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Abstract 29 

Despite the importance of groundwater environments as drinking water resources, there is 30 

currently no comprehensive picture of the global levels of antibiotic resistance genes in 31 

groundwater. Moreover, the biotic and abiotic factors that might shape the groundwater 32 

resistome remain to be explored on a global scale. Herein, we attempted to fill this knowledge 33 

gap by in silico re-analysis of publicly available global groundwater metagenomes. We first 34 

investigated the occurrence of antibiotic resistance genes (ARGs) to define the core 35 

groundwater resistome. We further tested whether the ARG dissemination in the pristine 36 

groundwater environments could be explained by natural ecological processes such as 37 

competition between fungal and bacterial taxa. Six ARGs encoding resistance to 38 

aminoglycosides (aph(3’), aph(3’’)), sulfonamides (sul1, sul2), and β-lactams (blaOXA, blaTEM) 39 

occurred in at least 50% of samples at high abundance, thereby constituting the core 40 

groundwater resistome. ARG abundances differed significantly between countries and only 41 

weakly correlated with bacterial community composition. While only limited effects of 42 

anthropogenic impacts could be observed, ecological interactions played a significant role in 43 

shaping the abundance patterns of at least a number of the core ARGs. Fungal abundance 44 

positively correlated with blaTEM and blaOXA abundance, ARGs that confer resistance to β-45 

lactams, regularly produced by fungi. However, no direct correlation was determined for the 46 

remainder of the core ARGs. Still, using co-occurrence network analysis we identified that the 47 

fungal abundance acted as a hub-node that included blaOXA and blaTEM, but also indirectly 48 

contributed to the abundance of aminoglycoside ARG aph(3’). Hence, interactions between 49 

bacteria and fungi including potential antibiotic production can contribute to the dissemination of 50 

ARGs in groundwater environments. Consequently, fungal/bacterial SSU ratio could serve as an 51 

indicator for the abundance of certain ARGs in the pristine groundwater environments.  52 
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Highlights  57 

• Core GW resistome included aph(3’), aph(3’’), sul1, sul2, blaOXA and blaTEM 58 

• Limited effects of anthropogenic impacts on GW resistome  59 

• Fungal/bacterial abundance positively correlated with blaTEM and blaOXA abundance  60 

• Fungal/bacterial abundance can serve as indicator for certain ARGs in groundwater  61 
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1. Introduction 63 

The global rise in antimicrobial resistance (AMR) represents a major threat to future human 64 

health (Laxminarayan el., 2013). Tackling it requires a “One Health” approach that considers 65 

AMR dynamics and proliferation between the human, veterinary and environmental spheres 66 

(Hernando-Amado et al., 2019). Drinking water resources provide one of the immediate 67 

connections between environmental and human microbiomes (Vaz-Moreira et al., 2014). Among 68 

these, groundwater (GW) ecosystems constitute the most common freshwater and drinking 69 

water resource in the majority of the world (Szekeres et al., 2018; Griebler and Avramov et al., 70 

2015; Herrmann et al., 2019). GW environments are characterized by high microbial diversity 71 

and complexity (Griebler and Lueders, 2009; Flynn, et al., 2013; Griebler and Avramov et al., 72 

2014), with GW microbiota playing important roles in several biogeochemical cycles (Flynn et 73 

al., 2013; Sonthiphand et al., 2019). Due to the role of GW environments as a major drinking 74 

water resource, understanding the occurrence of AMR in GW environments is highly relevant for 75 

tackling AMR through a “One Health” approach (Hernando-Amado et al., 2019). 76 

While several studies have focused on the importance of GW microbiota in biogeochemical 77 

cycles (Flynn et al., 2013; Sonthiphand et al., 2019; Retter et al., 2021) or in their response to 78 

pollution with toxic compounds (Taş et al., 2018; Sonthiphand et al., 2019), only few have 79 

looked into the occurrence dynamics of ARGs in GW using qPCR or metagenomic approaches 80 

