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Abstract

Modern research efforts concerned with animal behavior rely heavily on image and video analysis.
While such data are now quick to obtain, extracting and analyzing complex behaviors under nat-
uralistic conditions is still a major challenge, specifically when the behavior of interest is sporadic
and rare. In this study, we present an end-to-end system for capturing, detecting and analyzing
larval fish feeding behavior in unconstrained naturalistic environments. We first constructed a spe-
cialized system for imaging these tiny, fast-moving creatures and deployed it in large aquaculture
rearing pools. We then designed an analysis pipeline using several action classification backbones,
and compare their performance. A natural feature of the data was the extremely low prevalence of
feeding events, leading to low sample sizes and highly imbalanced datasets despite extensive anno-
tation efforts. Nevertheless, our pipeline successfully detected and classified the sparsely-occurring
feeding behavior of fish larvae in a curated experimental setting from videos featuring multiple
animals. We introduce three new annotated datasets of underwater videography, in a curated and
an uncurated setting. As challenges related to data imbalance and expert’s annotation are com-
mon to the analysis of animal behavior under naturalistic conditions, we believe our findings can
contribute to the growing field of computer vision for the study and understanding of animal behavior.
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1 Introduction

Modern zoological research relies heavily on image
and video acquisition to extract quantitative data
on animals in the laboratory or in their natural
environment. While video and image data are rela-
tively quick to obtain, analysis capabilities remain
a major bottleneck in extracting insights from the

raw data [1–3]. This bottleneck is especially severe
when the events of interest are sporadic, and are
unpredictable in time and space. This is particu-
larly true when sampling freely-behaving animals
under naturalistic conditions. In this case, given
a raw stream of data, such as a video, the behav-
ioral events of interest make up only a very small
portion of the data.
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2 Analysis of Larval Fish Feeding Behavior under Naturalistic Conditions

The scarce and highly variable data give rise to
two challenges: first, it diminishes the statistical
power for testing the biological question; second,
it hinders the generation of large datasets that
are required for the training and application of
modern computer vision techniques based on Deep
Learning [4].

Although many machine vision applications
have been developed in recent years to track and
monitor animals in a laboratory setting [reviewed
by 5], completing this task in an unconfined, nat-
uralistic environment with unknown number of
animals is still an ongoing effort, especially in the
aquatic realm. Specifically, many difficulties arise
from the unpredictable nature of the animals and
their environment. For example, how to image a
large space; how to deal with visual challenges
such as occlusions, animals going in-and-out of
focus, and changing lighting conditions?

In this study, we introduce a novel system for
imaging the feeding behavior of fish larvae under
naturalistic conditions, and test it in a curated
setting (see Fig. 1). The ultimate purpose of the
system is to reduce the knowledge gap regarding
the causes of the high mortality rates of lar-
val fish reared in aquaculture, and to provide a
tool for monitoring the well-being of larvae in
these facilities. To attain this goal, we constructed
an underwater camera system able to capture
videos under naturalistic aquatic conditions. Two
of the prominent features of this environment are
(a) highly variable lighting, and (b) individuals
that move in complex 3-dimensional tracks, often
occluding one another or moving in and out of
focus. To analyze these data, we utilize a detection
and action classification approach. We localize
rare behaviors such as feeding strikes (”strike”),
as well as common behaviors (”swim”), in videos
featuring multiple naturally-behaving animals.

Using the data obtained from our system, we
publish three new datasets of fish larvae behavior;
in curated and uncurated settings. A single uncu-
rated dataset consists in over 29 million frames,
across 37 different video sequences; with all feed-
ing strikes in each sequence manually annotated
(Fig. 1a). In the curated setting, we present two
datasets consisting in cropped clips: a balanced
dataset with the most visually coherent ”strike”
samples from all our videos, i.e., minimal occlu-
sions and reduced blurriness; and a balanced class
structure for both ”swim” and ”strike” behaviors

(Fig. 1b). In addition, we present a more challeng-
ing naturalistic dataset, with over 4,500 cropped
clips, posing challenges both in terms of imag-
ing conditions (occlusions, high degree of blur,
multiple individuals) and in terms of a highly
unbalanced class structure, where the class of
interest is rare (Fig. 1c). All three datasets were
acquired using two camera setups, several different
illumination settings, and several different filming
arenas (i.e., fish rearing tanks).

We discuss the various challenges of our work
in the following sections. We address the chal-
lenges of deploying an underwater camera system
in section 3.2, and the labeling efforts required
to collect and annotate a large corpus of fish
swim/strike behaviors in section 3.3. The design
of computer vision algorithms for the detection
and classification of fish actions is discussed in
sections 3.4 and 3.5, and their results are reported
in section 4. Finally, we compare the performance
of our two top models and discuss sources of error
and implication to the deployment of the system
in the field in section 4.3. These challenges are
common to the analysis of animal behaviour under
naturalistic conditions, and our findings and solu-
tions contribute to the growing field of computer
vision for animals.

2 Related work

In this section we acquaint the reader with some
of the relevant background. We start by address-
ing the biological problem in regard to larval fish
feeding (section 2.1); describe previous work and
the challenges of underwater photography (section
2.2); followed by a short review of previous work
in action recognition, pertaining mostly to the
field of human behavior (section 2.3). We then
specify several different approaches in modeling
animal behavior, with emphasis on the particular
challenges of imaging and analyzing fish behavior
(section 2.4).

