new location of the355

animal to the network, phase precession is resumed from the new location. Therefore, the firing356

phase in the first bump oscillation cycle after the network perturbation is more advanced than the357

firing phase in the last bump oscillation cycle right before the perturbation, and the amount of358

precession is similar to that in the case without perturbation (Fig. 6h&i). This agrees well with the359

experimental observation, and indicates that the phase-position code is robust to the perturbation360

of the hippocampal dynamics.361

Overall, our model reproduces these two experimental findings, and suggests that there exists362

a one-to-one correspondence between the firing phase of a place cell and the travelled distance in363

the neuron’s place field, which is independent of the animal’s running speed or the perturbation364

duration (Fig.S3). This agrees well with experimental observations (O’Keefe and Recce, 1993) that365

theta phase correlates better with the animal’s location than with time (Fig. 6f&g). In addition to366

the results for unimodal cells as introduced above, our model predicts new results for bimodal367

cells. First, in contrast to a unimodal cell, a bimodal cell will have two peaks in its firing frequency,368

with one slightly higher than the LFP theta baseline (due to phase precession) and the other slightly369

lower than the LFP theta baseline (due to phase procession). The precession-associated frequency370

positively correlates with the running speed of the animal, while the procession-associated fre-371

quency negatively correlates with the running speed (Fig. 6d). Second, similar to the preserved372

phase shift in unimodal cells, both the phase precession and procession of a bimodal cell after373

transient intrahippocampal perturbation continue from the new location of the animal (see SI), no374

matter how long the silencing period lasts. The two predictions could be tested by experiments.375
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Discussion376

Model contributions377

In this paper, we have proposed a CANN with firing rate adaptation to unveil the underlying mech-378

anism of place cell phase shift during locomotion. We show that the interplay between intrinsic379

mobility (owing to firing rate adaptation) and extrinsic mobility (owing to the location-dependent380

sensory inputs) leads to an oscillatory tracking state, which naturally accounts for theta sweeps381

where the decoded position oscillates around the animal’s physical location at the theta rhythm.382

At the single neuron level, we show that the forward and backward bump sweeps account for,383

respectively, phase precession and phase procession. Furthermore, we show that the varied adap-384

tation strength explains the emergence of bimodal and unimodal cells, that is, as the adaptation385

strength increases, forward sweeps of the bump gradually suppress backward sweeps, and as a386

result, neurons initially exhibiting both significant phase precession and procession (due to a low387

level adaptation) will gradually exhibit only predominant phase precession (due to a high level388

adaptation).389

Computational models for theta phase shift and theta sweeps390

As a subject of network dynamics, oscillatory tracking has been studied previously in an excitatory-391

inhibitory neural network (Folias and Bressloff, 2004), where it was found that decreasing the exter-392

nal input strength can lead to periodic emission of traveling waves in the network (Hopf instability),393

which is analogous to the oscillatory tracking state in our model. However, their focus was on the394

mathematical analysis of such dynamical behavior, while our focus is on the biological implications395

of oscillatory tracking, i.e., how can it be linked to phase precession and procession of hippocampal396

place cells.397

Due to their potential contributions to the temporal sequence learning involved in spatial navi-398

gation and episodic memory (Mehta et al., 1997, 2002; Yamaguchi, 2003), theta phase precession399

and forward theta sweeps have been modelled in the field for decades. These models can be di-400

vided into twomain categories, with one relying on themechanismof single cell oscillation (O’Keefe401

and Recce, 1993; Kamondi et al., 1998; Lengyel et al., 2003;O’keefe and Burgess, 2005;Mehta et al.,402

2002), and the other relying on themechanismof recurrent interactions between neurons (Tsodyks403

et al., 1996; Romani and Tsodyks, 2015; Kang and DeWeese, 2019). A representative example of404

the former is the oscillatory interference model (O’Keefe and Recce, 1993; Lengyel et al., 2003),405

which produces phase precession via the superposition of two oscillatory signals, with one from406

the baseline somatic oscillation at the LFP theta frequency (reflecting the inputs from the medial407

septal pacemaker (Stewart and Fox, 1990)), and the other from the dendritic oscillation whose408

frequency is slightly higher. While these models can explain a large variety of experimental phe-409

nomena, it remain unclear how oscillation of individual neurons has a frequency higher than the410

baseline theta frequency. Here, our model provides a network mechanism for how such higher-411

frequency oscillation emerges.412

A representative model relying on neuronal recurrent interactions is the activation spreading413

model (Tsodyks et al., 1996). This model produces phase precession via the propagation of neu-414

ral activity along the movement direction, which relies on asymmetric synaptic connections. A415

later version of this model considers short-term synaptic plasticity (short-term depression) to im-416

plicitly implement asymmetric connections between place cells (Romani and Tsodyks, 2015), and417

reproduces many other interesting phenomena, such as phase precession in different environ-418

ments. However, since the asymmetric connections always skew towards the moving direction419

