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 21 

Summary  22 

Molecular de-extinction could offer new avenues for drug discovery by reintroducing bioactive 23 
molecules that are no longer encoded by extant organisms. To prospect for antimicrobial 24 
peptides encrypted as subsequences of extinct and extant human proteins, we introduce the 25 
panCleave random forest model for proteome-wide cleavage site prediction. Our model 26 
outperformed multiple protease-specific cleavage site classifiers for three modern human 27 
caspases, despite its pan-protease design. Antimicrobial activity was observed in vitro for 28 
modern and archaic protein fragments identified with panCleave. Lead peptides were tested for 29 
mechanism of action, resistance to proteolysis, and anti-infective efficacy in two pre-clinical 30 
mouse models. These results suggest that machine learning-based encrypted peptide prospection 31 
can identify stable, nontoxic antimicrobial peptides. Moreover, we establish molecular de-32 
extinction through paleoproteome mining as a framework for antibacterial drug discovery. 33 

Keywords: antimicrobial peptides, antibiotics, machine learning, protein engineering, drug 34 
discovery, hominins, Neanderthal, Denisovan, mouse models, antibiotic resistance 35 
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Highlights: 36 

1. Machine learning guides bioinspired prospection for encrypted antimicrobial peptides. 37 
2. Modern and extinct human proteins harbor antimicrobial subsequences. 38 
3. Ancient encrypted peptides display in vitro and in vivo activity with low host toxicity. 39 
4. Paleoproteome mining offers a new framework for antibiotic discovery. 40 

 41 

Introduction 42 

The idea of reintroducing extinct organisms into extant environments has captured the public and 43 
scientific imagination, raising profound ethical and ecological questions (1). Here, we introduce 44 
molecular de-extinction as an antibiotic discovery framework. Molecular de-extinction is the 45 
resurrection of extinct molecules of life: nucleic acids, proteins, and other compounds no longer 46 
encoded by living organisms. While the societal benefit of organismal de-extinction is still 47 
unknown and contentious, technical challenges like incomplete genomic coverage remain 48 
significant (1, 2). By synthesizing only isolated compounds, molecular de-extinction circumvents 49 
many of the ethical and technical problems posed by whole-organism de-extinction. Molecular 50 
de-extinction is motivated by the hypothesis that molecules that conferred benefits to extinct 51 
organisms could be beneficial in the current global environment. Such molecules could be of 52 
biomedical or economic utility by bolstering defenses against future challenges that resemble 53 
stressors from environments past, including climate change or infectious disease outbreaks. The 54 
present work proposes molecular de-extinction as a drug discovery framework for expanding the 55 
therapeutic search space through paleoproteome mining. 56 
 57 
The global antibiotic resistance crisis, the threat of emerging pathogens, and the overuse of 58 
traditional antibiotic scaffolds necessitate new, computer-aided drug development paradigms (3). 59 
Protein informatics is fertile ground for antibiotic discovery, as many peptides are known to 60 
modulate the host immune system, disrupt bacterial cell membranes, suppress biofilms, and 61 
promote wound healing (4). Furthermore, 20n variants exist per n-length canonical amino acid 62 
sequence, presenting an enormous combinatorial space from which to select peptides with 63 
targeted activity. Antimicrobial peptides (AMPs) are an ancient class of host defense molecule 64 
found across the domains of life, representing an essential facet of innate immunity throughout 65 
evolution. Some AMPs have demonstrated collateral sensitivity in antibiotic-resistant bacteria 66 
and a low propensity to induce resistance (4, 5). The human cryptome is a subset of the proteome 67 
known to harbor AMPs that are released from precursor proteins by both host and pathogen 68 
proteases (6, 7). These bioactive encrypted peptides can serve as natural templates for new 69 
antibiotics and for bioinspired engineered therapies (8). 70 

To mine extinct and extant human proteomes for potential encrypted peptides, we present the 71 
panCleave Python pipeline (https://gitlab.com/machine-biology-group-public/pancleave). This 72 
open-source machine learning (ML) tool leverages a pan-protease cleavage site classifier to 73 
perform computational proteolysis: the in silico digestion of human proteins into peptide 74 
fragments (Figs. 1, S1). We experimentally validate panCleave for the prospection of encrypted 75 
AMPs in modern human secreted proteins and in the archaic proteomes of our closest extinct 76 
relatives, Neanderthals and Denisovans (Fig. 1). Using panCleave, we discovered new peptides 77 
encrypted within known precursor protein groups and rediscovered a known encrypted AMP. By 78 
discovering novel AMPs through computational paleoproteome mining, this work offers a proof-79 
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of-concept for molecular de-extinction as an antibiotic discovery framework. Furthermore, this 80 
study introduces the first known antimicrobial subsequences encrypted in archaic human 81 
proteins. 82 

 83 

Results 84 

Computational proteolysis pipeline 85 

The panCleave Python pipeline (Figs. 1, S1) is a protein informatics tool that uses ML for 86 
computational proteolysis: the in silico fragmentation of human protein sequences into peptides. 87 
The development of this predictive tool was motivated by the hypothesis that protease-agnostic 88 
cleavage site prediction could facilitate biologically inspired prospection for encrypted host 89 
defense peptides. Prior cleavage site classifiers are specialized models that predict cleavage 90 
activity for only a subset of human proteases (9–20). A pan-protease design facilitates proteome-91 
wide searches, circumventing the need to hypothesize protease-substrate relationships. To our 92 
knowledge, the panCleave random forest is the first cleavage site classifier trained on all human 93 
protease substrates in the MEROPS Peptidase Database (21). Substrate amino acid frequencies, 94 
length distributions, protease representation, and precursor protein functions for all training and 95 
testing data are characterized in Figs. S2–S6. Source code, training data, and testing data are 96 
available on GitLab (https://gitlab.com/machine-biology-group-public/pancleave).  97 