2.1 Fish larvae feeding behavior

Most marine fish reproduce by releasing fertilized
eggs into the open ocean. The hatching larvae are
undeveloped compared to the adults, and meta-
morphose to obtain the adult morphology and
characteristics within a period of several weeks.
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Fig. 1: Overview of the study workflow. Starting from an aquaculture rearing pool on the left, our
specialized system yielded high-speed videos of larval fish behavior. We annotated 29 million frames across
37 videos, searching for larval feeding strikes. These comprised the uncurated dataset (a). We cropped
short clips around the most visually clear feeding events and, combining the with a similar number of
clips of swimming larvae, we created the balanced curated dataset (b). This dataset was used to train
our action classifier. To complete the pipeline, we trained a fish detection model, and combined the two
models in a curated setting to detect and classify events from raw videos. In the process, we created and
manually annotated the naturalistic curated dataset (c).

During this period, the larvae experience prodi-
gious mortality rates. In the ocean, more than
90% of the larvae will die within the first 30 days
post-hatching [6].

This mortality rate has been attributed to var-
ious mechanisms, including the inability to find
food, and death from predation or disease [7].
However, even in aquaculture rearing pools, where
conditions are supposedly ideal, the mortality rate
remains above 70% [8]. Previous imaging efforts
in the laboratory implicated larval inability to
successfully capture their prey as the major insti-
gator for hunger and starvation-induced mortality
[9, 10].

Critically, the feeding behavior of larval fish
has never been imaged outside the confines of the
laboratory. Such capacity would be key to under-
standing how larval feeding is influenced by a
complex array of environmental conditions. Our
inability to quantify this extremely rare behavior
outside the laboratory is partly due to the techni-
cal challenges involved in underwater videography
(see below), but also due to the highly sporadic
nature and rarity of feeding events initiated by the
larvae.

2.2 Underwater computational
photography

Underwater camera systems must deal with the
challenges presented by the surrounding medium

(i.e., water). The main technical challenge of
underwater imaging lies in the limited viewing dis-
tances of objects, stemming from the effects of
turbidity and light attenuation, which limit the
coverage of a habitat compared to filming in air
[11, 12]. On land, medium sized animals such as
birds can be viewed at distances of 100s of meters
[13] while even in the clear waters of coral reefs,
similar-sized fish can only be viewed from few 10s
of meters at best [14, 15]. Underwater images also
tend to flicker due to variations created by the
refraction of sunlight through the dynamic undu-
lating air-water surface, and a method to correct
this, in the case of stereo cameras, was proposed
by [16]. In addition, recovering scene geometry in
the case of light traveling through air and water is
a challenging task, and a relevant theory to resolve
this was posited by [17].

2.3 Action recognition

Action recognition has been developed, by and
large, with a focus on human behavior. Recog-
nizing actions or behaviors of subjects in video
data can be divided into detecting the action in
a spatio-temporal sequence, and classifying the
action. For action classification, there have been
several successful variations of 3D Convolutional
Networks (3D-ConvNets) in recent years - Two-
Stream [18], I3D [19], P3D [20], SlowFast [21].
Notably, the Two-Stream and the two-stream
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I3D models utilized optical flow as an additional
input stream into the network to capitalize on
fine-grained motion data.

SlowFast [21], also employs a two-stream archi-
tecture. However, rather than using pre-computed
optical flow, SlowFast varies the sampling rate of
the input video in each of the streams in order
to facilitate the learning of different features. The
two streams are homologous except for their chan-
nel depth and sampling rates. The Slow pathway
samples at a lower frequency but has a deeper
structure, aimed at capturing spatial features. The
Fast pathway samples more frames but has fewer
channels in every block, aimed at targeting motion
features.

In addition to action classification, SlowFast
also has an action detection module, which is
akin to Fast-R-CNN [22]. The module uses a pre-
trained human detector based on a Faster R-CNN
[23, 24], to generate region proposals and was
trained on 15-minute-long videos from the Atomic
Video Actions (AVA) dataset [25].

2.4 Animal behavior modeling

Fish are particularly challenging to model and
track. As they move in a 3D volume, their pro-
jected silhouette changes frequently. Additionally,
as fish tend to school, individuals often cross
trajectories and occlude one another [26]. Typ-
ically, a considerable amount of work is neces-
sary to generate even a modest dataset of fish
behaviors, even under controlled conditions. For
example, [26] created a dataset of 3D-zebrafish
tracking in a laboratory setup using a tracking-by-
detection methodology, comprising 8 sequences,
each between 15-120 seconds long.

A popular approach to the analysis of complex
behaviors from video sequences is that of mark-
erless pose estimation [e.g., 27, 28]. Using this
approach, rather than applying action/behavior
classification to the raw videos, the positions of
body parts are extracted using pose estimation,
and the analysis of behavior happens on a time-
series of marker locations. Pose estimation alone,
however, does not provide behavior classification,
and additional algorithms are required in order to
translate marker sequences into behaviors [5].