(along which the connection strength is stronger than that in the opposite direction), the activity420

bump can only propagate along themoving direction. Therefore, these twomodels only reproduce421

theta phase precession. Rather than relying on neuronal asymmetric connections to induce activ-422

ity spreading, our model considers firing rate adaptation at individual neurons, which allows the423

activity bump to propagate in both directions alternately, and hence generate interleaved phase424
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precession and procession. Furthermore, to prevent the activity bump from spreading away, their425

model considers an external theta input to reset the bump location at the end of each theta cycle,426

whereas in our model, because of the oscillation of the bump, no external theta input is needed,427

andby choosing themodel parameters properly, the bumpcanoscillate at the theta rhythm. Never-428

theless, experimental studies have suggested that hippocampal neurons receive thetamodulation429

from the medial septal pacemaker (Stewart and Fox, 1990; King et al., 1998; Wang, 2002). In our430

model, if we include such an external theta input, the bump oscillation will be locked at the theta431

rhythm more robustly without the need of fine tuning model parameters. Such a theta input may432

also have the role of coordinating theta phase shifts across brain regions. We will investigate this433

issue in future work.434

Beyond the linear track environment435

Besides the linear track environment, the mechanism of generating theta sweeps proposed in our436

model can also be generalized to more complex environments. For instance, in a T-maze environ-437

ment, our model explains the constant cycling of theta sweeps between left and right arms. Such438

cycling behavior may be important for high-speed actions such as predating and escaping which439

require animals to make decision among several future scenarios at the sub-second level. Similar440

alternative activity sweeps in the T-maze environment has been studied in a previous paper (Ro-441

mani and Tsodyks, 2015), which showed that the frequency of alternation correlates with overtly442

deliberative behaviors such as head scans (frequency at 1 Hz or less) (Johnson and Redish, 2007).443

In contrast to our model, the network activity in their model propagates continuously from the444

current location on the center arm till the end of the outer arm, which takes a few theta cycles445

(i.e., 1 second or more). In our model, the network bump alternately sweeps to one of the two446

outer arms at a much higher frequency (∼ 8 Hz), which may be related to fast decision-making447

or planing in natural environments (Kay et al., 2020). Furthermore, our model can also be easily448

extended to the multiple-arms (> 2) environment (Gillespie et al., 2021) or the cascade-T envi-449

ronment (Johnson and Redish, 2007) with the underlying mechanism of generating theta cycling450

remaining unchanged. In addition to the linear and T-maze environments, phase shift has also451

been reported when an animal navigates in an open field environment. However, due to the lack452

of recorded neurons, decoding theta sweeps in the 2D environment is not as straightforward as in453

the 1D case. While theta sweeps in the 1D case have been associated with goal-directed behaviors454

and spatial planning (Wikenheiser and Redish, 2015), it remains unclear whether such conclusion455

is applicable to the 2D case. Our preliminary result shows that in the 2D CANN where neurons are456

arranged homogeneously according to their relative firing locations, the activity bump will sweep457

along the tangent direction of the movement trajectory, similar to the 1D case (see SI.4 and Fig.S4458

for details). It will be interesting to explore theta sweeps in the open field environment in detail459

when more experimental data is available.460

Model implications and future works461

In the current study, we have modeled the place cell population in the hippocampus with a CANN462

and adopted firing rate adaptation to generate theta phase shift. In fact, this model can be easily463

extended to the grid cell population without changing the underlying mechanism. For instance,464

we can induce the torus-like connection profile (periodic boundary in the 2D space) (Samsonovich465

andMcNaughton, 1997;McNaughton et al., 2006) or the locally inhibitory connection profile (Burak466

and Fiete, 2009; Couey et al., 2013) in the CANN structure to construct a grid cell model, and by467

imposing firing rate adaptation, neurons in the grid cell network will also exhibit phase shift as468

the animal moves through the grid field, as reported in previous experimental studies (Hafting469

et al., 2008; Van Der Meer and Redish, 2011). Notably, although for both grid cells and place cells,470

CANNs can generate theta phase shift, it does notmean that they are independent fromeach other.471

Instead, theymight be coordinated by the same external input from the environment, as well as by472

the medial septum which is known to be a pacemaker that synchronises theta oscillations across473
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different brain regions (King et al., 1998;Wang, 2002). We will investigate this issue in future work.474

Our model suggests that the “online" theta sweep and the “offline" replay may share some475

common features in their underlying mechanisms (Romani and Tsodyks, 2015; Hopfield, 2010;476

Kang and DeWeese, 2019; Jahnke et al., 2015). We have shown that the activity bump with strong477

adaptation can move spontaneously when the external input becomes weak enough (see Sec. ).478

Such non-local spreading of neural activity has a speed much faster than the conventional speed479

of animals (the external input speed in our model, see Fig. 2d), which resembles the fast spread-480

ing of the decoded position during sharp-wave ripple events (Diba and Buzsáki, 2007; Foster and481

