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Abstract1

Environmental change coupled with alteration in human lifestyles are profoundly impacting2

the microbial communities that play critical roles in the health of the earth and its inhab-3

itants. To identify bacteria and fungi that are resistant and susceptible to habitat changes4
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respectively, we retrieved paired 16S and ITS rRNA amplicon sequence data from 1,580 host,5

soil, and aquatic samples and explored the ecological patterns of the thousands of detected6

bacterial and fungal genera. Through this large-scale analysis, we identified 48 bacterial and7

4 fungal genera that were prevalent and abundant across the three biomes, demonstrating8

their resilience in diverse environmental conditions. These generalists comprised a sub-9

stantial fraction of the taxonomic diversity of their respective kingdom. Their distribution10

across samples explained a large percentage of the variation in the cross-kingdom community11

structure. We also found that the genomes of these generalists were larger and encoded more12

secondary metabolism and antimicrobial resistance genes, illuminating how they can domi-13

nate diverse microbial communities. Conversely, 30 bacterial and 19 fungal genera were only14

found in a single habitat, suggesting they cannot readily adapt to different and changing15

environments. These findings can contribute to designing microbiome-mediated strategies16

for pressing global changes.17

Significance18

Humans, plants, and aquatic and soil environments are home to a collection of microorgan-19

isms, known as their microbiome. The microbial communities are becoming increasingly20

perturbed by environmental change and changes in their associated hosts. Through the21

analysis of 1,580 microbiomes, we identify a small number of bacteria and fungi that can22

achieve high abundance in diverse host, aquatic, and soil environments, demonstrating their23

resilience to variable environments. These microbes contribute to microbiome diversity and24

more frequently engage in positive interactions with other microbes. We also identify a25

subset of bacteria and fungi whose environmental distribution was extremely limited, sug-26

gesting that they are vulnerable to change and may not be able to survive large shifts in27

their habitat.28

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2023. ; https://doi.org/10.1101/2022.11.15.515575doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.15.515575
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction29

Environments, plants, and animals are colonized with communities of microbial organisms,30

termed the microbiome that play critical roles in the function and health of their hosts and31

habitats. However, environmental change and alterations in host lifestyle are profoundly32

affecting these microbial consortia. Westernized diets low in fiber and rich in saturated fats33

and sugars, have decreased the abundance of beneficial microbes and been linked with myriad34

health conditions, including obesity, type 2 diabetes, and inflammatory bowel disease (1–4).35

Changes in marine environments due to climate change have induced major shifts in marine36

food webs, primary productivity, and carbon export (5–8). Additionally, anthropogenic37

climate change is resulting in net carbon loss in soil and changes in microbial community38

composition (9).39

Ecological theory predicts that generalists, or organisms that are fit across a wider range of40

conditions, will be more resilient to changing environmental conditions (10, 11). Conversely,41

specialists, or organisms that are adapted to thrive in very specific environments, will be less42

able to withstand perturbations to their habitat. We are currently lacking a comprehensive43

understanding of the capacity of individual bacterial and fungal taxa to adapt to changing44

environmental conditions. However, this is crucial as those unable to change are susceptible45

to biodiversity loss, while those that can grow in a wider range of conditions may survive and46

flourish with unknown consequences. To this end, we performed a large-scale analysis of com-47

munity sequencing data sets from host, soil, and aquatic environments with paired bacterial48

and fungal characterization to shed light on the ecological properties of the genera present49

and their putative resilience to change. We focused on three aspects: (i) the identification50

of bacteria and fungi that occurred in diverse environments capable of adapting to diverse51

environments (generalists) or were limited to highly specific environments (specialists); (ii)52

the relative abundance of bacterial and fungal generalists and specialists as a marker for53

their fitness and competitive colonization potential; and (iii) whether their presence in a54

habitat might trigger global changes in inter- and cross-kingdom population structure.55
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Results56

Environmental specificity of bacterial and fungal communities57

For a global survey of bacteria and fungi across microbial communities, we analyzed paired58

16S and ITS rRNA amplicon sequence data from 1,580 samples deposited in public databases.59

Samples were collected from Europe, Asia, and the Americas between 2010 and 2018 (Figure60