In general, using action classifiers to clas-
sify animal behaviors directly from video is not
common. Long et al., [29], studied nest-building

behavior in Cichlid fish in a laboratory setting
using a combination of classic vision methods
and a variant of 3D-ResNet action classifier [20].
They used Hidden Markov Models (HMMs) to
detect disturbances in artificially-colored sand as a
proxy for the location of behaving fish. While their
approach produced a large dataset of fish behav-
iors, the detection required a specific, manipulated
environment (i.e., artificially-colored sand) that is
difficult to reproduce outside of the laboratory. In
addition, the behavior of interest only occurred
along the 2-D bottom, bypassing challenges asso-
ciated with 3-D complex behaviors.

Only few attempts have been made to auto-
mate the analysis of fish behavior from videos
under naturalistic conditions. For example, [30]
used tracking-by-detection obtain the 3D trajec-
tories of free-swimming reef fish in situ using
relatively long video sequences. However, their
system was only semi-automatic as all their tra-
jectories were corrected by means of human in the
loop.

Shamur et al., [31], attempted to classify the
feeding behavior of fish larvae in a laboratory
using classic vision methods. In their work, lar-
vae were detected and classified using a pipeline of
edge detection, action descriptors extractions, and
SVM classifiers. Although they achieved reason-
able results (AuROC = 0.82, ACC = 72.7±2.1),
the analysis pipeline is not transferable to nat-
uralistic settings, such as ours. Their pipeline
requires manual tuning of thresholds for each new
video analyzed to adjust for changes in lighting
conditions and water clarity; the edge detection
function works poorly for out-of focus fish, which
are common in our data; Image quality in the labo-
ratory was superb compared to our in-situ filming
because in the laboratory the water are cleaner
and most of the optical path is traversed through
air. For this reason, clips in the laboratory dataset
were cropped around the mouth of the fish, not
visualizing the whole body, unlike our dataset. In
addition, to avoid occlusions and maintain fish in
the focal field, the larvae were placed in a narrow
arena (∼ 5mm), essentially creating a 2D scene.
As a by-product, this confined space potentially
limited the natural behavioral repertoire of the
fish. For all these reasons, we do not assess our
models on this dataset, nor run the old pipeline
on our new data.
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Fig. 2: The camera system and data acquisition
pipeline. a) the camera system in a fish larvae
rearing pool at the ARDAG hatchery, Eilat; b)
a schematic depiction of the submerged camera
setup, including a representation of the focal vol-
ume, where fish appear sharpest; note that this
volume is a mere 0.002 % of the pool c) an exam-
ple of a full video frame acquired using the system.
Larvae appear in various levels of sharpness within
the frame, see Fig. S1 in Supplementary Infor-
mation (SI) for more examples; d) an example of
a ”swim” sequence from the naturalistic dataset;
the uneven lighting and multiple fish are typical of
this dataset, see clip (Online Resource 1); and e)
a representative sequence of a ”strike” event from
the balanced dataset, note the typical S-shape
assumed by the fish and the even lighting typical
of balanced dataset, see clip (Online Resource 2).
Panels (a,b) pertain to the first camera setup.

3 Methods

In this section, we present the development a
unique analysis pipeline for the detection of lar-
val fish behavior in aquaculture rearing pools,
from the initial infrastructure to the deep learning
models.

We first briefly describe the study system and
discuss the particular challenges and the novelty
of building an imaging system to visualize such
tiny, fast-moving creatures underwater (sections
3.1 and 3.2). We then discuss the intensive effort
of collecting and annotating the data produced by
this system into one uncurated and two curated
datasets (section 3.3). Next, we discuss the main
powerhouse of our analysis pipeline; the clas-
sification module and its training, the specific
challenges of training on very low sample sizes,

and how we chose to tackle them (section 3.4).
Finally, we explain how we combined our classifier
with a fish detector to create an analysis pipeline
and tested it in a curated fashion (section 3.5).

3.1 Study system

The feeding behavior of larval sea-bream was
recorded over the course of 17 months in several
rearing tanks located in a commercial aquacul-
ture facility (ARDAG hatchery, Eilat, Israel). We
deployed a submerged camera system in the tanks
to record the feeding in freely-behaving larval fish,
from age 7 DPH (days post hatch) to 32 DPH.
In this facility, larvae are reared in large circular
tanks (4 m in diameter and ∼1.5 m deep, Fig. 2a)
under controlled temperature and oxygen condi-
tions. Cohorts of ∼ 106 eggs are introduced into
each tank, where they hatch and are grown until
they metamorphose to adult-like morphology at
∼35 DPH. Larvae are fed twice a day with var-
ious food types (Rotifers, Artemia, and pellets)
according to their age and size.

Larval fish (like most of the adults) capture
their prey using suction feeding. In this feed-
ing mode, the fish abruptly open the mouth and
expand the buccal cavity to generate an inflow of
water into the mouth that carries the prey in with
it. Suction-feeding is an extremely rapid behavior,
with events typically taking less than 40 millisec-
onds from the start of mouth opening to mouth
closing. Larval fish are minuscule, hatching at a
body length of ∼3 mm, and growing to ∼10 mm
at 30 DPH. Correspondingly, both their mouth
and prey diameter measure ca. 0.1-1 mm. The
size of the animals, their speed, and erratic 3D
motion therefore necessitated the development of
a specialized filming system.