The performance of the panCleave random forest can be quantified on an aggregated, protease-98 
agnostic level and a disaggregated, protease-specific level. On the complete independent test set 99 
comprising substrates from 182 proteases (n = 9,927), panCleave achieved an overall accuracy of 100 
73.3%. Thresholding by estimated probability of binary class membership (i.e., probability that a 101 
subsequence is a cleavage site or non-cleavage site) indicates increasing accuracy with 102 
increasing estimated probability: panCleave achieved 81.9% accuracy for predictions of 60% 103 
estimated probability or greater (62.8% of test set predictions) and a maximum accuracy of 104 
96.6% for predictions of 90% estimated probability or greater (2.1% of predictions) (Fig. 2c). 105 
The random forest probability estimate is useful for providing a degree of confidence in a 106 
predicted class membership (22). The area under the receiver operating characteristic curve was 107 
80.8% and the average precision was 80.3% (Fig. 2a,b). Negative predictive value, positive 108 
predictive value, sensitivity, and specificity were 73.2%, 73.5%, 73.0%, and 73.6%, respectively. 109 

When disaggregating model accuracy by protease, panCleave performance ranged widely (Fig. 110 
2g,h; Tables S1–S4). Among proteases with at least 100 test set observations, panCleave 111 
achieved greater than 80% accuracy on caspase-3 (C14.003; 99.2%), caspase-6 (C14.005; 112 
98.6%), granzyme B (S01.010; 93.2%), legumain (C13.004; 90.6%), and cathepsin S (C01.034; 113 
81.9%) (Fig. 2g; Table S1). Among protease clans, panCleave achieved greater than 70% 114 
accuracy on endopeptidase clan CD (type protease caspase-1 [C14.001]; 93.9%), 115 
endopeptidase/exopeptidase clan SB (type protease subtilisin Carlsberg [S08.001]; 88.6%), 116 
cysteine protease clan CA (type protease papain [C01.001]; 74.1%), and endopeptidase clan PA 117 
(type protease chymotrypsin A [S01.001]; 70.6%) (Table S3). The average accuracy was greatest 118 
for cysteine catalytic types (81.3%; 1858/2286 observations predicted correctly) and lowest for 119 
threonine catalytic types (34.6%; 18/52) (Fig. 2h). 120 

When compared to pre-existing protease-specific models, panCleave outperformed for caspase-2 121 
(C14.006; 100.0%), caspase-3 (C14.003; 99.15%), and caspase-1 (C14.001; 92.68%) (Figure 2d; 122 
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Table S4). However, pre-existing models outperformed for multiple matrix metallopeptidases 123 
(Table S4). While the pan-protease design of panCleave does not preclude the possibility of high 124 
or state-of-the-art accuracy for specific proteases, the use of panCleave for protease-specific 125 
applications should be guided by the reported disaggregated accuracies (Fig. 2d,g,h; Tables S1–126 
S4). 127 

Modern encrypted peptides display antimicrobial activity in vitro 128 

Eight of 80 (10.0%) modern secreted protein fragments were active against one or more 129 
pathogens in at least one of the conditions tested (Fig. 3; Tables S5, S6). Importantly, none of the 130 
tested sequences have yet been reported as AMPs or as AMP subsequences in the Database of 131 
Antimicrobial Activity and Structure of Peptides (DBAASP) (23).  132 

The encrypted peptide CBPZ-GSK24 from carboxypeptidase Z (UniProt ID: CBPZ_HUMAN) 133 
demonstrated the strongest and most broad-spectrum antimicrobial activity in vitro, inhibiting 134 
Pseudomonas aeruginosa PA01 (8 μmol L-1), Pseudomonas aeruginosa PA14 (4 μmol L-1), 135 
Escherichia coli AIC221 (4 μmol L-1), Escherichia coli AIC222 (2 μmol L-1), and Acinetobacter 136 
baumannii ATCC19606 (16 μmol L-1). Fragment A7E2T1-SPR29 of uncharacterized protein 137 
A7E2T1_HUMAN also displayed broad-spectrum activity against E. coli AIC221 (64 µmol L-1), 138 
E. coli AIC222 (64 µmol L-1), and A. baumannii ATCC19606 (8 µmol L-1). CALR-GWT20, 139 
encrypted in calreticulin (UniProt ID: CALR_HUMAN), displayed antimicrobial activity against 140 
colistin-resistant E. coli AIC222 at 128 μmol L-1 and A. baumannii ATCC19606 at 64 µmol L-1. 141 
Fragment XDH-AVA32, a subsequence of xanthine dehydrogenase/oxidase (UniProt ID: 142 
XDH_HUMAN), was active at 32 μmol L-1 against both E. coli AIC221 and AIC222 strains. 143 
ISK5-GKI32, part of the serine protease inhibitor kazal-type 5 (UniProt ID: ISK5_HUMAN), 144 
was also active at 128 μmol L-1 against both E. coli strains. LYSC-AVA39, encrypted in 145 
lysozyme C (UniProt ID: LYSC_HUMAN), displayed activity at 128 μmol L-1 against P. 146 
aeruginosa PA14 and both E. coli strains. Fragment CO7A1-AIG15 from human long-chain 147 
collage (UniProt ID: CO7A1_HUMAN) displayed activity at 32 µmol L-1 against P. aeruginosa 148 
PA14, while the protachykinin-1 (UniProt ID: TKN1_HUMAN) fragment TKN1-SSI27 was 149 
active at 64 µmol L-1 against A. baumannii ATCC19606. The physicochemical profiles of 150 
modern encrypted peptides (MEPs) are described in the Supplementary Discussion, Figs. 2 and 151 
S7, and Tables S7 and S8. 152 

Archaic encrypted peptides display antimicrobial activity in vitro 153 

Six of 69 (8.7%) archaic protein fragments displayed in vitro antimicrobial activity (Fig. 3; 154 
Tables S10, S11). None of these fragments are reported as AMPs nor AMP subsequences in 155 
DBAASP (23). Fragment PDB6I34D-ALQ29 of chain D of the Neanderthal glycine 156 
decarboxylase protein displayed the broadest spectrum activity, moderately inhibiting both P. 157 
aeruginosa and E. coli strains (MICs from 32 to 128 μmol L-1). Denisovan transmembrane 158 
protein fragments A0A0S2IB02-AYT38 and A0A343EQH0-NVK38 displayed selective activity 159 
against P. aeruginosa PA01 at 128 μmol L-1. Similarly, A0A343AZS4-FMA25 encrypted within 160 
chain 1 of Denisovan NADH-ubiquinone oxidoreductase and A0A343EQH4-LAM11 from 161 
Neanderthal ATP synthase subunit A displayed selective activity against A. baumannii 162 
ATCC19606 at 128 μmol L-1. Neanderthal adenylosuccinate lyase fragment A0A384E0N4-163 
DLI09 moderately inhibited A. baumannii ATCC19606 (128 μmol L-1), methicillin-resistant 164 
Staphylococcus aureus ATCC BAA-1556 (128 μmol L-1), and Staphylococcus aureus 165 
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ATCC12600 (128 μmol L-1). The physicochemical profiles of the archaic encrypted peptides 166 
(AEP) are described in the Supplementary Discussion, Figs. 2 and S7, and Tables S8 and S12. 167 