(Szekeres et al., 2018; Zhang et al., 2019; Zaouri et al., 2020). The potential anthropogenic 81 

impact on AMR in GW was demonstrated for GW beneath a commercially operated wastewater 82 

irrigated field (Kampouris et al., 2022). Here the abundance of specific antibiotic resistance 83 

genes (ARGs) increased in accordance with the infiltration of the respective antibiotics from 84 

wastewater into the GW. However, the majority of ARG abundance dynamics in more pristine 85 

GW environments remains difficult to explain. Consequently, a global and comprehensive 86 
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picture of the natural ARG levels in GW and the non-anthropogenic factors that might shape the 87 

GW resistome is needed.  88 

Such global studies have been performed in terrestrial, non-anthropogenically impacted 89 

environments, such as soil and surface marine waters, and generally linked ARG dissemination 90 

partly to the competition between fungal and bacterial taxa (Bahram et al., 2018). Fungi 91 

regularly thrive in soils, in close interaction with other biota (Bahram et al., 2018) and can 92 

manipulate and shape the indigenous bacterial communities (Johnston et al., 2019). For 93 

example, several fungal taxa produce β-lactam antibiotics (e.g. penicillin) (Aly et al., 2011). 94 

Consequently, the specific complex fungi-bacteria interactions have been theorized as the 95 

cause underlying the natural prevalence of β-lactam ARGs in the environment (e.g. occurrence 96 

of blaTEM and blaCTX-M variants in relatively pristine soils) (Gatica et al., 2015). In GW 97 

environments most of the detected fungi function as saprophytic organisms, enabling the 98 

degradation of organic matter and performing organic carbon recycling (Nawaz et al., 2018). 99 

However, how the presence of these fungi and the resulting fungal-bacteria interactions in the 100 

humid, dark and pristine GW environments could affect the GW resistome has not yet been fully 101 

explored.  102 

Herein, we aimed to fill the knowledge gaps regarding which ARGs constitute the core global 103 

GW resistome and if, similar to in pristine soils, interactions with fungi could provide an 104 

explanatory variable in shaping it. To this end, we performed an in silico re-analysis of publicly 105 

available global GW metagenomes retrieved from the NCBI sequencing read archive (SRA), 106 

specifically investigating which genes constituted the core resistome and how they related to the 107 

overall taxonomy of the GW communities. 108 

2. Methodology 109 

2.1 Data collection of groundwater metagenomes 110 
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Public metagenome datasets for samples from global GW environments were searched and 111 

obtained from the NCBI sequencing read archive (SRA). The search queries included the terms 112 

“groundwater”, “aquifer”, or “subsurface water”, for the matrices; and “shotgun sequencing” or 113 

“wgs” for the sequencing method. The information from SRA was linked to publications and 114 

locations, whenever available. Accession numbers and linked publications for all the retrieved 115 

metagenomic datasets (100 metagenomes in total) are given in Table S1. An additional 30 116 

identified candidate metagenomes from peer-reviewed studies were unfortunately not made 117 

publicly available or did not pass the quality criteria presented in the next section and were 118 

thereby excluded from the study. 119 

2.2 Annotation of antibiotic resistance gene profile and taxonomical composition 120 

For each metagenomic dataset general quality control and trimming were performed with the 121 

tool cutadapt (v3.1, Martin, 2011), with the following command: cutadapt --cores=10 --cut 20 -q 122 

10 --minimum-length 90 --max-n 0 --max-ee 0.1. The selection of a maximum expected error 123 

(ee) of 0.1 allowed only high quality sequences to pass. Sequences with a length of less than 90 124 

bp were filtered out, to ensure a sufficient read length for ARG annotation. ResFinder (Version 125 

4), a database of mobile, acquired antibiotic resistance genes (Bortolaia et al., 2020) was 126 

translated from nucleotide sequences into amino acid sequences using Biopython (Cock et al., 127 

2009). ARGs were annotated against the translated ResFinder database using the command 128 

“blastx” in DIAMOND (Buchfink et al., 2015) with the following parameters: minimum identity 129 

