1 An attempt at restoring original radiocarbon ages in collagen from bioapatite

2

3 Mário André Trindade Dantas^{a,*}, Alexander Cherkinsky^b

- 4
- 5 ^a Laboratório de Ecologia e Geociências, Universidade Federal da Bahia (IMS/CAT), Vitória da
- 6 Conquista, BA, Brazil
- ⁷ ^b Center for Applied Isotope Studies, University of Georgia, Athens, GA 30602, Athens, Georgia,
- 8 *USA*
- 9
- 10 * Corresponding author.
- 11 *E-mail address*: matdantas@yahoo.com.br (M. Dantas).
- 12

13 Abstract

14 In the literature there is a consensus that radiocarbon dating performed in bioapatite presents

15 younger datings than those performed in collagen, thus, we propose a general regression that could

16 be used to convert the radiocarbon dating performed in bioapatite to the original ones in collagen in

- 17 fossil samples all of the world. This general regression presents several good indexes of quality,
- high correlation ($R^2 = 0.98$), lower values of percent predicted error (%PE = 0.01), and the standard

error of the estimate (%SEE = 25), showing that is a good tool, as the predicted values are similar to

- 20 those observed. Using this regression we converted the radiocarbon datings in bioapatite to collagen
- 21 made for several taxa from the Brazilian Intertropical Region, and suggest that these datings could
- 22 be 1-7 Cal BP kyr older than previously thought.
- 23

Keywords. Reduced major axis regression; late Quaternary; ¹⁴C AMS; mammals; Brazilian
 Intertropical Region.

26

27 **1. Introduction**

28

For late Quaternary researchers, known the age of their samples is very important to help
them in interpretations about, for example, the paleoecology and extinction of the studied taxa (e.g.
Barnosky & Lindsay, 2010; Dantas et al., 2020).

These researchers have as options for direct dating the use of radiocarbon dating (AMS) in collagen ($^{14}C_{collagen}$), which could date samples until ~60 kyr (Cook & Plicht, 2007). However, in Tropical regions they face one main problem, the lost of collagen due the diagenetic process

35 (Hedges, 2002).

In the absence of collagen Cherkinsky (2009) presented an option in the absence of collagen, 36 to perform the radiocarbon dating in bioapatite ($^{14}C_{\text{bioapatite}}$), justifying that the mineral fraction 37 survives much better than organic ones, suffering small changes through the diagenesis. 38 Since then, several papers dealing about the chronology and paleoecology of the meso-39 40 megamammals from the Brazilian Intertropical Region has been made using this technique, and presenting the occurrence of this fauna in the Late Pleistocene, between 9-32 Cal BP Kyr (e.g. 41 Dantas et al., 2017; 2020; 2022). 42 However, Some authors (Zazzo & Saliège, 2011; Zazzo, 2014) suggests that during 43 diagenesis bioapatite exchange carbon with a ¹⁴C-enriched (i.e. younger) carbon source, which 44 promote in ¹⁴C_{bioapatite} younger datings than ¹⁴C_{collagen}, as older the dating, major was the difference 45 between them. Thus, Zazzo (2014) recommended that ¹⁴C_{bioapatite} should be considered as minimum 46 47 estimates. Based on this observation, we propose, and test, regressions that could convert the 48 radiocarbon dating in bioapatite to collagen in samples collected in different climatic zones (boreal, 49 temperate, subtropical, and tropical). 50 51 2. Material and methods 52 53 In this paper we use several radiocarbon dating performed in collagen and bioapatite in the

In this paper we use several radiocarbon dating performed in collagen and bioapatite in the same samples, the collagen radiocarbon datings had expected C/N pattern (~3) and more than 5% of collagen in each samples. Another index was the presence of modern carbon (pMC) in the samples, were used samples with proportional lower pMC as older the samples (Cherkinsky, 2009; Zazzo, 2014 and references therein; Cherkinsky et al, 2015; Table S1).