Wilson, 2006; Karlsson and Frank, 2009; Dragoi and Tonegawa, 2011). This indicates that these482

two phenomena may be generated by the same neural mechanism of firing rate adaptation, with483

theta sweeps originating from the interplay between the adaptation and the external input, while484

replay originating from only the adaptation, since the external input is relatively weak during the485

“offline" state. This hypothesis seems to be supported by the coordinated emergence of theta se-486

quences and replays during the post-natal development period (Muessig et al., 2019), as well as487

their simultaneous degradation when the animal travelled passively on a model train (Drieu et al.,488

2018).489

Nevertheless, it is important to note that the CANNwe adopt in the current study is an idealized490

model for the place cell population, wheremany biological details aremissed (Amari, 1977; Tsodyks491

and Sejnowski, 1995; Samsonovich and McNaughton, 1997; Tsodyks, 1999). For instance, we have492

assumed that neuronal synaptic connections are translation-invariant in the space. In practice,493

such a connection pattern may be learned by a synaptic plasticity rule at the behavioral time scale494

when the animal navigates actively in the environment (Bittner et al., 2017). In future work, we495

will explore the detailed implementation of this connection pattern, as well as other biological496

correspondences of our idealizedmodel, to establish a comprehensive picture of how theta phase497

shift is generated in the brain.498

Materials and Methods499

General summary of the model500

We consider a one-dimensional continuous attractor neural network (1D CANN), in which neurons501

are uniformly aligned according to their firing fields on a linear track (for the T-maze case, see502

Methods. below; for the case of the open field (2D CANN), see SI.4). Denote 𝑈 (𝑥, 𝑡) the synaptic503

input received by the place cell at location 𝑥, and 𝑟(𝑥, 𝑡) the corresponding firing rate. The dynamics504

of the network is written as505

𝜏
𝑑𝑈 (𝑥, 𝑡)

𝑑𝑡
= −𝑈 (𝑥, 𝑡) + 𝜌∫

∞

−∞
𝐽 (𝑥, 𝑥′)𝑟(𝑥′, 𝑡) 𝑑𝑥′ − 𝑉 (𝑥, 𝑡) + 𝐼 𝑒𝑥𝑡(𝑥, 𝑡), (9)

where 𝜏 is the time constant of 𝑈 (𝑥, 𝑡) and 𝜌 the neuron density. The firing rate 𝑟(𝑥, 𝑡) is given by506

𝑟(𝑥, 𝑡) =
𝑈 (𝑥, 𝑡)2

1 + 𝑘𝜌 ∫ ∞
−∞ 𝑈 (𝑥′, 𝑡) 𝑑𝑥′

, (10)
where 𝑘 controls the strength of the global inhibition (divisive normalization). 𝐽 (𝑥, 𝑥′) denotes the507

connection weight between place cells at location 𝑥 and 𝑥′, which is written as:508

𝐽 (𝑥, 𝑥′) =
𝐽0
2𝜋𝑎

exp
[

−
(𝑥 − 𝑥′)2

2𝑎2

]

, (11)
where 𝐽0 controls the strength of the recurrent connection and 𝑎 the range of neuronal interaction.509

Notably, 𝐽 (𝑥, 𝑥′) depends on the relative distance between two neurons, rather than the absolute510

locations of neurons. Such translation-invariant connection form is crucial for the neutral stability511

of the attractor states of CANNs (Wu et al., 2016). 𝐼 𝑒𝑥𝑡(𝑥, 𝑡) represents the external input which512

conveys the animal location information to the hippocampal network, which is written as:513
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𝐼 𝑒𝑥𝑡(𝑥, 𝑡) = 𝛼 exp
[

−
(𝑥 − 𝑣𝑒𝑥𝑡𝑡)2

4𝑎2

]

, (12)
with 𝑣𝑒𝑥𝑡 denoting the animal’s running speed and 𝛼 controlling the input strength to the hippocam-514

pus. 𝑉 (𝑥, 𝑡) denotes the adaptation effect of the place cell at location 𝑥, which increases with the515

synaptic input (and hence the place cell’s firing rate), i..e,516

𝜏𝑣
𝑑𝑉 (𝑥, 𝑡)

𝑑𝑡
= −𝑉 (𝑥, 𝑡) + 𝑚𝑈 (𝑥, 𝑡), (13)

with 𝜏𝑣 denoting the time constant of 𝑉 (𝑥, 𝑡) and 𝑚 the adaptation strength. Note that 𝜏𝑣 ≫ 𝜏,517

meaning that adaptation is a much slower process compared to the neural firing.518

Stability analysis of the bump state519

We derive the condition under which the bump activity is the stable state of the CANN. For simplic-520

ity, we consider the simplest case that there is no external input and adaptation in the network, i.e.,521