3.2 Camera setup

To record the dynamics of the abrupt feeding
events by the tiny larvae at an appropriate res-
olution, we needed to use a high-speed camera
equipped with an ultra-zoom lens. We chose to use
a submerged setup both because previous work
has shown that feeding events are best character-
ized from a side view [10, 31, 32], and because the
opaque walls and floor of the tank did not allow
imaging from outside it or from above.
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Filming was done using a high-speed
monochrome camera (Optronis CP70-2-M/C-
1000) connected to a computer and able to record
relatively long videos (20-30 min) at a high frame
rate of 750 frames per seconds (fps) and a res-
olution of 1920 × 1080 pixels. The camera was
enclosed in an underwater housing and connected
through four 30m long camera-link cables to a
nearby computer (Fig. 2 a,b). The camera was
equipped with a Navitar 6000 ultra-zoom lens
providing 2:1 magnification (i.e., 2 mm in the
real world are mapped on 1 mm of the camera’s
sensor) with a large depth-of-field of 50 mm.

Overall, the setup enabled visualizing events
within a volume of 40 × 60 × 50 mm (H ×
W × D). The fast frame rate of the camera,
water turbidity, and the lens’s limited aperture
(f=8) required strong illumination, which was pro-
vided by a battery-operated SCUBA flashlight
(Scubatec US15 LED 10 Watt). The flashlight
was equipped with a diffuser and was positioned
directly in front of the camera, providing backlight
illumination. Light intensity was approximately
equivalent to that of sunlight at 5m depth in clear
coastal water [33]. The system was submerged to
∼0.2-0.3 m depth, and was removed from the tank
after each deployment. The flashlight was rigged
to the setup with a flexible detachable arm. As a
result, the position of the flashlight varied between
deployments; creating variable lighting conditions
even between videos taken in the same tank on
consecutive days using the same setup.

Two distinct camera setups were tested. The
change in setup stemmed from an attempt to
improve the sharpness of the videos. Initially, the
camera was placed in a snug housing, leaving ∼0.6
m of water between the lens and the focal plane.
Because the water in the rearing tanks is tur-
bid, the resulting images were relatively blurry.
We attempted to improve the setup by placing
the camera in a longer housing, such that most
of optical path was through air (inside the hous-
ing), rather than through water. This resulted in
much sharper images with larger areas appearing
in focus, but the edges of the housing were also
sometimes included in the frame. It is important
to note that even though both setups had their
shortcomings, feeding events were still detectable
by our analysts and the videos were successfully
annotated.

Unlike the previously published dataset [31],
which was acquired in the laboratory under con-
stant conditions, videos in our dataset vary along
many different axes. In addition to the visual dif-
ferences caused by the two camera setups, videos
varied considerably within each setup. This is
because our filming documented the variable con-
ditions within the rearing tank, as determined by
the hatchery’s rearing protocols. Specifically, the
age of the larvae, the number of larvae in the tank,
the type and amount of food, water turbidity, illu-
mination, O2, currents and turbulence, all varied
between filming days; affecting both larval behav-
ior (e.g. feeding rate) and the visual appearance
of the videos (see Fig. S1 in S.I.).

3.3 Data curation

Overall, we obtained and annotated over 29 mil-
lion frames across 37 videos, taken in different
rearing pools over the course of 17 months. To
manually annotate the (sparse) feeding events, a
trained observer watched the video at 15 FPS
and noted the time and coordinates of all feeding-
related events. Often, the observer had to re-play
the video to ascertain an observation. We estimate
that annotating our datasets took a minimum of
540 work hours. This is an underestimation as we
are not allowing for data entry or possible re-plays.

Feeding events, or ”strikes”, were defined as
events that started with the larva assuming an
S-shape position, followed by a rapid forward
lunge and opening of the mouth (Fig. 2e). These
events are visually distinct and represent high-
effort prey-acquisition attempts that are likely to
be successful [10]. Note that this definition is dif-
ferent than the one used by [31], there filming
conditions allowed for a high resolution visualiza-
tion of the fish’s mouth, which was not possible
under the conditions of the rearing pools.

3.3.1 Uncurated dataset

Our uncurated dataset is the set of all raw videos
collected, 29 million frames in 37 videos. The
annotation provided is the temporal and spatial
coordinates of all feeding strikes, after an exhaus-
tive annotation effort which yielded a total of
90 events. Of the videos, 21 were from the first
setup (8, 436, 822 frames) and 16 from the second
setup (20, 805, 438 frames). Each video comprised
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a monochrome sequence, with mean length of
790,331 frames.

3.3.2 Balanced Curated dataset

From the uncurated corpus we create a balanced
on which we trained our classifier.

All 90 ”strike” events were manually inspected
to exclude samples in which the fish appeared
severely blurred, occluded, or in low-contrast (thus
removing n = 24 events). For each of the remain-
ing 66 visually coherent strikes, we extracted a
spatially cropped square clip around the larva of
interest. Unlike [31] who cropped clips centered
around the larva’s mouth, our clips contained
the entire body of the larva. This allowed us to
incorporate pre-strike behaviors such as aiming
at prey, which involve the whole body. We also
temporally cropped each clip, starting 10 frames
before the mouth opened and ending 5 frames
after the mouth closed. These cropping proce-
dures resulted in a distribution of clip lengths
and sizes (average±Sd duration= 45±18 frames;
average±Sd height= 385±93 pixels).