59 Reduced major axis (RMA, Model II) regressions were produced using the entire sample to create a general regression, and specific ones for each climatic zone (boreal, temperate, subtropical, 60 61 and tropical; Table 1), because: (i) it deals better with extrapolation than ordinary least squares; (ii) incorporate an assumption that there is an error in X; and (iii) is symmetric, meaning that the slope 62 of the line do not differs depending upon which variable is identified as X and which is Y (OLS, 63 Model I; Smith, 2009; Halenar, 2011 and references therein). This method use the slope (b_{OLS}) find 64 in OLS, the mean values of x and y, and the absolute value of the correlation of pearson (r) to 65 estimate a new slope (b_{RMA} ; equation 1) and intercept (a_{RMA} ; equation 2) (Harper, 2016). 66

67

$$(1) b_{\rm RMA} = b_{\rm OLS}/|r|$$

$$(2) a_{\rm RMA} = \bar{Y} - b_{\rm RMA} * \bar{X}$$

71	As the radiocarbon datings do not presented a normal distribution (Shapiro-Wilk test, $p <$
72	0.05), these data were transformed to logarithm values (at base 10) to approximate a log-normal
73	distribution, due it assigns equal weight to all data points in a regression (e.g. Smith, 1993 and
74	references therein).
75	In addition to the correlation of data log-transformed, as high correlation do not means that
76	the regression is a good predictor (e.g. Smith, 1984), were calculated the percent predicted error
77	(%PE) and the standard error of the estimate (%SEE).
78	The %PE of each sample is calculated using equation (3) (Van Valkenburgh, 1990 and
79	references therein; Halenar, 2011), and then is made an average of the absolute %PE mean of the
80	variables. This index provides a comparative value to see the predictive accuracy of the regressions.
81	
82	(3) %PE = (observed – predicted/predicted)*100
83	
84	To estimate the %SEE we use the equation (4), this index reflects the ability of the
85	independent variable to predict the dependent variable (Van Valkenburgh, 1990 and references
86	therein). SE is the standard error (= standard deviation/ \sqrt{n}).
87	
88	(4) %SEE = $(10^{(2+SE)}) - 100$
89	
90	To test if are statistical differences between the proposed regressions was made by the
91	analysis of variance, we used ANOVA (1 factor, $\alpha = 0.05$) in PAST 3.11 software (Hammer et al.,
92	2001).
93	The best estimated regression (results and discussion) was used to correct the radiocarbon
94	dating in bioapatite to collagen of eight extinct meso- megamammals from the Brazilian
95	Intertropical Region (BIR; sensu Cartelle et al., 1999; Table 2).
96	
97	3. Results and discussion
98	
99	3.1. Converting ${}^{14}C_{bioapatite}$ into ${}^{14}C_{collagen}$
100	
101	The radiocarbon dating samples (dated both in bioapatite and collagen) came from different
102	countries located in boreal, temperate, subtropical, and tropical climatic zones (Table S1), in all
103	those were observed that the diagenesis altered the bioapatite and provide, in general, younger
104	radiocarbon dating in comparison with those found in collagen (Cherkinsky, 2009; Zazzo, 2014 and
105	references therein; Cherkinsky et al, 2015).

Using these data were estimated regressions for each climatic zone, plus, a general one, and noted that they are similar (ANOVA, $F_{obs} = 0.02$, p = 0.99; Table 1), presenting strong correlations and similar slopes (m) values, however, presents different %PE and %SEE.

The slopes of these RMA regressions, created with the available data, allow us to interpret that the radiocarbon dating in bioapatite tend to be slightly lower than that in collagen in Boreal (m = 1.10), Temperate climate zones (m = 1.15), and in all world (m = 1.09). In Subtropical climate zones (m = 0.99) and Tropical climate zones the radiocarbon dating in bioapatite tend to be slightly higher than that in collagen (m = 0.97).