Resistance to proteolytic degradation 168 

Among MEPs, those curated for clustering strongly with known AMPs were highly resistant to 169 
serum proteases (Fig. 3). Up to 85% of the initial concentration of these peptides remained after 170 
six hours of continuous exposure to serum proteases. Shorter MEPs (8-residues long) were less 171 
susceptible to cleavage than longer MEPs (up to 24 residues), with ~35% of the initial 172 
concentration present after six hours of exposure to proteases versus 15–20%, respectively. On 173 
average, AEPs were more susceptible to proteolytic degradation than MEPs. An exception to this 174 
was the 9-residue-long encrypted peptide A0A384E0N4-DLI09, the shortest AEP tested. This 175 
short peptide resisted degradation for two hours, decreasing to 80% of its initial concentration, 176 
with ~55% of its initial concentration remaining after six hours of exposure (Fig. 3).  177 

Mechanism of action assays 178 

MEPs and AEPs were investigated with fluorescent probes to determine how they affect the 179 
bacterial membrane. Positive control polymyxin B (PMB) is a peptide antibiotic having known 180 
permeabilizing and depolarizing effects (Figs. 3, S8, S9). In both assays, A. baumannii cells 181 
(Figs. 3, S8a-b, S8d-e) and P. aeruginosa PA01 (Fig. S8c,f) were exposed to the most active 182 
MEPs (CALR-GWT20, CBPZ-GSK4, TKN1-SSI27, and A7E2T1-SPR29 for A. baumannii) and 183 
AEPs (A0A384E0N4-DLI09 and A0A343EQH4-LAM11 for A. baumannii; A0A343EQH0-184 
NVK38 and A0A0S2IB01-AYT38 for P. aeruginosa) at their respective MICs (Figs. 3, S8).  185 

All MEPs except TKN1-SSI27 presented permeabilizing profiles similar to that of PMB. MEP 186 
TKN1-SSI27 initially demonstrated the slowest permeabilizing kinetics, yet progressively 187 
displayed the highest permeabilization efficiency (Figs. 3, S8, S9). The only peptide with an 188 
overall permeabilization efficacy lower than PMB was MEP CALR-GWT20. All MEPs initially 189 
displayed relatively slow depolarizing kinetics that increased over time. After 30 minutes, 190 
modern peptides had stronger depolarizing effects than PMB, which were maintained until the 191 
end of the experiment (Fig. 3). No significant differences were observed among their 192 
depolarizing activities. 193 

AEPs permeabilized A. baumannii cells similarly to (A0A343EQH4-LAM11) or less than 194 
(A0A384E0N4-DLI09) PMB, but had much stronger depolarizing effects (Figs. 3, S8, S9). AEPs 195 
A0A343EQH0-NVK38 and A0A0S2IB01-AYT38 permeabilized P. aeruginosa cells (Figs. 3, 196 
S8), with higher relative fluorescence over time, indicating that P. aeruginosa was more 197 
sensitive than A. baumannii to these two peptides. Notably, A0A343EQH0-NVK38 and 198 
A0A0S2IB01-AYT38 were more strongly depolarizing than PMB for P. aeruginosa cells (Fig. 199 
S8).  200 

Anti-infective efficacy in preclinical animal models 201 

To assess whether modern and archaic encrypted peptides retain their in vitro antimicrobial 202 
activity in complex living systems, we probed their antimicrobial properties in two mouse 203 
models (Fig. 1): a skin abscess model and a preclinical murine thigh infection model.  204 

For skin abscess experiments, we selected MEPs and AEPs with activity at concentrations lower 205 

than 64 μmol L-1 against A. baumannii and P. aeruginosa PA01. Bacterial loads of 106 and 105 206 
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cells in 20 μL of A. baumannii and P. aeruginosa PA01, respectively, were administered to a 207 
skin abscess created on the back of each mouse. A single dose of PMB (control), MEP, or AEP 208 
was delivered as monotherapy to the infected area at MIC. Except for MEP A7E2T1-SPR39, all 209 
peptides demonstrated bactericidal effects in the skin abscess model (Fig. 4a). Activity  levels 210 
were comparable to those of some of the most potent AMPs described to date in the literature 211 
using the same model, i.e., polybia-CP (24) and PaDBS1R6 (25). AEP A0A343EQH4-LAM11 212 
and MEP CALR-GWT20 markedly reduced bacterial loads by 5–6 orders of magnitude against 213 
A. baumannii. AEPs A0A343EQH0-NVK38 and A0A0S2IB02-AYT38 reduced the bacterial 214 
load of P. aeruginosa by 3–4 orders of magnitude (Fig. 4b). No deleterious effects were 215 
observed in the animals (Fig. 4c).  216 

For the preclinical murine thigh infection with A. baumannii (Fig. 4d), each peptide was injected 217 
at its MIC as a single intraperitoneal dose. The peptides used were active at concentrations lower 218 

than 64 μmol L-1 against A. baumannii. Three- and five-days post-treatment, all peptides tested 219 
presented bacteriostatic activity (Fig. 4e). In contrast, the PMB and levofloxacin controls 220 
displayed bactericidal activity and cleared the infection after five days. No significant changes in 221 
mouse weight were observed (Fig. 4f). As weight loss is a proxy for toxicity, these results 222 
suggest that the tested encrypted peptides are non-toxic.  223 