99%, minimum match length 30 amino acids. The parameters were chosen to be conservative 130 

to reduce false positive hits. In case of paired-end sequencing, matches on the second paired 131 

read were counted only if there was no match on the first read. The tool METAXA2 (version 132 

2.2.3) (Bengtsson-Palme et al., 2015) was used for the identification of total small subunits of 133 

ribosome (SSU), 16S rRNA for prokaryotes and 18S rRNA for eukaryotes, to determine 134 

taxonomic composition, using the default settings. Screening for crAssphage sequences, an 135 
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indicator for anthropogenic fecal pollution, (Karkman et al., 2019) was performed with “ngless” 136 

(Coelho et al., 2019), which utilizes a version of the BWA-MEM algorithm for alignment (Li, 137 

2013; Li and Durbin, 2010). 138 

To exclude any potential effects of differing sequencing depth on the estimated abundance of 139 

ARGs, we performed a correlation of total ARG abundances with total bacterial counts. This 140 

proved non-significant (Spearman rank correlation, R=-0.17, p=0.1, Fig. S1B), hence 141 

sequencing depth can be excluded as a confounding factor. 142 

2.3 Data analyses and statistics 143 

Following ARG annotation and determination of the taxonomic composition, the results were 144 

analyzed in R (v4.0, R Core Team, 2019). The total bacterial and fungal counts for each 145 

metagenomic sample were calculated with the “tidyverse” packages (v1.0.4, Wickham, 2019). 146 

The ARG, bacterial and fungal relative abundances were calculated similarly using the same 147 

packages. The fungal 18S to bacterial 16S rRNA ratio was calculated using the “mutate” 148 

function from the package “dplyr” (v.1.0.10, Wickham et al., 2022). The package “ggplot2” 149 

(v.3.3, Wickham, 2016) was used for graphical representations.  150 

Differences in the ARG composition based on Euclidean distance were visualized and 151 

evaluated using the “vegan” package (v.2.5.6, Oksanen et al., 2019) by generation of NMDS 152 

plots and statistical PERMANOVA tests. ARGs that were present with less than two reads in 153 

less than four metagenomes from a single country were removed from the differential analysis 154 

for ARGs. Countries with less than three available, high-quality metagenomes were excluded 155 

from the location based analysis as well. All data was log10-transformed. Since the sequencing 156 

depth of the retrieved metagenomes differed, for estimation of the differential gene abundances 157 

and distance metrics we first calculated the limit of detection (LOD) of the different samples (Fig. 158 

S1A). Then, zeros in abundance were replaced with an abundance of 10-8 gene/SSU, which 159 
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was one order of magnitude below the sample with lowest LOD (3x10-7). The differences in 160 

bacterial community composition were calculated similarly, with the sole exception that it was 161 

based on the Bray-Curtis dissimilarity of bacterial taxa at the family level. 162 

For comparing the differential abundance of every single ARG per location, the Kruskal-Wallis 163 

test was performed with the use of the package “ggpubr” (v. 0.2.2, Kassambara, 2019). Mantel 164 

and Procrustes tests between ARG profile (Euclidean distance) and bacterial community 165 

composition (Family level, Bray-Curtis distance) were performed with the “vegan” package.  166 

For correlation analyses, the data for different bacterial taxonomical groups, ARGs and 167 

fungal/bacterial 16S rRNA ratio was log10 transformed and Spearman correlations coefficients 168 

were estimated with the package “ggpubr”. Samples with less than two positive hits for specific 169 

taxonomical groups or ARGs were excluded from the correlation analysis. In addition, linear 170 

mixed-effect models (package “lme4”, v1.1.3 Bates et al., 2022) were performed to account for 171 

confounding variability in sampling, DNA extraction, etc., to subsequently verify the 172 

hypothesized correlations. In these linear mixed-effect models, we used the original study of 173 

each metagenome as random variable. 174 

To reveal a) whether total fungal abundance correlates with changes in bacterial community 175 

composition and b) whether these correlations can be linked to the fungal/ARG correlations, a 176 

co-occurrence network was constructed using Spearman correlation and Benjamini-Hochberg 177 

correction, with a threshold of p<0.05. Samples without any positive hit were excluded to avoid 178 

correlations due to zero inflated data. For inclusion in the co-occurrence network, a minimum 179 

threshold was set: 25 samples with positive hits for each ARG or phylogenetic group. The co-180 

occurrence network was constructed with the packages “igraph” (Csardi et al., 2005) and 181 