114 If was choose to use the regressions for each climatic zone there is a tendency to find different 115 corrected collagen datings, being that for Temperate climatic zones higher than in the others zones. 116 To avoid this, as all regressions are similar, the general regression must be used (Figure 1), as it 117 presents a strong correlation ($R^2 = 0.98$), lower mean %PE (= 0.01; Table 1), and average %SEE (= 118 25.00; Table 1), combinated.

119

121

The best regressions must have higher values of correlation, lower values of %PE (<15%) and %SEE (Delson, et al., 2000; Ruff, 2003), showing that the predicted values are similar to those observed, which this general equation reached.

 $Log_{10}^{14}C_{collagen} = 1.09*log_{10}^{14}C_{bioapatite} - 0.31$

- 125
- 126 *3.2. Limit of convertion*
- 127

The radiocarbon dating calibration curve could allow estimating the age of terrestrial samples to about 50 kyr, the limit of the method (Cook & Plicht, 2007; Wood, 2015). This limit depends on the pretreatment used, which could help to better purify the samples from contaminants, and allows older datings (Wood, 2015).

As stated before the radiocarbon dating in bioapatite is considered as minimum ages, and the proposed general regression can convert the ${}^{14}C_{bioapatite}$ to ${}^{14}C_{collagen}$, however observing the limit of the method (50 kyr) this regression should be used to convert only ${}^{14}C_{bioapatite} \sim 39,400$ yr. Older converted collagen dating could be not calibrated in CALIB 8.1 program (Reimer et al., 2020) due to the extrapolation of the limit of 50 kyr.

137

138 3.3. Study case: converting the ${}^{14}C_{bioapatite}$ of the meso- megamammals from the Brazilian

139 Intertropical Region

141	Using the new general regression, were converted the radiocarbon datings made in bioapatite
142	to the collagen for eight extinct meso- megamammals taxa which lived in the BIR, and later
143	calibrated into calendar ages before present, using the same standard error found in the ${}^{14}C_{bioapatite}$,
144	using CALIB 8.1 program (Reimer et al., 2020), SHCal20 curve (Hogg et al., 2020), and 2σ
145	measured ages reported in Table 2.
146	The difference between the radiocarbon dating in bioapatite to the converted to collagen
147	shows a variation between 1,141 to 7,187 years (Table 1), while the difference between the
148	calibrated datings was 1,166 to 7,523 Cal BP yr older than previously thought (e.g. Cherkinsky et
149	al., 2013; Dantas et al., 2017; Figure 2).
150	The diagenesis could promote small alterations in ${}^{14}C/{}^{12}C$ in bioapatite carbonate, leading to
151	younger datings, however, this alteration is non-significant in ratio stable isotopes of carbon
152	$(^{13}C/^{12}C)$, at least, for the last 40 thousand years (Zazzo, 2014).
153	When the diagenesis affect the bioapatite, the substitutions are mainly in the hydroxyl
154	position in the phosphate, and even with a carbonate substitution occurs, the isotope signature in
155	stable and radioactive carbon maintain the original signature (Cherkinsky, 2009).
156	The available δ^{13} C associated to the converted 14 C _{collagen} for the megafauna of the BIR brings
157	paleoecological information of a time span ranging ~12,700 to 42,100 years (Figure 2), and allow
158	suggesting that these meso- megamammals lived in the BIR, at least, until 12 kyr, in the Late
159	Pleistocene. Considering other dating techniques, as for example Electron Spin Ressonance, this
160	time span could be expanded to 9 ± 2 ky (Ribeiro et al., 2013).
161	
162	4. Final remarks
163	
164	In this paper was proposed a regression to convert the radiocarbon dating performed in
165	bioapatite to collagen, allowing facilitating the comparison of radiocarbon datings in all world.
166	Using this new tool were converted the radiocarbon dating performed in bioapatite in fossils
167	of meso- megamammals from Brazil and suggest that these datings are 1-7 Cal BP kyr older than
168	previously thought.
169	
170	Acknowledgements
171	
172	To CNPq for the research fellowship for MATD [PQ/CNPq 311003/2019-2]. To MSc. Lais
173	Alves Silva for the critical review of the manuscript.
174	L