 224 

Discussion 225 

This proof-of-concept study for ML-facilitated molecular de-extinction offers preliminary 226 
support for pharmacological prospection in paleoproteomes. We report the first known 227 
antimicrobial subsequences encrypted within archaic human proteins. While prior cleavage site 228 
classifiers favor protease-specific designs (9–20), the panCleave random forest is trained on 229 
protease-agnostic data yet is highly accurate for multiple specific proteases (Fig. 2). The 230 
panCleave pipeline uncovered six antimicrobial subsequences encrypted within extinct 231 
proteomes, allowing access to bioactive peptides with unusual amino acid distributions. Given 232 
the essential role of AMPs in innate immunity, host defense peptides derived from archaic 233 
introgression may have been retained in the modern human proteome. Potential maintenance of 234 
archaic AMPs in modern proteomes may merit future inquiry. The modern and archaic peptides 235 
presented here may offer new prototypes for antibiotic development. 236 

The observed membrane depolarization was unexpected (8) and may have resulted from 237 
physicochemical differences between these peptides and human encrypted peptides mined with 238 
other computational methods (8), which do not depolarize bacterial cytoplasmic membranes. If 239 
encrypted peptides operate via mechanisms of action independent of cytoplasmic membrane 240 
depolarization, encrypted AMPs would be mechanistically distinct from non-encrypted AMPs. 241 
Encrypted AMP diversity is, therefore, an intriguing area for future inquiry.  242 

Rediscovery of a known antimicrobial motif 243 

In addition to discovering new encrypted AMPs, the panCleave pipeline unintentionally 244 
uncovered a MEP containing a known bioactive subsequence. As lysozyme C is known to be 245 
bacteriolytic and to enhance immunoagent activity, it is unsurprising that a subsequence of this 246 
enzyme might itself display antimicrobial activity. A known encrypted peptide of human 247 
lysozyme C is a subsequence of panCleave-generated MEP LYSC-AVA39 (26, 27). The 248 
unintentional rediscovery of this antimicrobial motif in lysozyme C supports the use of the 249 
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present pipeline for encrypted AMP discovery. Similarly, all encrypted AMPs discovered in the 250 
present work originate from proteins belonging to groups previously described in the encrypted 251 
peptide literature. As peptide fragments were not curated based on their precursor protein, this 252 
further lends support for panCleave as an encrypted AMP discovery tool. 253 

Precedents for modern precursor proteins 254 

Secreted proteins have previously been targeted for bioactive encrypted peptide discovery (28). 255 
A prior whole-proteome search found an overrepresentation of secreted and membrane-bound 256 
proteins among encrypted AMP precursors, perhaps because AMPs are more likely to encounter 257 
pathogens in the extracellular environment (8). As has been thoroughly reviewed, enzymes are 258 
common precursors for encrypted host defense peptides (29). MEP precursor proteins identified 259 
in this study generally display catalytic activity (Table S9), with all MEP precursor groups 260 
having precedents in the encrypted peptide literature. 261 

Proteases across the tree of life not only catalyze encrypted peptide release but also contain 262 
encrypted AMPs (29). In the present study, encrypted AMP CBPZ-GSK24 is derived from the 263 
protease carboxypeptidase Z, which may participate in prohormone processing (30).  264 

Fragment CALR-GWT20 is derived from calreticulin, a calcium-binding chaperone protein that 265 
is highly conserved in multicellular life and is primarily localized to the endoplasmic reticulum. 266 
Calreticulin has been implicated in innate immune responses to bacterial infection in mammals, 267 
marine vertebrates, marine and terrestrial invertebrates, and plants (31–34). Vasostatin is a well-268 
characterized anti-angiogenesis and anti-tumor encrypted peptide that is part of calreticulin (35), 269 
lending precedent for the presence of bioactive subsequences in this precursor.  270 

Serine protease inhibitors in diverse marine organisms have displayed antibacterial and antiviral 271 
innate immunity functions (36–38). The observed antibacterial and antifungal activity of a kazal-272 
type serine protease inhibitor in honeybee venom appears to act through microbial serine 273 
protease inhibition (39). MEP ISK5-GKI32 is encrypted within serine protease inhibitor kazal-274 
type 5, which is known to yield encrypted peptides with protease inhibition activity when 275 
cleaved by the protease furin (40). The downregulation, deletion, and mutation of serine protease 276 
inhibitor kazal-type 5 are associated with inflammation, compromised skin-barrier function, 277 
atopic dermatitis, rosacea, and Netherton syndrome (41–43). Assaying ISK5-GKI32 against skin 278 
microbes implicated in these conditions could be a valuable area of future inquiry.   279 

Oxidoreductases are known to contain encrypted AMPs in modern humans (28, 29, 44), Bacillus 280 
(45), Desulfocurvibacter (46), Saccharomyces (47), and Physcomitrella (48). In the present 281 
study, MEP XDH-AVA32 is a subsequence of the oxidoreductase xanthine dehydrogenase, 282 
which catalyzes the oxidative metabolism of purines. CO7A1-AIG15 is contained within the 283 
collagen alpha-1(VII) chain (syn. long-chain collagen), whose Gene Ontology molecular 284 
functions include serine-type endopeptidase inhibitor activity and extracellular matrix structural 285 
functionality (49).  286 

MEP TKN1-SSI27 is contained within protachykinin-1, a neuropeptide implicated in 287 
antibacterial and antifungal humoral responses and defense responses to both Gram-negative and 288 
Gram-positive bacteria (30). A7E2T1-SPR29 originates from the uncharacterized protein 289 
fragment A7E2T1_HUMAN, which shares 99.21% identity with both the Homo sapiens 290 
neuropeptide W preproprotein (BLAST E-value 4e-78) and prepro-Neuropeptide W polypeptide 291 
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(BLAST E-value 1e-77) (50). A7E2T1_HUMAN enables G protein-coupled receptor binding, 292 
according to Gene Ontology (49). 293 

Archaic precursors in the mitochondrial proteome  294 

As publicly available Denisovan and Neanderthal data originate from the mitochondrial 295 
proteomes of these species, the AEP precursor proteins we identified are generally mitochondrial 296 
transmembrane proteins associated with transport, mitochondrial activity, and purine or ATP 297 
synthesis (Table S13). Precursor proteins were submitted to BLAST (50) to assess similarity to 298 
modern human analogs (Table S13). On average, the AEP precursor proteins shared 99.49% 299 
identity with a modern human protein (standard deviation < 0.003). All AEP precursors 300 
identified here belong to protein groups with precedents in the literature on encrypted host 301 
defense peptides, lending support for the use of panCleave for archaic human AMP prospection.  302 