1A). For cross-biome comparisons, samples were classified as aquatic, host, or soil environ-61

ments based on the habitat they were collected from. This broad grouping is supported62

by principle coordinate analysis (PCoA) based on Bray-Curtis dissimilarity showing that63

samples from each environment largely cluster with each other and distinct from the other64

environments (Figure 1B)—a finding mirrored by a recent study of 22,700 bacterial micro-65

biomes (12).66

Of the 1,580 samples that we analyzed, 871 originated from soils, 494 from hosts (both67

mammalian and non-mammalian), and 215 from aquatic environments. The habitats that68

contributed largest number of samples for each environment were temperate (N=498) and69

conifer forests (N=147) for the soil, gut (N=287) and skin (N=68) for the hosts, and large70

lakes (N=87) and other freshwater (N=71) for the aquatic environments (see Supp. File71

1 for details of all projects). Taxonomic profiling of bacterial and fungal communities was72

performed using the SILVA and UNITE databases, respectively. Rarefaction curves of each73

habitat indicated that most projects adequately captured the diversity of both the bacterial74

and fungal communities (Figure 1C). In total 2,977 bacteria and 1,740 fungal genera were75

detected across all samples (Figure 1D). We next examined the overlap of genera between76

environments, where a genus was considered shared if it was detected in at least one habitat77

in each of the three different environments (host, aquatic, and soil). For bacteria, soil and78

aquatic environments had the highest number of shared genera (N=1,662), followed by host-79

soil (N=1,483) and host-aquatic (1,226). The pattern was different for fungi, with host-soil80

sharing the most (N=884), followed by aquatic-soil (N=205) and host-aquatic (N=189).81

These trends remained after controlling for the different number of samples across the three82
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environments in 842 and 998 out of 1,000 random down sampled subsets for bacteria and83

fungi, respectively. Finally, we also confirmed that a similar degree of overlap between84

the environments was observed for different 16S and ITS amplicons, as well as significant85

correlations in the abundances of individual genera (Supp. Figure 1A-C).86

While 40% of the total bacterial genera were found in all three environments, the percentage87

dropped to only 11% for fungal genera, indicating a higher degree of environmental specificity88

(Figure 1E & F). The most prevalent higher order taxonomic ranks that were detected in89

all three environments were Proteobacteria followed closely by Firmicutes for bacteria, and90

Ascomycota for fungi. For both bacteria and fungi, soil was the environment with the highest91

percentage of uniquely detected genera (i.e. genera not detected in any sample from host92

or aquatic origin), with 23% and 38%, respectively for each two kingdom. While aquatic-93

specific bacteria accounted for 7% of the total number of detected genera, the percentage94

of unique fungi in aquatic samples was only 2% (Figure 1 E & F). The opposite trend was95

observed for host-associated microbes, with only 3% and 8% of unique bacteria and fungi,96

respectively in this environment.97

We subsequently compared the relative abundance of genera that were found in all environ-98

ments or were uniquely detected in soil-, host- or aquatic-associated environments. Bacterial99

genera detected in all three environments were significantly more abundant (Wilcoxon Rank100

Sum test, p < 0.001) than genera uniquely detected in one of the environments (Figure 1G).101

A similar pattern was observed with fungi. However, a notable exception was the relatively102

high abundance of fungi that were uniquely detected in aquatic samples. Genera of aquatic103

fungi were more abundant than either common genera and uniquely detected in soil- or host-104

associated environments (Figure 1H). This observation was also robust across the different105

16S and ITS regions used in the dataset (Supp. Figure 1D). Taken together, we find that soil106

bacteria and fungi show a higher degree of biome specificity that microbes in other biomes107

and that genera commonly detected in all environments were also more abundant in these108

microbial communities.109
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Bacterial and fungal generalists are more abundant than specialists110

and have distinct genomic features111

Generalists and specialists play important, yet distinct roles in ecosystems. However, ob-112

jectively identifying them has proven challenging. To define multi-kingdom generalists and113

specialists, we set the following criteria: generalists are genera found with high prevalence114

(>40%) in at least one habitat from each of the three environments (host, aquatic, soil).115

Conversely, specialists are genera with a high prevalence (>40%) in one habitat and low116

prevalence (<5%) in every other. A relative abundance (RA) cut-off of 0.01% was used for117

determining whether a genus was present in a sample. Using this approach, we detected 48118

bacterial generalists and 30 specialists (Figure 2A; Supp. Table 1).119

To confirm our definition of generalists and specialists, we calculated Levins’ niche breadth120

indices (Bn), which measures taxon distribution across environments and where higher values121

indicate even distribution across environments (13). Generalists showed significantly higher122