175 **References**

176	
177	Barnosky AD, Lindsey EL. 2010. Timing of Quaternary megafaunal extinction in South America in
178	relation to human arrival and climate change. Quaternary International 217(1-2):10-29.
179	Cartelle C. 1999. Pleistocene mammals of the Cerrado and Caatinga of Brazil. Mammals of the
180	Neotropics 3:27-46.
181	Cherkinsky A, Glassburn CL, Reuther J. 2015. Preservation of collagen and bioapatite fractions
182	extracted from bison teeth in permafrost conditions. Nuclear Instruments and Methods in
183	Physics Research Section B: Beam Interactions with Materials and Atoms 361:392-396.
184	Cherkinsky A. 2009. Can we get a good radiocarbon age from "bad bone"? Determining the
185	reliability of radiocarbon age from bioapatite. Radiocarbon 51(2):647-655.
186	Cook CT, Van der Plicht J. 2007. Radiocarbon dating: conventional method. Encyclopedia of
187	Quaternary Science 2007:2899-2911.
188	Dantas MAT, Cherkinsky A, Bocherens H, Drefahl M, Bernardes C, França LM. 2017. Isotopic
189	paleoecology of the Pleistocene megamammals from the Brazilian Intertropical Region:
190	Feeding ecology (δ 13C), niche breadth and overlap. <i>Quaternary Science Reviews</i> 170:152-163.
191	Dantas MAT, Liparini A, Asevedo L, França LM, Cherkinsky A. 2022. Annual isotopic diet (δ^{13} C,
192	δ^{18} O) of Notiomastodon platensis (Ameghino, 1888) from Brazilian Intertropical Region.
193	Quaternary International 610:38-43.
194	Dantas MAT, Missagia RV, Dutra RP, Raugust T, Silva LA, Delicio MP, Reno R, Cherkinsky A.
195	2020. Isotopic paleoecology (δ^{13} C) from mammals from IUIU/BA and paleoenvironmental
196	reconstruction (δ^{13} C, δ^{18} O) for the Brazilian intertropical region through the late
197	Pleistocene. Quaternary Science Reviews 242:106469.
198	Delson E, Terranova CJ, Jungers WL, Sargis EJ, Jablonski NG. 2000. Body mass in
199	Cercopithecidae (Primates, Mammalia): estimation and scaling in extinct and extant taxa.
200	Anthropological papers of the AMNH 83.
201	Greco MC, Dantas MAT, Cozzuol M. 2022. A new species of small Camelidae from the Late
202	Pleistocene of Brazil. Journal of Quaternary Science 37(7):1261-1269. doi: 10.1002/jqs.3426
203	Halenar LB. 2011. Reconstructing the locomotor repertoire of Protopithecus brasiliensis. I. Body
204	size. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology
205	294(12):2024-2047.
206	Hammer Ø, Harper DA, Ryan PD. 2001. PAST: Paleontological statistics software package for
207	education and data analysis. Palaeontologia electronica 4(1): 9.
208	Harper WV. 2016. Reduced major axis regression. Wiley StatsRef: Statistics Reference Online 1-6.
209	Hedges RE. 2002. Bone diagenesis: an overview of processes. Archaeometry 44(3):319-328.
210	Hogg et al., 2020