As discussed above, host defense peptides are known to be encrypted in oxidoreductases from 303 
across the kingdoms of life. AEP A0A343AZS4-FMA25 originated from the Denisovan 304 
transmembrane protein NADH-ubiquinone oxidoreductase chain 1 (EC 7.1.1.2), while 305 
A0A343EQH0-NVK38 is a subsequence of the 347-residue Neanderthal NADH-ubiquinone 306 
oxidoreductase chain 2 (EC 7.1.1.2). AEP A0A0S2IB02-AYT38 is a subsequence of the 307 
Denisovan cytochrome C oxidase subunit 1 (EC 7.1.1.9), a transmembrane protein that 308 
participates in the respiratory chain by catalyzing the reduction of oxygen to water.  309 

Precedents for lyases as precursor proteins include an AMP encrypted within the pterin-4-alpha-310 
carbinolamine dehydratase of Mus musculus (46). AEP A0A384E0N4-DLI09 is a subsequence 311 
of the Neanderthal adenylosuccinate lyase (syn. adenylosuccinase; EC 4.3.2.2), a coiled lyase 312 
involved in purine biosynthesis. AEP PDB6I34D-ALQ29 originates from chain D of the 984-313 
residue Neanderthal lyase glycine decarboxylase. 314 

The ATP synthase of the blowfly Sarconesiopsis magellanica is known to contain an encrypted 315 
AMP, and compounds excreted and secreted by this species have displayed antibacterial activity 316 
(51). Likewise, the Neanderthal ATP synthase subunit A was found to contain AEP 317 
A0A343EQH4-LAM11.  318 

Limitations of the study 319 

The following limitations should be noted when interpreting the present work. The study design 320 
assumes that the extremely high similarity among the modern human, Neanderthal, and 321 
Denisovan proteomes is also suggestive of high conservation in protease activity (e.g., protease-322 
substrate specificity). That is to say, we assume that a modern human protease with preference 323 
for a given amino acid sequence will also cleave Neanderthal or Denisovan proteins containing 324 
that subsequence. Though these assumptions leave claims of discovering naturally occurring 325 
archaic encrypted peptides unjustifiable, they do not undermine the present objective of 326 
bioinspired protein engineering. The construction of a synthetic negative dataset for training 327 
panCleave is also suboptimal, as negative sequences were not experimentally proven to be non-328 
cleavage sites. In addition, the positive training data (i.e., observations that are cleavage sites) 329 
may be noisy, as the database from which they originate (21) is aggregated across diverse data 330 
sources.  331 

 332 

STAR Methods: 333 
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Figures 586 

587 

Fig. 1. Computational-experimental framework for molecular de-extinction of588 
antimicrobial peptides. Panel (A) demonstrates the computational proteolysis pipeline, where589 
user-defined proteins are processed into 8-residue subsequences that are classified as cleavage590 
and non-cleavage sites. Input proteins are then tokenized at predicted cleavage sites, and the591 
resulting fragments can be filtered by user-defined curation methods. Curation methods can592 
include machine learning-based activity prediction, human expert curation, or other methods.593 
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Successes in archaic and modern proteome mining are visualized in panel (B), where precursors 594 
were computationally digested to reveal encrypted antimicrobial subsequences. The pipeline 595 
concludes with in vitro (C) and in vivo (D) experimental validation of fragment bioactivity, 596 
including proteolytic degradation assays, MoA assays, and mouse weight monitoring as a proxy 597 
for host toxicity. Figure created with BioRender.com and the PyMOL Molecular Graphics 598 
System, Version 2.1 Schrödinger, LLC.  599 
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 601 

 602 

Fig. 2. Model performance and antimicrobial peptide data distributions. Panels describe 603 
panCleave random forest performance evaluation (a-h) and physicochemical distributions for 604 
positive hits (i–l). Optimized panCleave random forest performance is reported for independent 605 
test data (n = 9,927): (a) the receiver operating characteristic curve; (b) precision-recall curve; 606 
(c) accuracy-probability threshold tradeoff curves; (d) accuracy of panCleave relative to pre-607 
existing models  for three caspases; (e) positive hit rate by fragment curation method; (f) positive 608 
hit rate by antimicrobial activity classifier; (g) panCleave test accuracy for proteases with at least 609 
100 test observations; and (h) panCleave test accuracy by protease catalytic type. Panels i–l 610 
compare amino acid frequency (i), fragment length (j), normalized hydrophobicity (k), and net 611 
charge distributions (l) for modern encrypted AMPs, archaic encrypted AMPs, and AMPs 612 
reported in DBAASP (23). Hydrophobicity scores employ the Eisenberg and Weiss scale (25). 613 
Note that DBAASP data were restricted to fragments of length 8–40 residues for length, 614 
hydrophobicity, and charge distributions, with null values excluded. DBAASP amino acid 615 
frequencies were computed by excluding noncanonical residues.  616 
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617 

Fig. 3. Antimicrobial activity, resistance to enzymatic degradation, and mechanism of618 
action of modern and archaic encrypted peptides. (a) Antimicrobial activity of the encrypted619 
peptides. Briefly, a fix number of 106 bacterial cells per mL-1 was used in all the experiments.620 
The modern and archaic encrypted peptides were two-fold serially diluted ranging from 128 to 2621 
μmol L-1 in a 96-wells plate and incubated at 37�°C for one day. After the exposure period, the622 
absorbance of each well was measured at 600�nm. Untreated solutions were used as controls623 
and minimal concentration values for complete inhibition were presented as a heat map of624 
antimicrobial activities (μmol L-1) against nine pathogenic bacterial strains. All the assays were625 
performed in three independent replicates and the heat map shows the mode obtained within the626 
two-fold dilutions concentration range studied. (b) Schematic of the resistance to enzymatic627 
degradation experiment, where peptides were exposed for a total period of six hours to fetal628 
bovine serum that contains several active proteases. Aliquots of the resulting solution were629 
analyzed by ultra-performance liquid chromatography coupled to mass spectrometry630 
(UPLC/MS). (c) Modern and (d) archaic peptides had different degradation behaviors. In631 
summary, archaic peptides are more resistant to enzymatic degradation than modern peptides.632 
Experiments were performed in two independent replicates. (e) Schematic showing the behavior633 
of 1-(N-phenylamino)naphthalene (NPN) the fluorescent probe used to indicate membrane634 
permeabilization caused by the encrypted peptides. (f) Modern and (g) archaic encrypted635 
peptides fluorescence values relative to the untreated control showing that modern peptides are636 
more efficient to permeabilize the outer membrane of A. baumannii cells than polymyxin B637 
(PMB) and archaic encrypted peptides. (h) Schematic of how 3,3′-dipropylthiadicarbocyanine638 
iodide [DiSC3-(5)], a hydrophobic fluorescent probe, was used to indicate membrane639 
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depolarization caused by the encrypted peptides. (i) Modern and (j) archaic encrypted peptides 640 
fluorescence values relative to the untreated control showing that archaic peptides are much 641 
stronger depolarizers of the cytoplasmic membrane of A. baumannii cells than polymyxin B 642 
(PMB) and modern encrypted peptides. Experiments were performed in three independent 643 
replicates. Figure created with BioRender.com and the PyMOL Molecular Graphics System, 644 
Version 2.1 Schrödinger, LLC.  645 