𝑚 = 𝛼 = 0. In this case, the network state is determined by the strength of the recurrent excitation522

and global inhibition. When the global inhibition is strong (𝑘 is large), the network is silent, i.e., no523

bump activity emerges in the CANN. When the global inhibition is small, an activity bump with the524

Gaussian-shaped profile emerges, which is written as:525

𝑈 (𝑥, 𝑡) = 𝐴𝑢 exp
{

−
[𝑥 − 𝑧(𝑡)]2

4𝑎2

}

, (14)
𝑟(𝑥, 𝑡) = 𝐴𝑟 exp

{

−
[𝑥 − 𝑧(𝑡)]2

2𝑎2

}

, (15)
with 𝐴𝑢 and 𝐴𝑟 representing the amplitudes of the synaptic input bump and the firing rate bump,526

respectively. 𝑧(𝑡) represents the bump center, and 𝑎 is the range of neuronal interaction (defined in527

Methods. ). To solve the network dynamics, we substitute Eqs. 14&15 into Eqs. 9&10, which gives528

(see SI.2 for more details of the derivation):529

𝜏
𝑑𝐴𝑢

𝑑𝑡
= −𝐴𝑢 +

𝜌𝐽0
√

2
𝐴𝑟, (16)

𝐴𝑟 =
𝐴2

𝑢

1 +
√

2𝜋𝑘𝜌𝑎𝐴2
𝑢

, (17)
These two equations describes how the bump amplitudes change with time. For instance, if neu-530

rons are weakly connected (small 𝐽0) or they are connected sparsely (small 𝜌), the second term on531

the right-hand side of Eq. 16 is small, and 𝐴𝑢 will decay to zero, implying that the CANN cannot532

sustain a bump activity. By setting 𝑑𝐴𝑢∕𝑑𝑡 = 0, we obtain:533

𝐴𝑢 =
𝜌𝐽0 ±

√

𝜌2𝐽 2
0 − 8

√

2𝜋2𝑘𝜌𝑎

4
√

𝜋𝑘𝜌𝑎
, (18)

𝐴𝑟 =

√

2
𝜌𝐽0

𝐴𝑢. (19)
It is straightforward to check that only when 𝑘 < 𝑘𝑐 = 𝜌𝐽 2

0 ∕8
√

2𝜋𝑎, 𝐴𝑢 have two real solutions534

(indicated by the ± sign in Eq. 18), i.e.„ the dynamic system (Eqs. 16&17) has two fixed points. It535

can be checked that only 𝐴𝑢 =
(

𝜌𝐽0 +
√

𝜌2𝐽 2
0 − 8

√

2𝜋2𝑘𝜌𝑎
)

∕
(

4
√

𝜋𝑘𝜌𝑎
) is the stable solution.536

Analysis of intrinsic mobility of the bump state537

We derive the condition under which the bump of the CANNmoves spontaneously in the attractor538

space without relying on external inputs. As the adaptation strength increases, the bump activity539
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becomes unstable and has tendency to move away from its location spontaneously. Such intrinsic540

mobility of the CANN has been shown in previous studies (Bressloff, 2011;Wu et al., 2016;Mi et al.,541

2014). We set 𝛼 = 0 (no external input), and investigate the effect of adaptation strength 𝑚 on the542

bump dynamics. Our simulation result shows that during the spontaneous movement, 𝑉 (𝑥, 𝑡) can543

also be represented by a Gaussian-shaped bump, which is written as544

𝑉 (𝑥, 𝑡) = 𝐴𝑣 exp
{

−
[𝑥 − 𝑧(𝑡) + 𝑑(𝑡)]2

4𝑎2

}

, (20)
where 𝐴𝑟 denotes the amplitude of the adaptation bump, and 𝑑(𝑡) the displacement between the545

bump centers of𝑈 (𝑥, 𝑡) and 𝑉 (𝑥, 𝑡). This displacement originates from the slow dynamics of adapta-546

tion, which leads to that the adaptation bump always lags behind the neural activity bump. Similar547

to Methods. , we substitute the bump profiles Eqs. (14, 15, 20) into the network dynamics Eqs. (9,548

10, 13), and obtain:549

𝜏
[

𝐴𝑢
𝑥 − 𝑧
2𝑎2

𝑑𝑧
𝑑𝑡

+
𝑑𝐴𝑢

𝑑𝑡

]

 (𝑧, 2𝑎) = (−𝐴𝑢 +
𝜌𝐽0
√

2
𝐴𝑟) (𝑧, 2𝑎) − 𝐴𝑣 (𝑧 − 𝑑, 2𝑎),

𝐴𝑟 =
𝐴2

𝑢

1 + 𝑘𝜌
√

2𝜋𝑎𝐴2
𝑢

,

𝜏𝑣

[

𝐴𝑣
𝑥 − 𝑧 + 𝑑

2𝑎2
𝑑(𝑧 − 𝑑)

𝑑𝑡
+

𝑑𝐴𝑣

𝑑𝑡

]