For the ”swim” events, we used a method-
ology based on Canny edge detection [34] to
automatically detect potential larvae within a
frame. Around each of these detections, we created
cropped square clips, each 200 frames in length.
Research assistants filtered out clips without lar-
vae and spatially cropped each video as tightly
as possible around the larvae. To avoid biasing
the dataset due to the difference in clip duration
between the ”swim” and ”strike” event classes, we
further temporally cropped ”swim” clips at ran-
dom, in order to match the distribution of clip
duration in the ”strike” class.

From the available ”swim” clips we selected 71
clips to obtain a balanced dataset design between
the two action classes. Although it is a common
practice to train the classifier on an event distri-
bution similar to the one expected to be found in
production (i.e., in the natural environment), our
preliminary attempts to train a classifier on an
unbalanced dataset produced poor results. This
was probably due to the small size of the positive
class, which we could not increase.

Our balanced dataset therefore comprised 66
clips featuring ”strike” events, and 71 ”swim”
events that were further partitioned to train, val-
idation, and test datasets. We ensured that clips

cropped from the same raw video were grouped in
the same partition in order to avoid data leakage.
Additionally, to avoid creating spurious features
related to differences in filming setup between
videos, we selected a similar proportion of clips
from each filming setup in each of the two classes.
The training dataset comprised 41 ”swim” and
39 ”strike” clips; the validation set comprised 11
”swim” and 11 ”strike” clips; and the testing set
comprised 19 ”swim” and 16 ”strike” clips.

3.4 Classification module

Our pipeline consists in two models, trained sepa-
rately: an action classifier and a fish detector. The
action classifier was trained on the curated bal-
anced dataset (section 3.3.2), and its performance
was further evaluated on the naturalistic curated
dataset, created using the detector. The following
section describes the classification module.

3.4.1 Model

We compared the performance of several popular
backbones for the action classification of ”strike”
and ”swim” events: an I3D network [19]; a two-
stream SlowFast Network [21] with a 3D-ResNet-
50 [35] backbone; and just the Slow pathway of
the SlowFast network.

In the SlowFast model, the rate at which each
pathway samples frames from the input clip is a
user-specified hyperparameter. We chose to follow
one of the settings suggested in the original paper
[21], with the Slow pathway sampling eight frames
uniformly throughout the clip, and the Fast path-
way sampling 32 frames throughout the clip. To
ensure that this sampling provided good coverage
of the feeding strikes, the sampled clips were man-
ually inspected. The ratio between the channels
in each pathway, specified by the β parame-
ter, was set to β = 1/8, as we used pre-trained
weights (see below). Specifications of the rest of
the training hyperparameters are provided in the
Supplementary Information (SI, section S2.1).

3.4.2 Training under a low data regime

Our chief challenge with training this module
was the limited size of the balanced curated
dataset, which contained fewer than 100 sam-
ples per class. We tackled this data scarcity using
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Fig. 3: A diagram of the analysis pipeline and the generation of the naturalistic curated dataset. The flow
depicted in this diagram, starting in the upper left corner, shows how we applied our analysis pipeline
to frames sampled from long videos sequences, and generated clips of behaving fish to feed to the action
classifiers. Using this scheme we created a naturalistic dataset of n = 4,563 clips which was further
manually annotated.

three complementary approaches: Transfer Learn-
ing [36]; intensive data augmentations tailored for
our dataset; and variance image calculation.

Rather than training our models from scratch,
we used Transfer Learning to fine-tune existing
model weights. All three backbones we compared
(I3D, Slow and SlowFast) were pre-trained on the
Kinetics-400 dataset [19] - a dataset of 400 human
action classes, with over 400 clips per class.

To asses the contribution of pre-training to
model performance, we trained a SlowFast net-
work from scratch on our dataset. We also tested
whether using a model pre-trained on a differ-
ent dataset might improve performance. For this,
we use a SlowFast network pre-trained on the
Something-SomethingV2 dataset (SSv2) [37]. We
were inspired by works such as [27] which showed
that pre-training on human pose data is benefi-
cial when learning animal pose, in spite of the
difference in domains. We chose the SSv2 dataset
because recent work suggested it encourages the
learning of more dynamic, temporal-related fea-
tures [38]. In all experiments, we used the publicly
available models and weights in the PyTorchVideo
repository [39, 40]. We fine-tune all models for 50
epochs, full details are provided in section S2 in
the SI.

Our dataset, though small, showed a diversity
of visual conditions; mainly differences in lighting

intensity and degree of blurriness of the fish (see
Fig. S1 in SI). To encourage model generalization
over these conditions and to enhance the number
of samples in our dataset, we randomly applied
augmentation to the intensity values of clips, vary-
ing the degree of brightness, and augmented the
sharpness of clips by randomly applying Gaussian
blur to samples during training.