Bn values than specialists (Wilcoxon Rank Sum test, p < 0.001; Supp. Figure 2A). All123

specialists and all generalists, with the exception of the Christensenellaceae R7 genus, were124

above the detection limit and had a significant Levins’ niche breadth signal after Benjamini-125

Hochberg adjustment (13). As our criteria for defining generalists and specialists was reliant126

on human-defined biome annotations, we further validated our approach by comparing it to127

the recently developed social niche breadth (SNB) score (12). By comparing the similarity or128

diversity of microbial communities where a given genus occurs, SNB provides a data-driven129

score independent of biome annotations based on an independent dataset of over 22,500130

bacterial microbiomes (12). Indeed, the generalists identified in our study had significantly131

higher SNB scores than the bacterial specialists we identified (Wilcoxon Rank Sum test, p132

< 0.001; Supp. Figure 2B).133

We observed multiple phylogenetic origins for both generalists or specialists (Chi squared134

test, p > 0.05), indicating their roles as generalists and specialists evolved independently135

(Supp. Figure 3). Each of the top five bacterial generalists were detected in more than 50% of136
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the 1,580 samples. Among them, the most prevalent was Pseudomonas which was detected in137

52%, 70% and 89% of host, soil and aquatic samples respectively, followed by Bacillus (33%,138

71%, 35%) and Bradyrhizobium (17%, 73%, 35%). The most extreme bacterial specialists139

came from the soil. While Gryllotalpicola and Anaerovibrio were found in >91% of biochar140

samples, the prevalence dropped to 0.1% on average for non-soil environments (Supp. Table141

1). Specialists were also found in host- and aquatic-associated environments. For example,142

Acetatifactor was found in 80% of samples from the murine gut, but had a prevalence of <3%143

in all other habitats. The genus Leptospira was found in 83% of samples of the Cuyahoga144

River, but had a prevalence less than 2% in all other habitats. Interestingly, when comparing145

the relative abundance of generalists and specialists, we observed that both bacterial and146

fungal generalists had a significantly higher abundance (Figure 2B, Wilcoxon Rank Sum test,147

p < 0.001). This pattern remained when we used stricter and looser thresholds to define148

generalists and specialists (Supp. Figure 4). This finding confirms the pattern observed149

above (Figure 1G, H), suggesting that independently of how groups are defined, genera that150

can colonize diverse environments are usually able to outcompete niche-specific genera.151

When looking at the fungal kingdom, the number of generalists was much lower and only152

Aspergillus, Malassezia, Aureobasidium, and Cortinarius satisfied the criteria of a generalist153

(Supp. Table 1). Among these, Aspergillus had the highest overall prevalence among all154

samples with 38%, 52% and 12% in the host, soil, and aquatic samples, respectively. From155

the 19 fungal specialists, Chrysanthotrichum and Mycocentrospora were the most habitat-156

specific, with prevalences of 68% and 48% in temperate and conifer forests, respectively, but157

a mean prevalence of �0.1% in all other habitats. Only two of the 19 fungal specialists (11%)158

originated from outside soil environments (Vuilleminia and Seimatosporium from plants).159

As with bacterial genera, the relative abundance of fungal generalists was significantly higher160

than that of fungal specialists (Figure 2A, Wilcoxon Rank Sum test, p < 0.001).161

To gain insight into how generalists predominate microbial communities in abundance, even162

across diverse environments, we analyzed the genomes belonging to generalists and specialist163

genera available on NCBI (see Methods for details on genome selection). For bacteria,164

when analyzing the genomes of 2,328 generalists and 471 specialists, the generalists had165
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significantly larger genomes, as measured by the number of coding sequences (CDS) with166

a mean of 4,671 CDS for generalists and 3,189 for specialists. (Figure 2A, Wilcoxon Rank167

Sum test, p < 0.001). As secondary metabolism genes are often used by microbes during168

competition for resources and as chemical warfare in crowded environments, we examined the169

genomes of generalists and specialists for the presence of biosynthetic gene clusters (BCGs).170

