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Abstract1

Songs of the Bengalese finch consist of variable sequences of syllables. The sequences follow2

probabilistic rules, and can be statistically described by partially observable Markov models3

(POMMs), which consist of states and probabilistic transitions between them. Each state is4

associated with a syllable, and one syllable can be associated with multiple states. This multi-5

plicity of syllable to states association distinguishes a POMM from a simple Markov model, in6

which one syllable is associated with one state. The multiplicity indicates that syllable transi-7

tions are context-dependent. Here we present a novel method of inferring a POMM with minimal8

number of states from a finite number of observed sequences. We apply the method to infer9

POMMs for songs of six adult male Bengalese finches before and shortly after deafening. Before10

deafening, the models all require multiple states, but with varying degrees of state multiplicity11

for individual birds. Deafening reduces the state multiplicity for all birds. For three birds, the12

models become Markovian, while for the other three, the multiplicity persists for some syllables.13

These observations indicate that auditory feedback contributes to, but is not the only source of,14

the context dependencies of syllable transitions in Bengalese finch song.15

Author Summary16

Context dependencies are widely observed in animal behaviors. We devise a novel statistical17

method for uncovering context dependencies in behavioral sequences. Application of the method18

to songs of the Bengalese finch before and shortly after deafening reveals that auditory feedback19

contributes significantly to context dependencies, but is not the only source. Our approach can20

be applied to many other behavioral sequences and aid the discovery of the underlying neural21

mechanisms for context dependencies.22
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Introduction23

Consisting of sequences of stereotypical syllables, birdsong has numerous parallels with human24

speech (Doupe and Kuhl, 1999). Syllable sequences of many songbird species are variable,25

and follow probabilistic rules (or syntax) that can be described with state transition models26

(Okanoya, 2004; Jin and Kozhevnikov, 2011; Jin, 2013; Markowitz et al., 2013). For Bengalese27

finch songs, it was shown that the syllable sequences are well described by partially observable28

Markov models (POMMs) (Jin and Kozhevnikov, 2011). In a POMM, the state transitions are29

Markovian: the transition probabilities between the states are fixed and do not depend on the30

history of the state transitions. Each state is associated with one syllable. This enables a POMM31

to generate syllable sequences through the state transitions. Although a state is associated with32

one syllable, the converse is not necessarily true. In a POMM, one syllable can be associated33

with multiple states. This multiplicity of syllable to states association enables a POMM to34

describe context dependences in syllable transitions: transition probabilities between syllables35

depends on the preceding syllable sequences (Jin and Kozhevnikov, 2011). The Markov model36

is a special case of POMM, in which there is one-to-one correspondence between the states and37

the syllables. Markov models are not capable of describing context dependencies in syllable38

transitions.39

POMM is motivated by the idea that birdsong is driven by synaptic chains in the premotor40

nucleus HVC (proper name) of the song system (Hahnloser et al., 2002; Fee et al., 2004; Jun41

and Jin, 2007; Jin et al., 2007; Jin, 2009; Long et al., 2010; Wittenbach et al., 2015; Lynch et42

al., 2016; Picardo et al., 2016; Jin, 2013; Zhang et al., 2017; Egger et al., 2020; Tupikov and43

Jin, 2021). Specifically, the HVC neurons that project to the downstream motor areas form44

feedforward synaptic chain networks within HVC. Bursts of spikes propagate along a chain,45

with each projection neuron bursting once during the propagation, driving the production of46

one syllable through the projections to the downstream motor areas (Fee et al., 2004; Jin,47

2009). The activation of one such “syllable-chain” can be identified as the neural correlate of48

one state in a POMM (Jin, 2009; Jin and Kozhevnikov, 2011; Wittenbach et al., 2015). Within49
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this paradigm, inferring POMMs from observed syllable sequences can shed light on the neural50

dynamics in HVC that underlies production of variable syllable sequences.51

Auditory feedback has been shown to affect Bengalese finch song syntax (Okanoya and52

Yamaguchi, 1997; Woolley and Rubel, 1997; Woolley and Rubel, 2002; Sakata and Brainard,53

2008; Wittenbach et al., 2015). A few days after deafening, the syllable sequences become54

more random (Okanoya and Yamaguchi, 1997; Woolley and Rubel, 1997), and the number55

of repetitions of long repeating syllables become smaller (Wittenbach et al., 2015). Altered56

auditory feedback to intact singing birds delivered at branching points of syllable transitions57

can change the transition probabilities (Sakata and Brainard, 2006; Sakata and Brainard, 2008).58