- 211 Lessa CMB, Gomes VS, Cherkinsky A, Dantas MAT. 2021. Isotopic paleoecology (δ13C, δ18O) of
- two megamammals assemblages from the late pleistocene of Brazilian intertropical
- region. Journal of South American Earth Sciences 112:103576.
- Reimer PJ, Austin WE, Bard E, Bayliss A, Blackwell PG, Ramsey CB, ... Talamo S. 2020. The
- IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal
- 216 kBP). *Radiocarbon* 62(4):725-757.
- 217 Ribeiro RC, Kinoshita A, Figueiredo AMG, Carvalho IS, Baffa O. 2013. Electron spin resonance
- dating of the late Quaternary megafauna fossils from Baixa Grande, Bahia, Brazil. *Quaternary International* 305:91-96.
- Ruff CB. 2003. Long bone articular and diaphyseal structure in Old World monkeys and apes. II:
 Estimation of body mass. *American Journal of Physical Anthropology: The Official*
- *Publication of the American Association of Physical Anthropologists* 120(1):16-37.
- 223 Smith RJ. 1984. Allometric scaling in comparative biology: problems of concept and
- method. *American Journal of Physiology-Regulatory, Integrative and Comparative Physiology* 246(2);R152-R160.
- Smith RJ. 1993. Bias in equations used to estimate fossil primate body mass. *Journal of Human Evolution* 25(1):31-41.
- 228 Smith RJ. 2009. Use and misuse of the reduced major axis for line-fitting. American Journal of
- Physical Anthropology: The Official Publication of the American Association of Physical
 Anthropologists, 140(3), 476-486.
- 231 Valkenburgh BV. 1990. Skeletal and dental predictors of body mass in carnivores. *Body size in*
- 232 *Mammalian Paleobiology Estimation and biological implications* 181-205.
- 233 Wood, 2015
- Zazzo A, Saliège JF. 2011. Radiocarbon dating of biological apatites: a review. *Palaeogeography*,
 Palaeoclimatology, *Palaeoecology* 310(1-2):52-61.
- 236 Zazzo A. 2014. Bone and enamel carbonate diagenesis: a radiocarbon
- prospective. *Palaeogeography, Palaeoclimatology, Palaeoecology* 416:168-178.
- 238
- 239
- 240
- 241
- 242
- 243

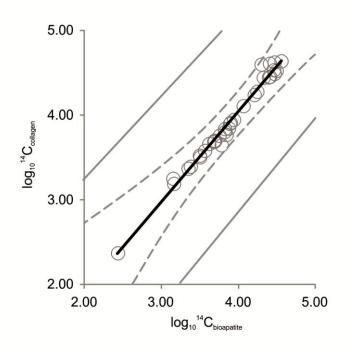
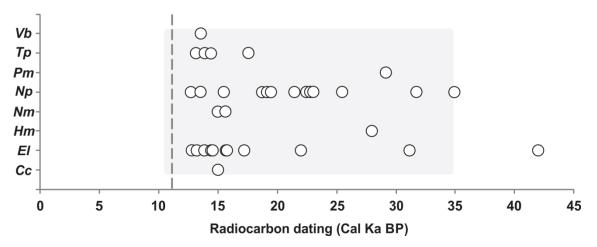
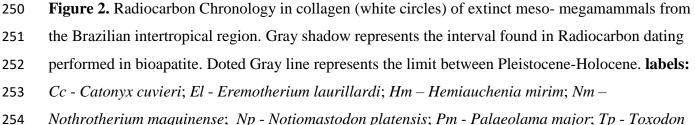




Figure 1. Reduced major axis Regression of log Radiocarbon dating (bioapatite) and log
Radiocarbon dating (collagen) using 28 samples (Table S1). Regression line (Black solid line),
confidence intervals (Gray dotted lines), and prediction intervals (Gray solid lines).