Strikingly, the genomes of bacterial generalists encoded almost double the number of BCGs171

with an average of 5.0 compared to 2.4 for specialists (Figure 2C). Further differentiating172

bacterial generalists, they also contained significantly more antimicrobial (AMR) and stress-173

resistance genes, with an average of 4.9 AMR and 4.8 stress genes compared to 1.9 and 1.5174

for specialists, respectively (Figure 2D; Wilcoxon Rank Sum test, p < 0.001). For fungi, no175

significant differences in either the number of genes or the number of BCGs was observed176

(Figure 2B, C), likely due to the severe underrepresentation of publicly available fungal177

specialist genomes (N=5).178

To explore intra and inter-kingdom interaction patterns and to gain further insight into179

the downstream effects of the observed differences between generalists and specialists, we180

constructed individual co-abundance networks for soil, host, and aquatic environments (see181

Methods for details). Despite only considering the 1,188 bacteria and 184 fungal genera182

commonly detected in all three environments, the topological characteristics of the networks183

for each environment were highly distinct, as measured by significant differences in between-184

ness and Kleinberg’s hub node centrality scores (Wilcoxon test, p < 0.001; Supp. Figure185

5). In spite of the differences in topology, we could still compile subnetworks of inter- and186

intra-kingdom correlations found jointly among host-soil, host-aquatic and/or soil-aquatic187

environments. Strikingly, 45 of the 48 bacterial generalists and all 4 fungal generalists were188

part of those subnetworks, which are characterized by a higher number of positive than neg-189

ative edges (Figure 2E). The ratio of positive to negative edges was higher in correlations190

involving a generalist (2.5) compared to all other edges (2.2). When we looked for inter-191

actions between genera found in all three environments, we identified 43 such edges that192

all represented positive interactions between bacteria and included 21 generalists. Together193

these findings suggest that the success of generalists in colonizing diverse environments and194

achieving high abundances may be attributable to their ability carve out a niche for them-195
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selves using secondary metabolism and AMR genes and by eliciting positive interactions196

with other highly prevalent genera.197

Bacterial generalists exert a strong influence on the intra- and inter-198

kingdom community structure199

We subsequently explored whether the presence of generalists and specialists had an impact200

on the diversity of a community. Interestingly, alpha diversity, as measured as Chao 1 and201

Shannon, was significantly lower in samples where no generalist was detected compared202

to samples with generalists present for both bacterial (Figure 3A) and fungal (Figure 3B)203

communities (Permutation test of samples lacking any of the N generalists compared with204

samples lacking any N random taxa, 1*104 permutations, p < 0.03). Conversely, the impact205

of specialists on alpha diversity in their specific habitat was much less profound and varied206

by habitat without a clear trend (Supp. Figure 6).207

We subsequently shifted our focus to inter-kingdom interactions which are often overlooked208

in microbial ecology studies and examined bacterial generalists for a role in shaping the myco-209

biome community structure and vice versa. As expected, we observed a significant separation210

between the soil, host, and aquatic micro- and mycobiome beta diversity by Bray-Curtis dis-211

similarity (Figure 3C, PERMANOVA, p < 0.001 for both bacteria and fungi). Constrained212

ordination revealed a significant, linear relationship between bacterial Bray-Curtis dissimilar-213

ity and fungal community composition and vice versa (Distance-based redundancy analysis,214

abbreviated dbRDA, ANOVA p < 0.04 for all explanatory genera of the other kingdom in215

a multivariate model). Bacteria genera could explain an extensive part of the mycobiome216

variation observed in the three environments with a partial R2 of 25% by dbRDA. Of the217

bacterial genera, Conexibacter, Bacillus, and Lysobacter had the highest explanatory power218

on mycobiome variation (Fig 3D). Interestingly, six out of the top ten explanatory bacteria219

genera in the dbRDA were generalists. Similarly, fungal genera explained 26% of the micro-220

biome variation between host, soil, and aquatic samples, with Mortierella, Trichocladium,221

and Candida having the highest explanatory power (Fig 3D). Among the top ten explana-222
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tory genera was one of the four fungal generalists - Malassezia. Altogether, our analysis223

indicates that bacterial and fungal generalists profoundly impact microbial communities by224

contributing positively to the taxonomic (alpha) diversity of their kingdom- an ecological225