“ggraph” (v2, Pedersen, 2022). 182 
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3. Results and Discussion 183 

3.1 The core groundwater resistome 184 

In total 99 of the 100 screened metagenomes (Table S1) from diverse geographical locations, 185 

including the US, Saudi Arabia, Japan and Germany, exceeded the high quality criteria (read 186 

size <90 bp, expected error rate <0.1/read) for subsequent re-analysis. ARGs were successfully 187 

detected in 87 of the 99 metagenomes. Overall, the common global GW resistome consisted of 188 

24 ARGs which were detected in at least three metagenomes at abundances above 10-5 hits per 189 

bacterial SSU (Fig. S2). These confer resistance to 13 antibiotic classes including 190 

aminoglycosides, β-lactams, sulfonamides, and macrolides. Among these 24 ARGs, only the 191 

sulfonamide ARGs sul1 and sul2, the β-lactam ARGs blaOXA and blaTEM and the aminoglycoside 192 

ARGs aph(3’) and aph(3’’) occurred in at least 50% of the metagenomes and throughout 193 

displayed significantly higher relative abundances compared to the remaining ARGs (Kruskal-194 

Wallis test p<2.2x10-16, Fig. S2). They hence constitute the core GW resistome (Fig. 1). 195 

 196 
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Figure 1. Relative abundance of the ARGs that comprise the core resistome (occurred in at least 50% of the 197 

metagenomes). Countries with less than three high-quality groundwater metagenomes in which ARGs were 198 

detected, were excluded from this analysis. Significant differences were assessed with Kruskal-Wallis test 199 

(*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, n=4-30). Values of log10≤-8 ARG hits/Bacterial SSU represent 200 

samples with ARGs below the limit of detection, rather than actual values.  201 

Among the observed core ARGs, blaTEM abundance was consistently higher, compared to other 202 

β-lactam ARGs. Variants of blaTEM have regularly been found to occur in high abundance in soil 203 

microbiota, with no clear relation to anthropogenic influence (Gatica et al., 2013; Kampouris et 204 

al., 2021; Wang et al., 2022). In previous studies, levels of blaTEM were found to be similar 205 

between wastewater and GW environments (Kampouris et al., 2021), while blaTEM was the 206 

dominant β-lactam ARG in GW environments, other β-lactam ARGs displayed up to two orders 207 

of magnitude higher abundances than blaTEM in wastewater (Kampouris et al., 2022). Similar 208 

trends were observed when comparing pristine and agricultural soils in Germany (Kampouris et 209 

al., 2021) and in China (Wang et al., 2022). 210 

3.2 Antibiotic resistance gene profiles diverge between different countries 211 

Resistome profiles based on the 24 detected common ARGs grouped significantly based on the 212 

originating countries (Fig. 2A, PERMANOVA test, Euclidean Distance, R2=0.33, p=1x10-6, n=4-213 

30; sample number differed per-study). Abundances of most ARGs strongly depended on 214 

location: for example, the highest abundance for most ARGs was detected in GW 215 

metagenomes originating from Saudi Arabia (Fig. 1). This was especially true for those ARGs 216 

that commonly occur in high abundance in wastewater microbiomes, such as sul1 and sul2 217 