 646 
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648 

Fig. 4. Anti-infective activity of modern and archaic encrypted peptides in pre-clinical649 
animal models. (a) Schematic of the skin abscess mouse model used to assess the anti-infective650 
activity of the modern and archaic encrypted peptides with activity against A. baumannii cells (n651 
= 8). (b) Peptides were tested at their MIC in a single dose one hour after the establishment of652 
the infection. (c) To rule out toxic effects of the peptides, mouse weight was monitored653 
throughout the whole extent of the experiment. (d) Schematic of the neutropenic thigh infection654 
mouse model in which bacteria is injected intramuscularly in the right thigh and modern and655 
archaic encrypted peptides were administered intraperitoneally to assess their systemic anti-656 
infective activity (n�=�4). (e) All encrypted peptides, except TKN1-SSI17, showed657 
bacteriostatic activity inhibiting proliferation of bacteria. Peptides with bacteriostatic activity658 
were able to maintain their effect during the entire experiment (five days), except for A7E2T1-659 
SPR39 that was effective for three days. (f) Mouse weight was monitored throughout the660 
duration of the neutropenic thigh infection model (8 days total) to rule out potential toxic effects661 
of cyclophosphamide injections, bacterial load, and the encrypted peptides. Statistical662 
significance in b and e was determined using one-way ANOVA, **p�<�0.001,663 
****p�<�0.00001; features on the violin plots represent median and upper and lower quartiles.664 
Data in c and f are the mean plus and minus the standard deviation. Figure created with665 
BioRender.com and the PyMOL Molecular Graphics System, Version 2.1 Schrödinger, LLC.  666 
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STAR METHODS 668 

 669 

Key resources table 670 

Reagent or Resource Source Identifier 

Chemicals 

Luria-Bertani broth BD 244620 

Tryptic soy broth Sigma T8907-1KG 

Agar Sigma 05039 

MacConkey agar RPI M42560-500.0 

Phosphate buffer saline Sigma P3913-10PAK 

Ammonium sulfate [(NH4)2SO4] Chem Cruz 7783-20-2 

Dipotassium hydrogen phosphate (K2HPO4) Sigma SLBR8555V 

Monobasic potassium phosphate (KH2PO4) Macron 164500 

Iron (II) sulfate (FeSO4) Amresco 387 

Magnesium sulfate (MgSO4) Amresco 1333C215 

Glucose Sigma G5767 

1-(N-phenylamino)naphthalene Sigma 104043 

3,3’-dipropylthiadicarbocyanine iodide Sigma 43608 

HEPES Fisher BP310-100 

Potassium chloride (KCl) Sigma P3911 

Software and Algorithms 

Python 3                                                                                        https://www.python.org/ 

scikit-learn                                                                                     https://scikit-learn.org/   

   

   

Resource availability 671 

Lead contact 672 

Further information and requests for resources should be directed to and will be fulfilled by the 673 
lead contact, Cesar de la Fuente-Nunez (cfuente@upenn.edu). 674 

 675 
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Data and code availability 676 
All training data, testing data, and code used to develop the machine learning model are freely 677 
available on GitLab (https://gitlab.com/machine-biology-group-public/pancleave). All data 678 
pertaining to the experimental validation of generated peptides are available in the 679 
Supplementary Data.  680 

 681 

Experimental model 682 

 683 

Bacterial strains and growth conditions 684 
Escherichia coli ATCC11775, Acinetobacter baumannii ATCC19606, Pseudomonas aeruginosa 685 
PA01, Pseudomonas aeruginosa PA14, Staphylococcus aureus ATCC12600, Staphylococcus 686 
aureus ATCC BAA-1556 (methicillin-resistant strain), Escherichia coli AIC221 [Escherichia 687 
coli MG1655 phnE_2::FRT (control strain for AIC 222)] and Escherichia coli AIC222 688 
[Escherichia coli MG1655 pmrA53 phnE_2::FRT (polymyxin resistant; colistin-resistant 689 
strain)], and Klebsiella pneumoniae ATCC13883 were grown and plated on Luria-Bertani (LB) 690 
or Pseudomonas Isolation (Pseudomonas aeruginosa strains) agar plates and incubated overnight 691 
at 37 °C from frozen stocks. After incubation, one isolated colony was transferred to 5 mL of 692 
medium (LB) or basal medium with glucose (BM2), and cultures were incubated overnight (16 693 
h) at 37 °C. The following day, inocula were prepared by diluting the overnight cultures 1:100 in 694 
5 mL of the respective media and incubating them at 37 °C until bacteria reached logarithmic 695 
phase (OD600 = 0.3-0.5). 696 
 697 

Skin abscess infection mouse model 698 
A. baumannii ATCC19606 and P. aeruginosa PA01 were grown in tryptic soy broth (TSB) 699 
medium to an OD600 = 0.5. Next, cells were washed twice with sterile PBS (pH 7.4, 13,000 rpm 700 
for 1 min) and resuspended to a final concentration of 2×105 and 5×106 colony-forming units 701 
(CFU) mL-1 for A. baumannii and P. aeruginosa, respectively. Six-week-old female CD-1 mice 702 
were anesthetized with isoflurane for two minutes and had their backs shaved. A superficial 703 
linear skin abrasion was made with a needle to damage the stratum corneum and upper layer of 704 

the epidermis. An aliquot of 20 μL containing the bacterial load resuspended in PBS was 705 
inoculated over the scratched area. One hour after the infection, peptides diluted in water at their 706 
MIC value were administered to the infected area. Animals were euthanized and the area of 707 
scarified skin was excised two- and four-days post-infection, homogenized using a bead beater 708 
for 20 minutes (25 Hz), and 10-fold serially diluted for CFU quantification. Two independent 709 
experiments were performed with 4 mice per group in each condition. 710 
 711 