characteristic often associated with healthy environments, and they can also contribute to226

shaping cross-kingdom microbial structures.227

Discussion228

Recent grant global changes are profoundly affecting the health of the earth we live on and its229

inhabitants (14–16). As environmental and host-associated microbial communities become230

increasingly exposed to our changing world, we are still lacking knowledge regarding the231

capacity for millions of bacterial and fungal species to cope with these shifts. With this in232

mind, we performed a large-scale global survey of host, aquatic, and soil microbiomes to233

reveal ecological and genomic properties of bacterial and fungal genera that may promote234

or limit their establishment in new environments and how they contribute to the richness235

and diversity of an environment. The metagenomic analysis of 1,580 paired host, soil, and236

aquatic microbiomes and mycobiomes identified approximately 3,000 bacterial and 1,700237

fungal genera. Using cutoffs selected by data-driven approaches, we identified ~70 specialist238

genera whose limited distribution suggests they may struggle in different or changing habitats239

and identify ~50 widely abundant genera with a clear ability to thrive in many environments.240

While the concept of generalists and specialists in ecology is not new, it has mostly been241

applied in specific habitats (17–21) and not on a global scale. Although some studies on242

generalist and specialist microbes have appeared over the years (12, 18, 22–26), these have243

rarely included eukaryotic microorganisms such as fungi. Moreover, these studied have not244

investigated cross-kingdom biotic interactions shaping microbial communities. We demon-245

strate that both bacterial and fungal generalists share ecological features, including the246

ability to reach significantly higher abundances than specialists and contributing positively247

to the richness and diversity of their respective kingdom. Moreover, six bacterial generalists,248

including Bacillus, Lysobacter, Escherichia and Gemmatimonas and one fungal generalist,249
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Malassezia, harbor additional ecological properties and appear to play a significant role in250

shaping cross-kingdom microbial composition (Figure 3D).251

Our global survey of bacterial-fungal communities has generated a valuable list of genera252

containing organisms that may be susceptible to biodiversity decline and even extinction253

under changing environmental threats (27, 28). Conversely, the identified generalist bac-254

teria and fungi are highly resilient against environmental perturbations and may even be255

considered as targets for microbiome engineering, where their ability to flourish in highly256

diverse environments and contribute to richness is a desirable trait. Their beneficial ability257

to thrive in diverse communities may explain the fact that they carry an enhanced arsenal of258

antimicrobial resistance genes (Figure 2D). One challenge ahead will be moving the analysis259

of generalists and specialists to the species and strain level to understand the functional260

characteristics that differentiate generalists from other microbes. Currently, taxonomic clas-261

sification of bacteria and fungi to the species and strain level is inadccurate using amplicon262

metagenomics (29–31), so this was not addressed in our study. Moreover, the species- and263

strain-level diversity of the microbial world is enormous so many more samples would be re-264

quired to gain a comprehensive overview of its generalists and specialists. One way forward265

that can be likely explored is by using deep functional characterization at the pathway and266

enzyme level using shotgun metagenomics datasets, especially for bacteria. The functional267

characterization of fungal generalists may prove to be a much greater challenge, as the tools268

for functional prediction based on metagenomic data lag behind prokaryotic microorganisms.269

Nevertheless, we believe that large-scale computational analyses combined with laboratory270

experiments in cross-disciplinary approaches will be able to overcome these challenges and271

address the many open questions about microbial niche range and its consequences for mi-272

crobial extinction and global biodiversity loss.273
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Materials and methods274

Sample selection275

Included studies were retrieved by querying NCBI BioProject with the terms ‘bacteria’ and276

‘fungi’ in any field. Only Biosamples with both 16S rRNA and ITS amplicon sequencing277

data were considered for the concurrent analysis of both kingdoms. We used both the278

identifier and attributes of the biosample, such as aliases and library names, to map fungal279

and bacterial read files to a sample using a custom script. Samples were associated to280

an environment (aquatic, host, or soil) using manual curation of associated publications281

and biosample attributes provided by the depositor. The three environments were further282

subdivided into 17 habitat groups based on the body part and/or the ecoregion of the283

sampling location for host and other samples, respectively (32). Habitats with less than five284

samples were pooled together.285

Generation of genus-level abundance profiles286

Genus-level abundance profiles were calculated using a custom nextflow pipeline (33). Briefly,287

reads were downloaded from NCBI SRA using grabseqs, except for the American Gut Project,288

which was downloaded from Qiita (34, 35). Paired-end reads were merged using NGmerge289