 (𝑧 − 𝑑, 2𝑎) = −𝐴𝑣 (𝑧 − 𝑑, 2𝑎) + 𝑚𝐴𝑢 (𝑧, 2𝑎),

(21)

where (𝑧, 2𝑎) = exp
{

− [𝑥 − 𝑧]2 ∕4𝑎2
}.550

Previous works have shown that the dynamics of a CANN is dominated by very few motion551

modes (Fung et al., 2010, 2012). To solve the CANNdynamics, we can project the network dynamics552

onto those dominating modes and simplify the analyses significantly. Here, we consider the first553

two motion modes, corresponding to the changes of the bump height and position, respectively,554

which are given by,555

𝑢0(𝑥, 𝑡) = exp
{

−
[𝑥 − 𝑧(𝑡)]2

4𝑎2

}

, (22)
𝑢1(𝑥, 𝑡) = [𝑥 − 𝑧(𝑡)] exp

{

−
[𝑥 − 𝑧(𝑡)]2

4𝑎2

}

. (23)
By projecting the network dynamics onto these two motion modes, we obtain:556

(−𝐴𝑢 +
𝜌𝐽0
√

2
𝐴𝑟)

√

2𝜋𝑎 − 𝐴𝑣 exp(−
𝑑2

8𝑎2
)
√

2𝜋𝑎 = 0, (24)
−𝐴𝑢 +

𝜌𝐽0
√

2
𝐴𝑟 − 𝐴𝑣 exp(−

𝑑2

8𝑎2
) = 0, (25)

𝜏𝐴𝑢𝑣𝑖𝑛𝑡 = 𝑑𝐴𝑣 exp(−
𝑑2

8𝑎2
), (26)

𝑑
4𝑎2

𝜏𝑣𝐴𝑣 exp(−
𝑑2

8𝑎2
)𝑣𝑖𝑛𝑡 = −𝐴𝑣 exp(−

𝑑2

8𝑎2
) + 𝑚𝐴𝑢, (27)

𝜏𝑣(1 −
𝑑2

4𝑎2
)𝑣𝑖𝑛𝑡 = 𝑑. (28)

Eqs. 24-28 describes the relationships between bump features𝐴𝑢, 𝐴𝑟, 𝐴𝑣, 𝑣𝑖𝑛𝑡 and 𝑑. By solving these557
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equations, we obtain,558

𝐴𝑢 =
𝜌𝐽0 +

√

𝜌2𝐽 2
0 − 8

√

2𝜋𝑘𝜌𝑎(1 +
√

𝑚𝜏
𝜏𝑣
)2

4
√

𝜋𝑘𝜌𝑎(1 +
√

𝑚𝜏
𝜏𝑣
)

, (29)

𝐴𝑣 =
𝜌𝐽0 +

√

𝜌2𝐽 2
0 − 8

√

2𝜋𝑘𝜌𝑎(1 +
√

𝑚𝜏
𝜏𝑣
)2

2
√

2𝜋𝑘𝜌2𝑎𝐽0
, (30)

𝐴𝑟 =
√

𝑚𝜏
𝜏𝑣

exp

⎡

⎢

⎢

⎢

⎣

1 −
√

𝜏
𝑚𝜏𝑣

2

⎤

⎥

⎥

⎥

⎦

𝜌𝐽0 +
√

𝜌2𝐽 2
0 − 8

√

2𝜋𝑘𝜌𝑎(1 +
√

𝑚𝜏
𝜏𝑣
)2

4
√

𝜋𝑘𝜌𝑎(1 +
√

𝑚𝜏
𝜏𝑣
)

, (31)

𝑑 = 2𝑎

√

1 −
√

𝜏
𝑚𝜏𝑣

, (32)

𝑣𝑖𝑛𝑡 = 2𝑎
𝜏𝑣

√

𝑚𝜏𝑣
𝜏

−
√

𝑚𝜏𝑣
𝜏

. (33)
Eqs. 29-31 describe the amplitudes of the bumps of synaptic input, firing rate, and adaptation in559

the CANN, respectively, and Eq. 32 describes the displacement between the neural activity and560

adaptation bumps. From Eq. 33, we see that for the bump to travel spontaneously, it requires561

𝑚 > 𝜏∕𝜏𝑣, i.e., the adaptation strength is larger than a threshold given by the ratio between two562

time constants 𝜏 and 𝜏𝑣. As the adaptation strength increases (larger 𝑚), the travelling speed of the563

bump increases (larger 𝑣𝑖𝑛𝑡).564

Analysis of the oscillatory tracking behaviour of the bump state565

When both the external input and the adaptation are applied to the CANN, the bump activity can566

oscillate around the external input if the strengths of the external input and the adaptation are567

appropriated. The simulation shows that during the oscillatory tracking, the bump shape is roughly568

unchanged, and the oscillation of the bump center can be approximated as a sinusoidal wave569

expressed as:570

𝑧(𝑡) = 𝑐0 sin(𝜔𝑡) + 𝑑0 + 𝑣𝑒𝑥𝑡𝑡, (34)
where 𝑐0 and 𝜔 denote, respectively, the oscillation amplitude and frequency, and 𝑑0 denotes a571

constant offset between the oscillation center and the external input.572

Similar to the analysis in Methods. , we substitute the expression of 𝑧(𝑡) (Eq. 34) into Eqs. (14,573