We integrated our knowledge of the biology
and behavior of the fish to generate an additional
channel of information in our clips. We exploited
the fact that ”strike” behavior is characterized
by abrupt movements, while ”swim” behavior is
typically a smooth undulatory movement. These
differences are expected to affect the rate at which
pixels change their intensity values throughout the
clip, with ”strike” pixels showing areas of higher
variance.

Rather than calculating the optical flow for
each clip, which is computationally intensive, we
calculated the variance image of the entire clip
(see Fig. S2 in SI). The variance image was dupli-
cated along the temporal axis and stored as a third
channel, alongside two duplicate channels of the
clip’s monochrome sequence. We tested the con-
tribution of this manipulation with an ablation
study (section S2.4 in SI).

We note that given a larger dataset, we would
expect our classification module to learn such
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features independently, making this additional
channel superfluous. However, in light of our low
data regime, we considered that this manipulation
would inform the classifier and enhance learning.

3.5 Detection module and the entire
pipeline

Equipped with the classifier trained on the bal-
anced curated dataset, we moved towards a
pipeline for analysis of longer videos rather than
cropped clips. The pipeline comprised a detection
module, followed by the classifier, as discussed
next.

For the detection module we trained a Faster-
RCNN [23] object detector with a ResNet-50-FPN
backbone [24, 41] using the Detectron2 framework
[42]. This detector was pre-trained on ImageNet
[43] and fine-tuned on our detection dataset.
Information on dataset, training procedures, and
results are provided in SI (section S3).

After training our detector, we used it in con-
junction with our behavior classifier (section 3.4)
to create the behavior detection pipeline (Fig. 3)
and generate the naturalistic dataset. To test our
pipeline, we used 11 videos from the uncurated
dataset that featured the highest number of feed-
ing strikes according to the manual annotation.
Rather than going through the entire video, we
applied the pipeline on randomly sampled frames.
In addition, we strategically sampled frames in the
temporal coordinates of our manually annotated
feeding strikes. In total, we sampled 62 strike-
related frames and 949 frames at random. We
maintained a ratio of ∼1:15 between frames that
contained events of interest and those that did
not, to emulate the natural rarity of larval feeding
strikes.

For each frame sampled, the detector was
applied to locate the fish in the frame (see Fig.
3). Around each of these detections, we cre-
ated short cropped clips centered around the
putative fish. Temporally, a ±40 frame window
was cropped around the detection frame. Spa-
tially, small square clips were cropped around
each detection, with the cropping size determined
according to the typical size of the fish in each
video (range: 250-650 pixels). The variance image
of each clip was calculated and the manipulated
input was fed into the action classifier in order
to obtain classification scores for each clip. As

the class of interest was that of feeding strikes,
from here on we refer only to classification scores
relating to the ”strike” class, hereinafter, ”strike
scores”. We provide additional technical details on
implementation of the pipeline in section S4 in the
SI.

There was a partial overlap between raw videos
used in the balanced dataset and those used in
the naturalistic dataset. Five of the 11 videos were
used in the naturalistic dataset and in the test
set of the balanced dataset. Six out of the 11
videos used in this dataset were also used in the
train or validation splits of the balanced dataset.
While this overlap is not optimal, we note that the
clips in each dataset were generated differently.
Temporally, samples in the naturalistic dataset
are not tightly cropped around the feeding event,
and actually clips are twice as long as an average
feeding event; spatially, the clips were not tightly
cropped around the fish of interest. Furthermore,
four of these 6 videos featured additional strike
events that were not included in the balanced
dataset (n = 13 clips, range: 2 − 5 per video).
When evaluating our classifier on this dataset we
report results for the entire corpus of data, as
well as for only those clips from the five videos
not included in the training split of the balanced
dataset, which we term the naive set.

3.6 Metrics

To evaluate the performance of our classifica-
tion module on the balanced and the naturalistic
dataset, we cast the problem as a binary classi-
fication problem, with ”strike” being the positive
class and ”swim” being the negative class.

As customary in binary classification evalua-
tion, we use the Receiver Operator Curve (ROC)
[44], to obtain an estimate of the overall classi-
fier performance across the entire range of decision
thresholds. The area under this curve (AuROC) is
often used to give a single score to the quality of
the classifier. As our naturalistic curated dataset
was highly imbalanced, we further evaluated the
classifier using the Precision Recall Curve (PRC),
following best practice delineated by [45], and used
the area under this curve (AuPRC) as an addi-
tional quality score for both datasets. As noted by
[46], PRC is sensitive to the class imbalance of the
dataset, with expected curves changing accord-
ing to the positive class percent in the data, and
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Fig. 4: Comparison of backbones on the naturalistic curated dataset. a) ROC, plotting the True Positive
Rate (Recall/Sensitivity) against the of False Positive Rate (FPR/1-Specificity); b) PRC, presenting the
Precision as a function of Recall. In both a & b dashed red lines represent the performance expected by
at random classifier. Each curve is the mean ROC and PRC for each backbone, averaging performance
on 3 different random seeds. Shaded area around each curve are the 95% confidence bounds. The I3D
and Slow backbones (blue and green respectively) are pre-trained on Kinetics, the SlowFast are either
not pre-trained (yellow), or pre-trained on Kinetics (red) or SSv2 (orange). The two pre-trained SlowFast
backbones (Kinetics, SSv2) show superior performance by a large margin.

classifiers have been shown to produce drastically
different results under changing data imbalances
[46]. For this reason, our reported AuPRC are true
for the stated class imbalance. All metrics were
calculated using the precrec package in R [47].