Thigh infection mouse model 712 
The mice were rendered neutropenic by two doses of cyclophosphamide (150 mg Kg-1) applied 713 
intraperitoneally with an interval of 72 h. One day after the last dose of cyclophosphamide, the 714 
mice were infected intramuscularly in their right thigh with a bacterial load of 106 CFU mL-1 of 715 
A. baumannii ATCC19606. The bacteria were grown in tryptic soy broth (TSB), washed twice 716 
with PBS (pH 7.4), and resuspended to the desired concentration. Two hours later, peptides 717 
resuspended in water were administered intraperitoneally. Prior to each injection, mice were 718 
anesthetized with isoflurane and monitored for respiratory rate and pedal reflexes (24, 52). Next, 719 
we monitored the establishment of the infection and euthanized the mice. The infected area was 720 
excised two- and four-days post-infection, homogenized using a bead beater for 20 min (25 Hz), 721 
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and 10-fold serially diluted for CFU quantification in MacConkey agar plates. The experiments 722 
were performed with 4 mice per group. 723 

 724 

Method details 725 

 726 

Antibacterial assays 727 
The 69 curated fragments were subjected to broth microdilution assays to assess in vitro 728 
antimicrobial activity. Minimum inhibitory concentration (MIC) values of the peptides were 729 
determined by using the broth microdilution technique with an initial inoculum of 5×106 cells in 730 
LB or BM2 medium supplemented with glucose in nontreated polystyrene microtiter 96-well 731 
plates. Peptides were added to the plate as solutions in water at concentrations ranging from 0 to 732 

128 μmol L-1. The MIC was considered as the lowest concentration of peptide that completely 733 
inhibited the visible growth of bacteria after 24 h of incubation of the plates at 37 °C. Plates were 734 
read in a spectrophotometer at 600 nm. All assays were done as three independent replicates. 735 
 736 

Membrane permeabilization assays 737 
The membrane permeability of the peptides was determined by using the 1-(N-738 
phenylamino)naphthalene (NPN) uptake assay. NPN fluoresces weakly in extracellular 739 
environments and strongly when in contact with bacterial membrane lipids (Figs. 3e-g, S10a-c, 740 
and S11a), but only permeates the bacterial outer membrane when membrane integrity is 741 
compromised. A. baumannii ATCC19606 and P. aeruginosa PA01 were grown to an OD600 of 742 
0.4, centrifuged (10,000 rpm at 4 ºC for 10 min), washed, and resuspended in buffer (5 mmol L-1 743 

HEPES, 5 mmol L-1 glucose, pH 7.4). Next, 4 μL of NPN solution (0.5 mmol L-1 – working 744 

concentration of 10 μmol L-1 after dilutions) was added to 100 μL of the bacterial solution in a 745 

white 96-well plate. The background fluorescence was recorded at  λex = 350 nm and λem = 420 746 

nm. Peptide solutions in water (100 μL solution at their MIC values) were added to the 96-well 747 
plate, and fluorescence was recorded as a function of time until no further increase in 748 
fluorescence was observed (20 min). 749 
 750 
Membrane depolarization assays 751 
The ability of the peptides to depolarize the cytoplasmic membrane was determined by 752 
measurements of fluorescence of the membrane potential-sensitive dye, 3,3’-753 
dipropylthiadicarbocyanine iodide [DiSC3-(5)], a potentiometric fluorophore that fluoresces in 754 
response to an imbalance of the cytoplasmic membrane transmembrane potential (Fig. 3h-j, 755 
S10d-f, and S11b). Briefly, A. baumannii ATCC19606 and P. aeruginosa PA01 were grown at 756 
37 ºC with agitation until they reached mid-log phase (OD600 = 0.5). The cells were then 757 
centrifuged and washed twice with washing buffer (20 mmol L-1 glucose, 5 mmol L-1 HEPES, 758 
pH 7.2) and re-suspended to an OD600 of 0.05 in the same buffer containing 0.1 mol L-1 KCl. The 759 

cells (100 μL) were then incubated for 15 min with 20 nmol L-1 of DiSC3(5) until the reduction 760 
of fluorescence stabilized, indicating the incorporation of the dye into the bacterial membrane. 761 
Membrane depolarization was then monitored by observing the change in the fluorescence 762 

emission intensity of the membrane potential-sensitive dye, DiSC3-(5) (λex = 622 nm, λem = 670 763 