15, 20), and then simplify the network dynamics by applying the projection method (see SI.3 for574

more detailed derivation). We obtain,575

(𝑚 + 1)𝐴𝑢 −
𝜌𝐽0
√

2

𝐴2
𝑢

1 +
√

2𝜋𝑎𝑘𝜌𝐴2
𝑢

− 𝛼 = 0, (35)
𝜔2 = 𝛼

𝜏𝜏𝑣𝐴𝑢
, (36)

𝑚𝐴𝑢 exp(−
𝑑2

8𝑎2
) = 𝐴𝑣, (37)

𝑑0 = 𝜏𝑣𝑣, (38)
√

2(𝜏𝐴𝑢 + 𝛼𝜏𝑣)
𝛼𝜏𝑣

[

4𝑎2(ln
𝜏𝑣𝑚𝐴𝑢

𝜏𝐴𝑢 + 𝛼𝜏𝑣
) − 𝜏2𝑣𝑣2

]

= 𝑐0, (39)
Eqs. 35-39 describe the relationships among 6 oscillation features 𝐴𝑢, 𝐴𝑟, 𝐴𝑣, 𝑐0, 𝑑0 and 𝜔. By solving576
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these equations, we obtain:577

𝐴𝑢 =
𝐽0 + 2

√

𝜋𝑎𝑘𝛼

2
√

𝜋𝑎𝑘(1 + 𝑚)
, (40)

𝐴𝑟 =
𝐴2

𝑢

1 +
√

2𝜋𝑎𝑘𝜌𝐴2
𝑢

, (41)

𝐴𝑣 =

√

(

𝜏𝐴𝑢 + 𝛼𝜏𝑣
𝜏𝑣

)

𝑚𝐴𝑢, (42)

𝑐0 = 𝐴𝑣

√

2
𝛼𝑚𝐴𝑢

[

8𝑎2 ln
𝑚𝐴𝑢

𝐴𝑣
− 𝜏2𝑣𝑣2

]

, (43)
𝑑0 = 𝜏𝑣𝑣, (44)
𝜔 =

√

𝛼
𝜏𝜏𝑣𝐴𝑢

. (45)
It can be seen from Eq. 43 that for the bump activity to oscillate around the external input (i.e.,578

the oscillation amplitude 𝑐0 > 0), it requires that 8𝑎2 ln (𝑚𝐴𝑢∕𝐴𝑣) − 𝜏2𝑣𝑣
2 > 0. This condition gives the579

boundary (on the parameter values of the input strength 𝛼 and the adaptation strength 𝑚) that580

separate two tracking states, i.e., smooth tracking and oscillatory tracking (see Fig. 2g and Fig.S1581

for the comparison between the simulation results and theoretical results).582

Note that to get the results in Eqs. 35-39, we have assumed that the amplitudes of neural activity583

bumps and the adaptation bump remain unchanged during the oscillation (i.e., 𝐴𝑢, 𝐴𝑣, 𝐴𝑟 are con-584

stants). However, this assumption is not satisfied when the SFA strength 𝑚 is large (see Sec. and585

Fig. 4). In such a case, we carry out simulation to analyze the network dynamics.586

Implementation details of the linear track environment587

For the linear track environment, we simulate an 1D CANN with 512 place cells topographically588

organized on the one-dimensional neuronal track. Since we are interested in how the neuronal589

firing phase shifts as the animal moves through the firing field of a place cell, we investigate the590

place cell at location 𝑥 = 0 and ignore the boundary effect, that is, we treat the linear track with the591

infinite length. The neural firing time constant is set to be 3 ms, while the time constant of spike592

frequency adaptation is much longer, which is set to be 144 ms. The density of place cells on the593

linear track is set to be 256∕𝜋. The excitatory interaction range of place cells is set to be 0.4𝑚, while594

the maximum excitatory connection strength 𝐽0 is set to be 0.2. The gain factor is set to be 5. The595

global inhibition strength 𝑘 is set to be 5. The moving speed of the virtual animal 𝑣𝑒𝑥𝑡 is set to be 1.5596

m/s. For the simulation details, we use the first-order Euler method with the time step 𝛿𝑡 set to be597

0.3 the duration of simulation 𝑇 set to be 10 s. These parameters are commonly used in all plots598

related to the linear track environment (see Table.1 for a summary).599

For the two key parameters, i.e., the external input strength 𝛼 and the adaptation strength𝑚, we600

vary their values in different plots. Specifically, for illustrating the smooth tracking state in Fig. 2c,601

we set 𝛼 = 0.19 and 𝑚 = 0. For illustrating the travelling wave state (intrinsic mobility of the bump602

state) in Fig. 2d, we set 𝛼 = 0 and 𝑚 = 0.31. For plotting the relationship between the intrinsic speed603