4 Evaluation/Experimental
Results

In the following section, we report the results
of our classifier training and the performance
of the entire analysis pipeline. We compare the
performance of the three different backbones on
our naturalistic dataset and asses the contribu-
tion of pre-training to classifier’s performance. We
also present an analysis of the possible sources
of error in our pipeline’s performance, and the
insights gained from the manual annotations of
this naturalistic curated dataset.

4.1 Classifier balanced curated
results

Performance of all of the backbones on the bal-
anced dataset is described in Table S2 and Fig
S3. All backbones achieve decent results on the
balanced dataset, except the SlowFast network
with no pre-training that was not better than a
random classifier. The SlowFast pre-trained back-
bones were the best-performing, with the SSv2
being superior to the Kinetics by a small margin.
Both networks attained an AuROC of 1 on the
train split. For the validation split, the AuROCs
were 0.85 and 0.98 for the Kinetics and SSv2 pre-
trained SlowFast networks, respectively. For the
test split, the AuROCs were 1 for both. Note
that our best models achieve better AuROC scores
than those obtained previously by [31] on their
laboratory dataset.
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4.2 Pipeline performance and the
naturalistic curated dataset

The combination of the detection and classifi-
cation modules yielded the naturalistic curated
dataset (as depicted in Fig. 3). This dataset poses
challenges typical of naturalistic conditions, such
as multiple occluding animals, extreme lighting
conditions, motion blur, and severe class imbal-
ance.

The resulting dataset comprises 4,563 short
clips (62 ”strikes” and 4,501 ”swims”); with the
positive class accounting for ∼1.4% of the data.
The entire dataset was annotated by a team of
trained observers using a custom labeling soft-
ware. To prevent bias, all observers were blind to
the results of the classifier. For each clip, observers
labeled the main activity of the fish in the clip.
Observers also noted parameters regarding the
behavior of the fish and the photographic qual-
ity of each clip (see Fig. S7 in SI). We merged
these behavioral and photographic labels into the
following mutually exclusive categories: strikes,
abrupt movements, non-routine swimming, com-
promised footage, routine swimming, and can’t
tell or no fish (see section S5.3 in SI for details)

Results of all backbones on the dataset
(n=4,563), are given in Table 1 and Fig. 4. As
with the balanced dataset, the pre-trained Slow-
Fast backbones showed superior performance with
a mean AuROC of 0.94, 0.97 and mean AuPRC
of 0.6, 0.66 for the Kinetics and SSv2 respectively.
Note that the expected AuPRC for a random
classifier under the observed class imbalance is
0.014. The I3D and Slow backbones performed
considerably worse than on the balanced dataset.
The model with no pre-training performed poorly,
being in line with a random classifier. Results for
the naive video set, excluding videos used for the
train split of the classifier, were similar (Fig. S5 in
SI).

These results show, that despite the extremely
low data regime, our training resulted in models
that are capable of detecting larval fish feed-
ing behavior under challenging naturalistic condi-
tions.

4.3 Error analysis

We investigated the possible sources of classifica-
tion errors by analyzing the human annotations

Backbone AuROC AuPRC

I3D 0.67± 0.078 0.02± 0.007
Slow 0.82± 0.058 0.11± 0.037

SlowFast - None 0.45± 0.007 0.01± 0.0001
SlowFast - Kinetics 0.94± 0.001 0.61± 0.025
SlowFast - SSv2 0.97± 0.003 0.66± 0.015

Table 1: Model performance on the naturalis-
tic dataset. Numbers represent meanAuC ± std
for each backbone, averaging results from train-
ing using three different random seeds, I3D and
Slow backbones were pre-trained on Kinetics. The
pre-trained SlowFast variants are by far the best
performing in both metrics.

of the curated naturalistic dataset (N=4,563, see
section 4.2) and the strike scores assigned to them
by the two best models (SlowFast pre-trained on
Kinetics and SSv2). We analyzed two rather than
just one best model as the two present an inter-
esting performance trade-off between the action
classes (see below).

According to the human annotation, the detec-
tor had misclassified 118 samples as fish (∼2.5%),
where no fish were found. Approximately 50% of
the clips were labelled as high-quality clips featur-
ing routinely swimming fish (n=1,841). Other dis-
tinct larval behaviors were those of abrupt move-
ments (n=348) and non-routine swims (n=498;
interrupted and reverse swimming, floating). The
data also included a high percentage of low quality
clips with compromised footage (n=1,196), featur-
ing over-exposed imagery, a moving background
induced by strong flows, or extremely blurred fish.