249

- 255 platensis; Vb Valgipes bucklandi.
- 256

Table 1. Values of the RMA regressions, coefficient of determination (R^2) , average percent

258 prediction error (%PE) and standard error of the estimate (%SEE) obtained for each climatic zone

259 (cz).

cz	Samples	Slope	Intercept	\mathbf{R}^2	%PE	%SEE
Boreal	8	1.10	-0.41	0.97	0.02	10.90
Temperate	7	1.15	-0.50	0.98	0.05	89.32
Subtropical	8	0.99	0.05	0.99	0.06	21.26
Tropical	5	0.97	0.13	0.99	0.00	25.16
All	28	1.09	-0.31	0.98	0.01	25.00

,		U			1 0		
Species	Sample number	Localities	¹⁴ C _{bioapatite}	рМС	¹⁴ C _{collagen}	$^{14}\Delta_{ m bioapatite-collagen}$	Age (Cal BP yr)
C. cuvieri	UGAMS 34121 ⁽⁰¹⁾	Andaraí/BA	11,150±30	24.97	12634±30	1,484	14,839-15,165
E. laurillardi	UGAMS 09436 ⁽⁰¹⁾	Barcelona/RN	$10,050 \pm 35$	28.62	11,281±35	1,231	13,096-13,192
	UGAMS 09435 ⁽⁰¹⁾	Currais Novos/RN	15,490±40	-	$18,078{\pm}40$	2,588	21,851-22,115
	UGAMS 09431 ⁽⁰¹⁾	Poço Redondo/SE	$10,140{\pm}40$	24.98	11,392±40	1,252	13,170-13,315
	UGAMS 09432 ⁽⁰¹⁾	Poço Redondo/SE	22,440±50	-	27,078±50	4,638	31,064-31,206
	UGAMS 09433 ⁽⁰¹⁾	Poço Redondo/SE	11,540±40	23.78	13,116±40	1,576	15,517-15,841
	UGAMS 13539 ⁽⁰¹⁾	Poço Redondo/SE	10,990±30	25.45	12,436±30	1,446	14,250-14,644
	UGAMS 13540 ⁽⁰¹⁾	Poço Redondo/SE	11,010±30	25.39	12,461±30	1,451	14,288-14,878
	UGAMS 13541 ⁽⁰¹⁾	Poço Redondo/SE	9,720±30	29.82	$10,878 \pm 30$	1,158	12,736-12,786
	UGAMS 13542 ⁽⁰¹⁾	Poço Redondo/SE	9,730±30	29.79	10,890±30	1,160	12,738-12,792
	UGAMS 13543 ⁽⁰¹⁾	Poço Redondo/SE	11,580±30	23.65	13,166±30	1,586	15,610-15,898
	UGAMS 14017 ⁽⁰¹⁾	Poço Redondo/SE	$10,740{\pm}30$	26.25	12,128±30	1,388	13,810-13,950
	UGAMS 09434 ⁽⁰¹⁾	Gararu/SE	11,540±40	23.78	13,116±40	1,576	15,517-15,841
	UGAMS 42447 ⁽⁰²⁾	Ourolândia/BA	$12,400{\pm}30$	-	14,185±30	1,785	17,072-17,352
	UGAMS 34119 ⁽⁰²⁾	Iuiu/BA	30,080±90	2.37	37,267±90	7,187	41,839-42,141
H. mirim	UGAMS 36483 ⁽⁰³⁾	Campo Formoso/BA	20,010±65	8.28	23,898±65	3,888	27,764-28,177
N. maquinense	UGAMS 34123 ⁽⁰¹⁾	Andaraí/BA	11,130±30	25.02	12,609±30	1,479	14,819-15,133
	UGAMS 34124 ⁽⁰¹⁾	Andaraí/BA	11,520±35	23.84	13,091±35	1,571	15,483-15,801

Table 2. Radiocarbon datings in bioapatite ($^{14}C_{bioapatite}$) converted to collagen ($^{14}C_{collagen}$), presence of modern carbon (pMC), and calibrated ages

262 (SHCal20 curve) for extinct Late Pleistocene meso- megamammals taxa from Brazilian Intertropical Region.

N. platensis	UGAMS 09440 ⁽⁰¹⁾	Barcelona/RN	$16,150{\pm}40$	-	18,919	2,769	22,594-22,974
--------------	-----------------------------	--------------	-----------------	---	--------	-------	---------------

References. ⁽¹⁾ Dantas et al. (2017 and references therein); ⁽²⁾ Dantas et al. (2020 and references therein); ⁽³⁾ Greco et al. (2022).