(36). Quality Control (QC) and adapter removal was performed using trimmomatic with290

a minimum Phread quality of 20 and a minimal read length of 100 (37). Quality was291

assessed using FastQC and MultiQC (38). Subsequent steps were performed using QIIME2292

(39). Reads were dereplicated following closed-reference OTU picking for both kingdoms293

separately using VSEARCH with a 97% identity threshold (40). For taxonomic annotation,294

SILVA 132 97% consensus and UNITE 8.2 dynamic databases were used for bacteria and295

fungi, respectively (41, 42). Following quality control, a total of 1,580 samples were selected296

for downstream analyses.297
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Discovery of sample rRNA amplified region298

Multiple rRNA regions were used to characterize microbial diversity as the study dataset is299

composed of many sequencing projects. When available, the specific rRNA region ampliefied300

was obtained from deposited metadata or linked publication. For BioProjects where this301

information was not available, the following was performed. As the SILVA database (v138.1)302

contains full length bacterial rRNA sequence, the hypervariable regions (e.g. V1-V3, V4-V5)303

from each taxa was extracted using the in silico pcr tool (https://github.com/egonozer/in_304

silico_pcr) with primers described in (43).Amplicon sequence data from each project was305

then aligned to each variable region using BWA-MEM v.0.7 and contig coverage quantified306

using BBTools v.39.01. The 16S variable region with the highest percent coverage was taken307

as the region amplified in the study. For the ITS amplicon data, ITSx1.1.13 (44) was used308

to extract the ITS1 and/or ITS2 consensus from sequence reads. The BioProject primers309

identified through this analysis, as well as those retrieved from association publications is310

listed in Supp. File 1.311

Abundance correlation between varying rRNA amplions312

To calculate the correlation in genus abundances between the differing rRNA regions am-313

plified, genera that were detected in all three environments were considered and samples314

aggregated into whether they included sequence from the V1-V4 regions or V4-V5 regions315

for bacteria and ITS1 or ITS2 for fungi. For each rRNA category, Pearson’s correlation co-316

efficients were calculated for genus abundance in each environment. The similarity between317

the correlation matrices (V1-V4 and V4-V5 for bacteria and ITS1 and ITS2 for fungi) was318

then calculated by transforming the upper triangle of each correlation matrix into a vector319

and calculating the correlation coefficient between the two.320
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Workflow and statistical analysis321

Analyses were performed using a custom drake pipeline (45) built using the programming322

language R 4.0.2. Briefly, abundances obtained from OTU profiling were total-sum-scaled323

(TSS) and pooled at genus rank. All tools were used with default parameters if not explicitly324

specified.325

Diversity326

Alpha diversity was estimated using Shannon and Chao1 metrics with the phyloseq and327

vegan packages (46, 47). To quantify the contributions of a bacterial community profile328

with the fungal one and vice versa, we used linear and unsupervised Canonical Correlation329

Analysis, as implemented in the function CCorA of the vegan R package (46). P-values were330

obtained using blocked permutations to control for the habitat and to reduce assumptions331

of the test. Supervised constrained ordination was performed using stepwise Distance-based332

Redundancy Analysis (dbRDA) adapted from (48). This analysis shows linear relationships333

between bacterial dissimilarities and abundances of selected explanatory fungal genera (and334

vice versa). An optimal subset of up to 50 explanatory genera of the other kingdom was335

computed using a stepwise feed-forward approach, as implemented in the ordistep function336

of the vegan R package (46).337

Co-abundance networks338

SparCC, as implemented in FastSpar, was used to assess correlation between taxa pairs for339

each environment separately (49, 50). Both kingdoms were pooled together, allowing for340

the identification of interkingdom correlations. Only genera found in all three environments341

were considered for pairwise correlation. Node topology metrics were calculated using the R342

package igraph.343

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2023. ; https://doi.org/10.1101/2022.11.15.515575doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.15.515575
http://creativecommons.org/licenses/by-nc-nd/4.0/


Generalists and specialists344

Genera were defined as generalists if they were found in at least 40% of samples in at least345

one habitat from each environment (host, soil, aquatic) with a relative abundance of at least346