The SSv2 pre-trained SlowFast performed con-
sistently better than the Kinetics one in both
AuROC and AuPRC scores (see Table 1). How-
ever, when examining the the distribution of strike
scores per class (Fig. 5), it transpired that the
improved performance of the SSv2 variant comes
from a better mapping of the swim class to low
strike scores (leading to higher rate of true nega-
tives), but this comes at a cost of missing ∼ 16%
of the strike events (more false negatives). Con-
versely, the Kinetics variant is worse at mapping
the swim class, with more potential false posi-
tive detections, but better at the strike class, with
only 1-2 events being mapped to low strike scores
(more true positives). Figure 5 shows that the
kinetics variant was strongly affected by abrupt
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Fig. 5: Error analysis. a,b) Distribution of strike
scores and annotations for the naturalistic ”swim”
class as assigned by two SlowFast models a)
Kinetics pre-trained, b) SSv2 pre-trained, inset
is a close-up of the right tail of the distribution.
Routine swimming appears in blue, compromised
footage clips in green, non-routine swimming
behavior (irregular, but not abrupt movements)
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movements) in orange. c,d) Distribution of strike
scores for the naturalistic ”strike” clips as assigned
by the same models c) Kinetics pre-trained, d)
SSv2 pre-trained. While SSv2 is better at clas-
sifying the ”swim” clips, the Kinetics achieves
superior results on the ”strike” clips. Compro-
mised footage and non-routine behaviors only
partially explains mis-classifications.

movements and low-quality clips, which were dis-
proportionately mapped to higher strike scores
> 0.5, potentially explaining some of the classifi-
cation errors. The SSv2 variant assigned low strike
scores to compromised footage, but also gave dis-
proportionately high scores to abrupt movements
(Fig. 5 inset).

We assessed the performance of our two classi-
fier using only clips labelled as either high-quality
routine swimming (n=1,841) or strikes (n=62).
This new partition resulted in an AuROC of 0.95,
0.98 and AuPRC of 0.77, 0.84 for the Kinetics
and SSv2 respectively. Note that this improve-
ment in AuPRC can also be attributed to the

change in class imbalance (∼3.4% versus the orig-
inal ∼1.4%). To test whether model performance
was adversely affected by one of the two filming
setups, we further assessed the SSv2 variant sepa-
rately on each of the filming setups (Fig. S6 in SI),
results do not suggest any particular bias resulting
from filming setup.

Given the low number of ”strike” samples,
stemming from the natural rarity of strike events
in the video sequences, the cost of false nega-
tives (missing strike events) is exceptionally high.
We therefore figured that a human in the loop
is needed for perfect classification. We used the
strike score distributions of the two action classes
(”swim”, ”strike”) to calculate the expected num-
ber of clips that will need manual review under
each of the variants (SSv2 and Kinetics; see SI
section S5.4) when applying our pipeline to all 37
videos in the uncurated dataset. We estimate that
this application will result in ∼ 870,000 clips. Our
calculation reveal that the cost to recover 95% of
strikes would be reviewing 156,600 clips (18%) for
the SSv2 variant, and 252,300 clips (29%) for the
Kinetics variant.

Considering the manual analysis of clips is
much faster than that of entire videos, we estimate
it at roughly 2.5 seconds per clip. Thus, analy-
sis of the entire uncurated dataset, when aiming
to obtain 95 % recall, using the current pipeline
with the SSv2 variant will take 109 work hours.
This is a substantial improvement over full man-
ual analysis, amounting to approximately 20% of
the original annotation effort.

5 Conclusions

In this study we have presented a data acquisition
and analysis pipeline for the detection of larval
feeding behavior in aquaculture rearing pools. We
have created novel datasets featuring fish larvae
freely behaving in unconstrained environments,
under naturalistic conditions. On these datasets,
we have benchmarked an action detection pipeline
with several backbones in a curated manner. We
show that training models on a smaller, highly
curated dataset can yield good results also on a
more difficult, naturalistic dataset, with a differ-
ent structure of class imbalance. We found that
even when pre-training data is from domains that
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are vastly different from monochrome underwa-
ter videos, pre-trained models achieve superior
results.

Our work has shown that while it is feasi-
ble to use an analysis pipeline based on action
classification for the detection of larval feeding,
the different components of our system could be
fine-tuned to eliminate those visual artifacts that
impair the performance of our computer vision
algorithms.

Our next two main algorithmic challenges lie
in reducing false positive rates and moving to the
uncurated realm. For the case of the Kinetics vari-
ant, in which routine ”swims” are classified as
”strikes”, techniques such as hard negative min-
ing can prove beneficial. In the SSv2 case, hard
positive mining is less practical as the frequency
of the positive class in the raw data is extremely
low. Given the extreme data imbalance and the
huge annotation effort, we propose that an unsu-
pervised approach based on anomaly detection,
in which a model learns the ”normal” class with-
out any labels can be stronger in capturing events
of interest. During our annotation process we
encounter several videos without any strike events,
these would be ideal for such a scheme.

For the uncurated challenge, we need to
develop approaches that will enable the detection
of strike behavior in long video sequences in real-
time. A baseline approach would be to naively
apply our pipeline with a sliding window approach
throughout the video. Using approaches such as
temporal localization of the actions is a logical
next step, however it will require a huge anno-
tation effort in order to annotate the temporal
bounds of the tens of fish which appear in the
videos.

Our work as presented here has established
foundations for an in-situ underwater system for
analyzing the feeding behavior of larval fish in
aquaculture facilities. This system has the poten-
tial to reduce the knowledge gap in regard to the
extreme larval mortality rate in the first weeks of
their life; and will offer an effective monitoring and
management tool for precision aquaculture.
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