Table 2 (continuation).

Species	Sample number	Localities	¹⁴ C _{bioapatite}	pMC	¹⁴ C _{collagen}	$^{14}\Delta_{ m bioapatite-collagen}$	Age (Cal BP yr)
N. platensis	UGAMS 09437 ⁽⁰¹⁾	Poço Redondo/SE	13,950±40	17.61	16,128±40	2,178	19,261-19,544
	UGAMS 13535 ⁽⁰¹⁾	Poço Redondo/SE	13,380±35	18.89	15,411±35	2,031	18,630-18,813
	UGAMS 13536 ⁽⁰¹⁾	Poço Redondo/SE	16,370±40	13.03	19,201±40	2,831	22,947-23,164
	UGAMS 13537 ⁽⁰¹⁾	Poço Redondo/SE	10,440±30	27.26	$11,759{\pm}30$	1,319	13,485-13,613
	UGAMS 13538 ⁽⁰¹⁾	Poço Redondo/SE	13,760±35	18.04	15,889±35	2,129	18,966-19,252
	UGAMS 09439 ⁽⁰¹⁾	Canhoba/SE	17,910±50	-	21,177±50	3,267	25,277-25,672
	UGAMS 09438 ⁽⁰¹⁾	Coronel João Sá/BA	13,980±40	-	16,166±40	2,186	19,345-19,583
	UGAMS 09441 ⁽⁰¹⁾	Coronel João Sá/BA	15,210±40	15.06	17,722±40	2,512	21,173-21,736
	UGAMS 34140 ⁽⁰⁴⁾	Coronel João Sá/BA	9,640±30	30.13	$10,781{\pm}30$	1,141	12,700-12,746
	UGAMS 42448 ⁽⁰²⁾	Ourolândia/BA	25,070±60	-	30,555±60	5,485	34,628-35,209
	UGAMS 39057 ⁽⁰⁵⁾	Caetanos/BA	11,450±30	24.05	13,005±30	1,555	15,327-15,662
	UGAMS 34116 ⁽⁰²⁾	Iuiu/BA	23,040±55	5.68	27,868±55	4,828	31,562-31,911
	UGAMS 34125 ⁽⁰⁴⁾	Vit. da Conquista/BA	15,890±40	13.83	$18,588{\pm}40$	2,698	22,346-22,535
P. major	LPRBUSP 0755 ⁽⁰¹⁾	Iraquara/BA	20,850±50	-	24,993±50	4,143	29,077-29,248
T. platensis	UGAMS 09442 ⁽⁰¹⁾	Rui Barbosa/RN	10,730±30	-	12,116±30	1,386	13,809-13,954
	UGAMS 09446 ⁽⁰¹⁾	Poço Redondo/SE	10,050±30	-	11,281±30	1,231	13,098-13,188
	UGAMS 09444 ⁽⁰¹⁾	Cel. João Sá/BA	12,580±40	20.88	14,410±40	1,830	17,340-17,789

	UGAMS 42449 ⁽⁰²⁾	Ourolândia/BA	$10,740{\pm}30$	-	$12,128\pm30$	1,388	13,810-13,950
	UGAMS 09445 ⁽⁰¹⁾	Vit. da Conquista/BA	10,970±30	-	12,412±30	1,442	14,189-14,595
V. bucklandi	UGAMS 11763 ⁽⁰¹⁾	Felipe Guerra/RN	10,440±35	27.25	11,759±35	1,319	13,482-13,617

References. ⁽¹⁾ Dantas et al. (2017 and references therein); ⁽²⁾ Dantas et al. (2020 and references therein); ⁽⁴⁾ Dantas et al. (2022); ⁽⁵⁾ Lessa et al. (2021)