(Caucci et al., 2016; Cacace et al., 2019) (Fig. 1, Kruskal Wallis, p<0.001, n=4-30). These two 218 

genes confer resistance to sulfonamides, antibiotics of synthetic origin that have previously 219 

been shown to accumulate in GW with parallel increase of sulfonamide ARGs, especially in 220 

locations with extensive wastewater reuse for irrigation purposes (Avisar et al., 2009; Kampouris 221 

et al., 2022). Indeed, rates of wastewater reuse in Middle Eastern countries such as Saudi 222 
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Arabia far exceed those in the other countries tested here (Jones et al., 2021; Liao et al., 2021).223 

Consequently, the direct infiltration of antibiotic resistant bacteria from wastewater irrigation, or224 

the infiltration of selective agents such as sulfonamide antibiotics could explain the increased225 

rates of ARGs in GWs of Saudi-Arabia. However, this hypothesis needs to be further tested,226 

since the herein analyzed metagenomes might have originated from sampling different depths227 

and types of GW environment (e.g. geyser or enclosed aquifer; Table S1), which could have228 

acted as a confounding variable on the differences in ARG profiles across the varying locations. 229 

230 

Figure 2. A) NMDS grouping of ARG profiles of groundwater metagenomes by Euclidian distance based on231 

country of origin (PERMANOVA test, Euclidean Distance, R2=0.24, p=1x10-6, n=4-30). ARGs that did not occur232 

in more than three metagenomes from at least one single country were excluded. Countries with less than233 

three high-quality groundwater metagenomes in which ARGs were detected, were also excluded from this234 

analysis. B) Bacterial community composition based clustering of groundwater metagenomes by Bray-Curtis235 

dissimilarity based on country of origin (PERMANOVA test, Bray-Curtis Distance, R2=0.33, p=1x10-6, n=6-41)236 

C) Procrustes rotation plot between ARG profiles (Euclidean distance) and bacterial community composition237 

(Bray-Curtis distance). Procrustes rotation was used to rotate the dissimilarity matrix of the bacterial238 

community composition (β-diversity, Weighted Unifrac Distance) to maximum similarity with the target239 
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dissimilarity matrix of the ARG composition (Euclidean distance) by minimizing the sum of squared 240 

differences. The Procrustes plot visualizes the association between bacterial community and ARG 241 

composition. The length of the arrows visualizes the degree of match between the two ordinations following 242 

Procrustes rotation (arrow-start: β-diversity, arrow-end: ARG composition). Mantel test, Spearman 243 

correlation rho=0.25, p=0.001, Procrustes test rho=0.62, n=69. 244 

To determine if such a potential direct effect of infiltration of fecal microorganisms to these GW 245 

environments exists, we quantified the abundance of crAssphage in the samples, which has 246 

been suggested as an indicator of pollution with fecal anthropogenic microorganisms (Karkman 247 

et al., 2019). Consequently, crAssphage presence would indicate that wastewater derived 248 

organisms were the main driving force underlying increased ARG abundance in these GW 249 

environments. However, no crAssphage reads were detected in any of the studied 250 

metagenomes, indicating that the infiltration of fecal organisms can be excluded as an 251 

explanatory variable for the increased levels of sul1 and sul2. Still, the infiltration of selective 252 

agents independent of fecal organisms remains an option that has previously been observed for 253 

certain GW environments (Kampouris et al., 2022). However, this could not be tested in this 254 

study due to the lack of associated metadata on concentrations of antibiotics. 255 

Similar to ARG profiles, the bacterial community compositions clustered by countries (Fig. 2B, 256 

PERMANOVA test, Bray-Curtis distance, R2=0.24, p=10-6, n=6-41; sample number differed per-257 

study). Still, bacterial community composition dissimilarity provided only a minor explanation for 258 

ARG compositional dissimilarities as only a weak significant correlation was found (Mantel test, 259 

Spearman correlation rho=0.25, p=0.001, Procrustes test, rho = 0.62, n=69, Fig. 2C).  260 