𝑣𝑖𝑛𝑡 and the adaptation strength 𝑚 shown in Fig. 2e, we keep 𝛼 = 0, but vary 𝑚 in the range between604

0 and 0.1with a step of 0.05. For plotting the overall phase diagram including all threemoving states605

as shown in Fig. 2g, we vary 𝛼 in the range between 0.05 and 0.16 with a step of 0.001, and 𝑚 in the606

range between 0.9 and 1.8with a step of 0.01. To generate bimodal cell firing patterns in Fig. 3a and607

Fig. 4a,e&g, we choose 𝛼 = 0.19 and 𝑚 = 3.02. To generate unimodal firing patterns in Fig. 4b,f&h,608

we choose 𝛼 = 0.19 but a relatively larger adaptation strength with 𝑚 = 3.125. The values of these609

two parameters in different plots are summarized in Table. 2.610
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Table 1. Commonly used parameter values in the simulation of the linear track environment.
Parameters ValuesNumber of place cells: 𝑁 512Time constant of neural firing: 𝜏 3msTime constant of spike frequency adaptation: 𝜏𝑣 144msNeuron density: 𝜌 256∕𝜋Recurrent connection range (Gaussian width): 𝑎 0.4 mRecurrent connection strength: 𝐽0 0.2Gain factor: 𝑔 5Global inhibition strength: 𝑘 5Moving speed of the external input: 𝑣𝑒𝑥𝑡 (m/s) 1.5

Time interval: 𝛿𝑡 0.3 sSimulation duration: 𝑇 10 s
Table 2. Figure specific parameter values for input strength 𝛼 and adaptation strength 𝑚.

Figures/parameters 𝛼 𝑚An example of smooth tracking (Fig. 2c) 0.19 0An example of traveling wave (Fig. 2d) 0 0.31Intrinsic speed vs. adaptation strength (Fig. 2e) 0 0:0.05:0.1Phase diagram (Fig. 2g) 0.05:0.001:0.16 0.9:0.01:1.8Oscillatory tracking (bimodal) (Fig. 4a,e,g) 0.19 3.02Oscillatory tracking (unimodal) (Fig. 4b,f,h) 0.19 3.125

Implementation details of the T-maze environment611

Parameter configurations during simulation612

To simulate the T-maze environment, we consider a CANN in which place cells are topographically613

organized in a T-shaped area which consists of a vertical central arm and two horizontal left and614

right arms (Fig. 5a). The width of the central arm is set to be 0.84m and the length is set to be 3.14615

m. The widths of the two horizontal arms are also set to be 0.84m, while the lengths of both arms616

are set to be 2.36m. The connection strength between two neurons is determined by the distance617

between them, which is written as:618

𝐽 (𝑥, 𝑥′; 𝑦, 𝑦′) =
𝐽0

2𝜋𝑎2
exp

[

−
(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2

2𝑎2

]

. (46)
Here (𝑥, 𝑦) and (𝑥′, 𝑦′) represent the coordinates of two neurons in the T-maze environment, 𝑎 is the619

recurrent connection range which is set to be 0.3, and 𝐽0 controls the connection strength which is620

set to be 0.0125. Since we are interested in investigating theta sweeps when the animal is running621

on the central arm towards the junction point, the external input is restricted on the central arm622

which is modelled by a Gaussian-like moving bump written as:623

𝐼 𝑒𝑥𝑡(𝑥, 𝑦) = 𝛼 exp
[

−
(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2

2𝑎2

]

, (47)
where 𝑥0 = 0 and 𝑦0 = 𝑣𝑒𝑥𝑡𝑡 represent the center location of the external input with a moving speed624

𝑣𝑒𝑥𝑡 = 1.5m/s. In the simulation, we used the first-order Euler method with the time step 𝛿𝑡 = 0.3 s625

and the duration of simulation 𝑇 = 4.2𝑠. The parameters used are summarized in Table.3.626

Calculating auto-correlogram and cross-correlogram627

To show the “cycle skipping" effect of a single place cell in the T-maze environment, we calculate628

the auto-correlogram of the firing rate trace of a place cell whose firing field encodes a location on629

the left arm (the upper panel in Fig. 5d). Assume the firing trace of the place cell is 𝑓 (𝑡) (showed in630

left panel in Fig. 5c), the auto-correlogram is calculated as:631
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Table 3. Parameters values in the simulation of the T-maze environment
Parameters ValuesNumber of cells central/left/right: 𝑁1, 𝑁2, 𝑁3 3000/1500/1500Time constant of neural firing: 𝜏 3 msTime constant of spike frequency adaptation: 𝜏𝑣 144 msNeuron density: 𝜌 (128∕𝜋)2Recurrent connection range (Gaussian width): 𝑎 0.3Recurrent connection strength: 𝐽0 1.25 ∗ 10−2Gain factor: 𝑔 20Global inhibition strength: 𝑘 1.25Moving speed of the external input: 𝑣𝑒𝑥𝑡 (m/s) 1.5Input strength: 𝛼 2Adaptation strength: 𝑚 3.96