0.01%. Complementary, genera were defined as specialists if they were found in at least347

40% of samples in one habitat and less than 5% of samples in all other habitats using the348

same abundance threshold as for generalists. Levins’ niche breadth index was calculated as349

implemented in the R package MicroNiche (51).350

Genome features of generalists and specialists351

As amplicon sequence data is based on maker genes, deposited genomes were used to char-352

acterize functional traits associated with the genomes of generalists and specialists. The353

generalists and specialist genera were queried in NCBI. Of the resulting genome list, all354

genomes or up to 60 randomly selected genomes if more were available were selected for each355

genus. This resulted in genomes for 2,328 bacterial generalists, 117 fungal generalists, 471356

bacterial specialists, and 5 fungal specialists. Genome size and number of coding regions was357

obtained from the NCBI metadata. For the calculation of the number and type of biosyn-358

thetic gene clusters in each genome, AntiSMASH v6.1.1 was used (52). Antimicrobial and359

stress resistance genes were predicted in bacterial genomes using AMRFinderPlus (53).360

Code and data availability361

Scripts created for data processing and statistical analysis are available at https://github.362

com/bioinformatics-leibniz-hki/its-16s. Raw sequence data can be downloaded from any363

International Nucleotide Sequence Database Collaboration (INSDC) server using accessions364

as provided in Supplemental Table 1-2 and the git repository.365
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Figure 1: A global analysis of microbial communities reveals differences in environmental speci-
ficities between bacteria and fungi. (A) Distribution of samples used in this study (N=1,580) by
geographic location. (B) Bray-Curtis dissimilarity between samples, colored by environment. Crosshatches
represent the mean ± SD for each environment. (C) Rarefaction curves of Shannon alpha diversity for each
study demonstrate sufficient sampling depth. Curves are shown as LOESS regressions from 10 independent
sampling trials at 10 given sampling subset sizes. Lines are colored by environment and are surrounded
by ribbons indicating the 95% confidence interval across the trails. (D) Intersection of bacterial and fungal
genera found in at least one sample in each environment as Venn diagrams. (E,F) Percentage of genera
found in all three or only one environment. (G,H) Abundance comparisons of common and unique genera
by total sum scaling (TSS). A genus was considered present in a sample using a threshold of abundance >
.01%. Significance determined by Wilcoxon rank sum test; *** denotes p < 0.001.
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Figure 2: Generalists are more abundant and bacterial generalists have larger genomes with
more biosynthetic gene clusters and antimicrobial resistance genes. (A) Relative abundances of
bacterial and fungal generalists and specialists. Values were averaged by project to account for different
cohort sizes. Statistical significance calculated using Wilcox rank-sum test (*** denotes p<0.001). (B-
C) Number of coding sequences (CDS) (B) and biosynthetic gene clusters (BCGs) (C), in the genomes of
generalists and specialists. Data from the genomes of 2,328 bacterial generalists, 117 fungal generalists, 471
bacterial specialists, and 5 fungal specialists. Statistical significance calculated by Wilcox rank-sum test
(**** denotes p<0.0001). (D) Number of antimicrobial resistance (AMR) and stress genes in the genomes of
bacterial specialists. (E) Networks of genera found in all three environments and significantly co-abundant
in the majority of environments (SparCC FDR p < 0.05, |r| > 0.2).
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Figure 3: Generalists significantly impact diversity and cross-kingdom variation. A-B: Shannon
and Chao1 alpha diversity were calculated for bacteria (A) and fungi (B). Samples were grouped by whether
they contained any generalist (genera with >40% prevalence in at least one habitat from every environment;
abundance > 0.01%), or not. Significance bars indicate permutation test compared to samples without
random taxa instead of generalists (* q<0.05, ** q<0.01, *** q<0.001). C-D: Bacterial and fungal Bray-
Curtis dissimilarities constrained by explanatory genus abundances of the other kingdom using distance-based
Redundancy Analysis (dbRDA). C: Explaining genera were selected using a feedforward approach. Effect
size of most explanatory taxa is shown in D by multivariate model (as displayed in C) or univariate model
containing only the taxon of interest. Generalists are indicated with blue text. Stars indicate significance
by ANOVA (** p<0.01).
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