3.3 Correlation of fungal and antibiotic resistance gene abundances in groundwater 261 

metagenomes  262 

Aside from bacterial community composition, we aimed at further exploring the underlying 263 

drivers of resistome diversity and abundance in the GW microbiota by evaluating if ecological 264 
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interactions with natural producers of antibiotics such as fungi and Actinobacteria could play a 265 

role in ARG dissemination (Bahram et al., 2018). Fungal activity has indeed been hypothesized 266 

to contribute to ARG dissemination and maintenance in environments with low levels of 267 

anthropogenic pollution with bacteria or selective agents (Bahram et al., 2018). We hence 268 

evaluated the correlation of the six core GW ARGs with fungal relative abundance 269 

(fungal/bacterial SSUs in the metagenomes). A clear correlation between fungal per bacterial 270 

abundance and blaTEM abundance (Spearman rho=0.48, p=0.0039, Fig. 3) and a weak but 271 

significant correlation for blaOXA abundance (Spearman rho=0.36, p=0.049, Fig. 3) were 272 

observed. No correlation was detected for the remaining core GW ARGs (sul1, sul2, aph(3’), 273 

aph(3’’), p>0.05). Consequently, fungal abundance correlated mainly with the levels of blaTEM 274 

and blaOXA, which confer resistance to β-lactam antibiotics, commonly produced by several 275 

fungal species as secondary metabolites (Nesme and Simonet, 2015). The observed 276 

correlations for blaTEM and blaOXA were further verified using a linear mixed model. Here, the 277 

original study that the metagenomes were derived from was set as a random effect variable to 278 

counter potential study based biases (ARG Rel. Abundance ~ Fungal Rel. Abundance + 279 

1|Original_Study) (p=0.0152). When reducing study based biases with the linear mixed model 280 

the previously barely significant correlation for blaOXA
 (p=0.049) clearly increased in significance 281 

(p=0.008). 282 

We further examined the correlation of ARG abundance with Actinobacteria, known as the 283 

major group of bacterial antibiotic producers (Miao et al., 2010). Actinobacteria and blaTEM 284 

abundance weakly correlated initially (p=0.047, Fig. S3), but this could not be confirmed using 285 

the linear mixed model (p>0.05, ARG Rel. Abundance ~ Actinobacteria Rel. Abundance + 286 

1|Original_Study). None of the remaining core-resistome ARGs significantly correlated with 287 

Actinobacteria abundance (p>0.05, Fig. S3). 288 
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 289 

Figure 3. Linear regression and correlation of the relative abundance of individual core groundwater ARGs to 290 

ribosomal fungal/bacterial small subunit (SSU) ratio (Spearman rank-correlation). Samples without fungal or 291 

ARG counts were excluded.  292 

3.4 Fungal abundance might serve as an indicator for ARG abundance in groundwater 293 

environments 294 

To further explore if fungal relative abundance can explain ARG GW dynamics, co-occurrence 295 

network analysis (Spearman correlation, p<0.05, Benjamini-Hochberg correction) with bacterial 296 
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community composition (lowest taxonomical level: Order), fungi/bacteria SSU ratio and ARG 297 

abundances was performed. Of all 24 ARGs tested only three of the core GW ARGs blaTEM, 298 

blaOXA and aph(3’) were included as a part of the correlation network (Fig. S4). As two of these 299 

were already previously associated with positive correlations with fungal abundance we 300 

extracted all correlations from the network which either one of the ARGs or the fungal/bacterial 301 

SSU ratio were a part of (Fig. 4). The three ARGs as well as the fungal/bacterial SSU ratio were 302 

part of one interconnected node hub. More specifically, all ARGs showed a direct or indirect 303 

connection (one common link) to the fungal/bacterial SSU ratio. Furthermore, all extracted 304 

correlations directly or indirectly connecting ARGs with fungal/bacterial SSU ratio were positive 305 

(Fig. 4). Specifically, blaTEM was directly positively correlated with fungal/bacterial SSU ratio and 306 

further indirectly connected through the bacterial order of Corynebacteriales, supporting the 307 

previously detected strong correlation of this ARG. Moreover, the relative abundance of blaTEM 308 

was the only explanatory factor connected to the aminoglycoside ARG aph(3’) (Fig. 4), which 309 

supports the previously indicated weaker positive correlation with fungal relative abundance. 310 