Time interval: 𝛿𝑡 0.3 sSimulation duration: 𝑇 3.3 s

(𝑓 ∗ 𝑓 )(𝜏)
Δ
= ∫

∞

−∞
𝑓 (𝑡)𝑓 (𝑡 + 𝜏)𝑑𝑡, (48)

where 𝜏 represents the time offset.632

To show the “alternative cycling" effect of a pair of place cells with each of them encoding a633

location on each of the two outward arms, we calculate the cross-correlogram between their firing634

traces (the lower panel in Fig. 5d). It measures the similarity of the two firing traces as a function635

of the temporal offset of one relative to the other. Assume the firing traces of the two place cells636

are 𝑓 (𝑡) and 𝑔(𝑡), respectively, the cross-correlogram is calculated as:637

(𝑓 ∗ 𝑔)(𝜏)
Δ
= ∫

∞

−∞
𝑓 (𝑡)𝑔(𝑡 + 𝜏)𝑑𝑡, (49)

where 𝜏 represents the time offset.638

Details of generating the probability heatmap of theta phase shift639

In Fig. 4g&h we described the smoothed probability heatmaps of theta phase versus normalized640

position in the place field of both bimodal and unimodal cells. Generally, these two plots are simi-641

lar to the traditional spike plot of phase and position traveled in the place field (O’Keefe and Recce,642

1993; Skaggs et al., 1996). However, in our rate-basedmodel, the phase of neuronal spike is not di-643

rectlymodelled, rather we use the phase of firing rate peak to represent the phase shift in neuronal644

firing. Here we describe the implementation details of generating the heatmaps.645

The x-axis denotes the normalized position in the place field, with -1 representing the position646

where the animal just enters the place field, and 1 representing the position where the animal just647

leaves the place field. In our simulation, the firing field of a place cell with preferred location at648

𝑥0 is defined as 𝑥 ∈ (𝑥0 − 2.5 ∗ 𝑎, 𝑥0 + 2.5𝑎), with 𝑎 roughly the half size of the firing field. Consider649

the animal is at 𝑥𝑡 at time 𝑡 (note that 𝑥𝑡 = 𝑣𝑒𝑥𝑡𝑡), then its normalized position �̃�𝑡 is calculated as650

�̃�𝑡 = (𝑥𝑡 − 𝑥0)∕(5𝑎). The y-axis represents the phase of neuronal activity, which is in the range of651

(0◦, 720◦). To calculate the phase at every time step, we divide the duration of the animal traversing652

the linear track into multiple theta cycles according to the bump’s oscillation. We can calculate the653

phase by 𝜃𝑡 = (𝑡− 𝑡0)∕𝑇 , with 𝑡0 referring to the beginning of the present theta cycle and T referring654

to the theta period. Denote the firing rate of the 𝑖-th neuron at time t as 𝑟𝑖(�̃�𝑡, 𝜃𝑡), the probability655

heatmap is calculated by,656

𝑝(�̃�, 𝜃𝑡) = 𝐶
𝑁𝑐
∑

𝑖=1
𝜃𝑡𝑟𝑖(�̃�, 𝜃𝑡), (50)

where 𝐶 = 1∕
∑

𝑡
∑𝑁𝑐

𝑖=1 𝜃𝑡𝑟𝑖(�̃�, 𝜃𝑡) is the normalization factor.657
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Spike generation from the firing rate658

To understand phase shift based on spiking time rather than the peak firing rate, we convert the659

firing rate into spike trains according to the Poisson statistics (note that our analysis is rate-based,660

but converting to spike-based does not change the underlying mechanism). For the 𝑖th place cell661

which encodes position 𝑥𝑖 on the linear track, the number of spikes 𝑛𝑖 it generates within a time662

interval Δ𝑡 satisfies a Poisson distribution, which is expressed as,663

𝑃 (𝑛𝑖|𝑧) =

[

𝑓𝑖(𝑧)Δ𝑡
]𝑛𝑖

𝑛𝑖!
𝑒−𝑓𝑖(𝑧)Δ𝑡, (51)

where 𝑧 is the animal’s location, and 𝑓𝑖(𝑧) is the tuning function of cell 𝑖, which is given by664

𝑓𝑖(𝑧) = 𝐴𝑟 exp
[

−
(𝑥𝑖 − 𝑧)2

2𝑎2

]

, (52)
where 𝐴𝑟 denotes the amplitude of the neural activity bump and 𝑎 the range of recurrent interac-665

tion.666
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