nm), after the addition of the peptides (100 μL solution at MIC values). 764 

 765 

Model training and testing data 766 
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The panCleave random forest was trained and tested on all human protease substrates in the 767 
MEROPS Peptidase Database as of June 2020 (21). Substrate sequences for all human proteases 768 
available in MEROPS encompassed 369 proteases representing 6 catalytic types (Cysteine, 769 
Metallo, Serine, Aspartic, Threonine, and Mixed), 31 clans, and 73 families. Protease 770 
representation and amino acid frequency distributions for the MEROPS dataset are visualized in 771 
Figs. S2 and S3.  772 
Model training and testing used a balanced dataset of 49,634 observations. Eight-residue 773 
cleavage site data were curated from the MEROPS Peptidase Database (n = 24,817 unique 774 
positive observations) (21) and combined with 8-residue sequences generated from the human 775 
proteome and random protein space (n = 24,817 unique negative observations). Redundant 776 
sequences, sites containing non-canonical amino acids, and sites of length shorter than 8 residues 777 
were removed from the positive dataset. Negative observations were generated by three methods, 778 
each constituting one third of the negative dataset: randomly selected 8-residue contiguous 779 
subsequences of the human proteome, randomly generated sequences adhering to the amino acid 780 
frequencies of the human proteome, and randomly generated sequences with no amino acid 781 
frequency constraints. No sequences were present in both the positive and negative datasets.  782 
Training and 10-fold cross-validation were performed using 80% of total observations (n = 783 
39,707). The remaining 20% of observations were reserved as an independent test set (n = 784 
9,927). The train-test split was stratified by label to ensure that each split maintained a label 785 
distribution representative of the entire dataset. The complete training dataset, testing dataset, 786 
and Python code are available on GitLab and as supplemental files (https://gitlab.com/machine-787 
biology-group-public/pancleave).  788 
 789 
Hyperparameter tuning and model selection 790 
 791 
Six classifiers were implemented using scikit-learn (https://scikit-learn.org/) and TensorFlow 792 
(https://www.tensorflow.org/): Gaussian Process (GP), K-Nearest Neighbor (KNN), Naive Bayes 793 
(NB), Random Forest (RF), Recurrent Neural Network (RNN), and Support Vector Machine 794 
(SVM). Each algorithm was trained and tested on 5 input representations: one-hot encoding, 795 
ProtFP (53), ST-Scale (54), Z-Scale (55), and UniRep (56). The resulting 30 candidate models 796 
each underwent Bayesian search hyperparameter tuning using the skopt Python package 797 
(https://scikit-optimize.github.io/) on the Stampede2 supercomputer (Texas Advanced 798 
Computing Center, The University of Texas at Austin, TX, USA).  799 
Three tuned finalists were selected on the basis of superior test set accuracy: RF, RNN, and 800 
SVM, each trained on the ProtFP encoding. Finalists were assessed via three performance 801 
metrics, each computed using scikit-learn (https://scikit-learn.org/): test set accuracy, area under 802 
the receiver-operating characteristic curve (AUC-ROC), and average precision. Additionally, 803 
accuracy was assessed when thresholding the estimated probability of class membership at 804 
≥50%, ≥60%, ≥70%, ≥80%, and ≥90%. The tradeoff between increases in accuracy and 805 
decreases in total valid observations at a given estimated probability threshold was quantified 806 
and visualized. Among the 30 candidate classifiers, an RF trained on the ProtFP protein encoding 807 
(53) was selected as the final model on the basis of marginally superior test set accuracy, AUC-808 
ROC, average precision, and estimated probability thresholding. 809 
 810 

Modern protein fragment curation 811 
The panCleave pipeline was run on all modern human proteins tagged with the keyword 812 
“secreted” in UniProt (30) as of February 2021 (n = 3,676). Length distributions, amino acid 813 
frequencies, and PANTHER (http://www.pantherdb.org/) (57) classification data characterizing 814 
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the modern secreted protein dataset are visualized (Figs. S2–S6). The initial 80,729 unique 815 
cleavage products were reduced to 3,738 fragments by filtering such that peptide lengths were 816 
between 8 and 40 residues, flanking cleavage sites were of an estimated probability of 0.8 or 817 
higher, and no fragments were subsequences of other fragments in the dataset.  818 
Four curation methods were used to select panCleave-generated fragments for synthesis: 1) 819 
human expert curation; 2) ML model consensus using six publicly available AMP classifiers 820 
(58–62); 3) clustering against an in-house database of experimentally validated AMPs using CD-821 
HIT-2D, an algorithm for sequence alignment and comparison of protein databases (63); and 4) 822 
random selection with no sampling bias. Twenty fragments were selected by each curation 823 
method (n = 80 total). In each case, fragment length was restricted to 8 to 40 amino acids.  824 
Selection by a human expert entailed fully manual curation of 15 peptides predicted to be 825 
antimicrobial and 5 peptides predicted to be inactive. Consensus prediction used six publicly 826 
available ML-based AMP models: amPEPpy (https://github.com/tlawrence3/amPEPpy) (58), 827 
iAMPpred (http://cabgrid.res.in:8080/amppred/) (59), Macrel (https://www.big-data-828 
biology.org/software/macrel/) (60), and three models available from AxPEP 829 
(https://app.cbbio.online/ampep/home) (61, 62). A positive consensus vote by at least three of 830 
these six models was required for selecting the 15 peptides predicted to be active. A negative 831 
consensus vote by all six models was required for selecting the 5 peptides predicted to be 832 
inactive. Random selection used no biasing criteria. The CD-HIT-2D clustering algorithm 833 
(http://weizhong-lab.ucsd.edu/cdhit-web-server/cgi-bin/index.cgi) (63) was used to rank 834 
fragments by percent similarity to an in-house dataset of experimentally validated AMPs, and the 835 
top 20 hits were selected as predicted AMPs for experimental validation.  836 
 837 
Archaic protein fragment curation 838 
The panCleave pipeline was run on all Neanderthal and Denisovan proteins available in UniProt 839 
(30) and NCBI (https://www.ncbi.nlm.nih.gov/protein/) as of February 2021 (n = 66 and n = 26, 840 
respectively). Six Neanderthal proteins (9.1%) and one Denisovan protein (3.8%) were identical 841 
to proteins in the modern proteome and were excluded. Results were filtered such that all 842 
fragments were between 8 and 40 residues in length and no fragments were subsequences of 843 
other fragments in the dataset. This filtering process yielded 249 unique Neanderthal cleavage 844 
products and 167 unique Denisovan cleavage products. No sequences were shared between 845 
modern human and Neanderthal panCleave results, nor between modern humans and 846 
Denisovans. There were 127 fragments common to both Neanderthals and Denisovans, leaving 847 
289 non-redundant archaic fragments in total. 848 
Archaic fragments were removed if present as subsequences of any protein in the modern human 849 
proteome. Archaic sequences were cross-referenced against all annotated and non-annotated 850 
modern human proteins (n = 75,552) and all isoforms (n = 40,403) available in UniProt as of 851 
February 2021. Subsequently, 73 archaic-only fragments remained (73/289, 25.3%). Of these, 852 
four were not selected for chemical synthesis because of their high hydrophobicity and 853 
aggregation propensity (i.e., WIGGQPVSYPFIIIG, VVAGVFLLIRFHPLA, 854 
LYDYGRWLVVVTGWTLFVGVYVVIE, and MTMYTTMTTLTLTSLIPPILTTLINPN), 855 
leaving 69 archaic-only fragments to be tested in vitro. All peptides used in the experiments were 856 
purchased from AAPPTec (Louisville, KY; USA). 857 

 858 
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