Meanwhile, blaOXA was exclusively connected to the bacterial order of Rhizobiales, which was in 311 

turn providing the indirect link through positive correlation with the fungal/bacterial SSU ratio 312 

based on Spearman correlations.  313 

In addition to the ARGs, fungal abundance was positively correlated with a number of individual 314 

bacterial taxa, however not a single antagonistic interaction was observed (Fig. 4). These 315 

observed positive correlations indicate potential mutualistic interactions. Selection for specific 316 

bacterial taxa was driven by their ability to co-exist with fungi, despite the potential production of 317 

secondary metabolites by fungi with negative effects on bacterial growth. Since β-lactam ARGs 318 

confer resistance to β-lactam antibiotic, which are commonly produced antibiotics by fungi (Aly 319 

et al., 2011), we hypothesize that these ARGs could potentially have enabled the co-existence 320 
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of several of these bacterial taxa with fungi, hence promoting their co-occurrence as individual, 321 

interconnected nodes within the correlation network centering around fungal abundance.  322 

 323 

Figure 4. Extract of correlations including either the ribosomal fungal/bacterial SSU ratio (RFBR) or any of 324 

the detected ARGs from the full co-occurrence network (Fig. S3). Only significant correlations based on 325 

Spearman Correlation with Benjamini-Hochberg correction for multiple testing (p<0.05) are shown. All 326 

extracted correlations within this network were significantly positive.  327 

In summary, ARGs were regularly only directly connected to a minor proportion of taxa but 328 

rather directly or indirectly connected to fungal abundance with positive correlations. 329 

Consequently, fungal abundance might serve as a better indicator for the abundance of certain 330 

ARGs in GW microbiomes than the bacterial community composition itself.  331 
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3.5 Summary of results 332 

In the present in silico study we identified the common and core ARGs that make up the global 333 

GW resistome and elucidated potential drivers underlying their abundance patterns. The 334 

common GW ARGs conferred resistance to 13 antibiotic classes, while the core resistome was 335 

made up of six ARGs conferring resistance to sulfonamides, β-lactams and aminoglycosides. 336 

Local patterns regarding the intensity of anthropogenic factors were identified as a driving force 337 

behind the distribution of ARGs conferring resistance to the synthetic antibiotic class of 338 

sulfonamides. However, for β-lactams - natural, fungal-derived antibiotics (Nesme and Simonet, 339 

2015) - the relative abundance of these fungi provided a main explanatory variable. A previous 340 

investigation on global soil microbiota supports such a correlation of fungi with total ARGs 341 

(Bahram et al., 2018). While across soils co-selective effects for a number of antibiotic classes 342 

could be detected, in GW metagenomes only the β-lactam ARGs blaTEM and blaOXA were directly 343 

correlated with fungal abundance. In addition, fungal abundance served as indirect indication for 344 

the aminoglycoside ARG aph(3’), which belonged to the core GW resistome and indirectly 345 

correlated with fungal abundance through co-occurrence network analysis.  346 

4. Conclusion 347 

Overall we show that the re-analysis of publicly available data is a valuable tool for testing 348 

hypotheses currently present in the microbial ecology spectrum and elucidating potential global 349 

relationships between different microbial groups in GW environments. Specifically, we 350 

demonstrated that in the pristine GW environments, the global resistome is dominated by a 351 

small number of ARGs and that their abundance profiles, where mostly influenced by local 352 

conditions, while they can be partially shaped by microbe-microbe interactions. By using these 353 

in silico approaches we can pinpoint and identify potential microbe-microbe interactions for 354 

further verification in controlled laboratory experiments. In addition, we demonstrated that the 355 

bacterial/fungal SSU ratio could act as a direct and indirect indicator for the abundance of 356 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.11.14.516424doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.14.516424
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

specific ARGs in GW environments. We expect that with the increase of publicly available data, 357 

such in silico meta-analyses will be able to further identify ecological interactions in 358 

understudied environments in the future. 359 
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