These observations demonstrate that auditory feedback could play an important role in creating59

context dependencies in syllable transitions in Bengalese finch song.60

In this paper, we analyze the songs of six Bengalese finches before and shortly after deafening.61

We first devise a novel method for inferring a POMM from a set of observed syllable sequences.62

The method depends on the concept of sequence completeness, which is the total probability that63

the POMM generates all of the unique sequences in the observed set. Sequence completeness64

is further augmented with the differences of the probabilities of the unique sequences computed65

with the observed set or with the model, leading to the augmented sequence completeness, Pβ.66

The method is designed to find the minimum number of states for each syllable such that Pβ of67

the observed sequences is statistically compatible with the POMM. Compared to the previous68

heuristic method of inferring POMMs from observed syllable sequences (Jin and Kozhevnikov,69

2011), our new method is much simpler and more principled.70

Using this method, we infer minimal POMMs for the syllable sequences of the birds before71

and after deafening. We show that deafening reduces the number of states required in the72

POMMs, indicating that deafening reduces context dependencies in the syllable transitions.73

Before deafening, the POMMs of all birds require multiple states for some syllables. After74

deafening, the POMMs are reduced to simple Markov models for three birds, while for the75

remaining three the multiplicity of the states persists for some syllables. Our results indicate that76
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auditory feedback contributes to context-dependent syllable transitions, but other mechanisms77

such as multiple syllable-chains encoding the same syllable should also contribute (Jin, 2009;78

Jin and Kozhevnikov, 2011; Cohen et al., 2020).79

Results80

In this paper, we analyze the dataset collected for a previous study (Wittenbach et al., 2015),81

which showed that syllable repeats in Bengalese finch songs, especially for those syllable types82

with a variable number of repeats, are best described as the re-activation of syllable-chains with83

auditory feedback, with the feedback strength reduced after each repetition (Wittenbach et al.,84

2015). In this work we focus on the non-repeat versions of the sequences, in which only the85

first syllable of any repetition is retained. For example, if the syllable sequence is ABBBC, the86

non-repeat version is ABC. In the rest of the paper, syllable sequences refer to the non-repeat87

versions.88

Each syllable sequence is typically led by a variable number of introductory notes. These89

introductory notes are excluded in the analysis. All sequences have definite starts and ends.90

Thus the POMMs have two special states. One is the start state, from which all state transitions91

begin, and the other is the end state, at which all state transitions terminate. The POMMs are92

visualized with directed graphs (Fig. 1). Following the convention introduced previously (Jin93

and Kozhevnikov, 2011), we denote the start state as a pink oval marked with the symbol S.94

All other states are represented as ovals marked with associated syllables. The color of a state95

is cyan if it can transition to the end state, and is white otherwise. The end state is not shown96

in order to reduce clutter in the graph. State transitions are shown with arrows with transition97

probabilities written nearby. To reduce clutter, only transitions with probability P > 0.01 are98

shown.99
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Two types of context dependency100

Context dependencies in syllable transitions can take two forms. In one form, certain transitions101

are prohibited depending on the context. A simple example is that the observed set contains102

two unique sequences: ACD and BCE, each with probability 0.5 (Fig. 1, Example 1). The103

transition C → D only occurs if C is preceded by A; and the transition C → E only occurs if C104

is preceded by B. In other words, sequences ACE and BCD are unobserved. We call this form105

the type I context dependence.106

In the other form, context dependence manifests in the probabilities. A simple example107

modified from Example 1 is that the observed set contains sequences ACD, with probability108

0.4; ACE, with probability 0.1; BCD, with probability 0.1; and BCE, with probability 0.4109

(Fig. 1, Example 2). The transitions C → D and C → E are observed regardless of the110

preceding syllable; however, the transition probabilities are different when A precedes C than111

when B precedes C. We call this form the type II context dependence.112

With the two examples we show that sufficient state multiplicity is required for capturing113

context dependencies in syllable transitions. For Example 1, consider constructing the Markov114

model for the set of observed sequences, which only requires calculating the transition probabil-115

ities between the syllables. The graph of the Markov model is shown in Fig. 1. The sequences116

can start with either syllable A or B with equal probability, hence the start state transitions117

to the states associated with syllables A or B (A-state or B-state) with probability 0.5. These118

two states transition to the C-state with probability 1. Since C can be followed by either D or119

E, the C-state transitions to the D-state or E-state with probability 0.5. From the start state,120

there are four possible state transition paths, generating four sequences ACD, ACE, BCD, and121

BCE, each with probability 0.25. Thus the Markov model overgeneralizes, creating unobserved122

sequences ACE and BCD.123

To characterize the overgeneralization of a POMM, we introduce the concept of sequence

completeness Pc, which is defined as the total probability of the POMM generating all unique
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sequences in the observed set:

Pc =

M∑
i=1

Pi,

where M is the number of unique sequences, and Pi is the probability of the i-th unique sequence.124

For Example 1, we have Pc = 0.5. The amount of overgeneralization is 1−Pc, which is the total125

probability of all unique sequences that the model can generate but are not in the observed set.126

The Markov model clearly does not capture the type I context dependence in the example. A127

more complex model has two states for syllable C, and the A-state and the B-state transition128

separately to these states (Fig. 1). This POMM generates two sequences ACD and BCE with129

probabilities 0.5 each, and Pc = 1 for the observed set.130

Because Pc is the total probability of all unique sequences in the set, it is insensitive to the131

probabilities of individual unique sequences. Consider the Markov model for Example 2, which is132

the same as in Example 1 (Fig. 1). The Markov model generates all observed unique sequences,133

hence Pc = 1. Although the model does not overgeneralize, it does not capture the type II134

context dependence in Example 2. To reveal this deficiency, we need to compare probabilities135

of the unique sequences between the model and the observation.136

A simple measure of the differences of the transition probabilities is the total variation

distance (Gibbs and Su, 2002), defined as

d =
1

2

M∑
i=1

|Pi,o − Pi,m|.

Here

Pi,o =
Ni

N

is the observed probability of the i-th unique sequence, and is the ratio of the copy number Ni

of this sequence in the observed set of N sequences; and Pi,m is the normalized probability of
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the sequence computed with the model

Pi,m =
Pi
Pc
.

The normalization is to ensure that
M∑
i=1

Pi,m = 1,

which is required since we are comparing Pi,m to Pi,o, and
∑M

i=1 Pi,o = 1. For Example 2, the137

Markov model has d = 0.3. The model with two states for C, as shown in Fig. 1, can perfectly138

capture this type II context dependence with d = 0.139

The total variation distance may not reveal type I context dependence. For Example 1, the140

Markov model generates the two observed sequences ACD and BCE with probabilities 0.25.141

However, after normalization the probabilities are 0.5. Hence we have d = 0 for the Markov142

model.143

To capture both type I and type II context dependence, we combine Pc and d into a single

measure

Pβ = (1− β)Pc + β(1− d),

where β is the weight given to the total variation distance, and is a number between 0 and 1.144

We call this quantity the augmented sequence completeness. In this paper we set β = 0.2. We145

find that this choice gives a good balance in discovering both types of context dependencies in146

syllable transitions. A perfect model would have Pβ = 1.147

Neural correlates of state multiplicity148

Within the framework of syllable-chains in HVC, it is natural to assume that the multiple149

states associated with one syllable correspond to multiple syllable-chains in HVC that drive the150

production of the same syllable (Jin, 2009; Cohen et al., 2020). In Example 1 discussed above,151

the POMM that fits the observed sequences has two states for syllable C. With two syllable-152
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chains for C, the sequences ACD and ACB can be wired into two separate chains, as shown in153

Fig. 2a. This is the intrinsic mechanism for the state multiplicity in POMMs. This mechanism154

can account for the type II context dependence in Example 2 by introducing weaker connections155

from the end of the syllable-chain for C in ACD to the start of the syllable-chain for E, and156

from the end of the syllable-chain for C in BCD to the start of the syllable-chain for D, since157

the transition probabilities depend on the connection strength (Jin, 2009).158

An alternative mechanism uses auditory feedback. In this case there is one syllable-chain for159

C, which connects to the syllable-chains for D and E. However, the activations of the syllable-160

chains for D and E are determined by the reafferent auditory inputs (Sakata and Brainard, 2006;161

Sakata and Brainard, 2008; Hanuschkin et al., 2011; Wittenbach et al., 2015). The auditory162

feedback from syllable A is sent to the syllable-chain for D; while the auditory feedback from163

syllable B is sent to the syllable-chain for E (Fig. 2b). The auditory inputs can bias the164

transitions from syllable-chain C to syllable-chains D and E (Jin, 2009; Hanuschkin et al., 2011;165

Wittenbach et al., 2015). With strong enough auditory inputs, the probability of transition from166

C to D should approach 1 when C is preceded by A. When C is preceded by B, the transition167

probability to D should approach 1. This is the reafferent mechanism for the state multiplicity.168

These two mechanisms have different predictions for the effects of deafening. The intrinsic169

mechanism predicts that that the state multiplicity remains unchanged after deafening. The170

reafferent mechanism predicts that all state multiplicity disappears after deafening, and the171

song syntax will become Markovian. These predictions can be tested by inferring POMMs for172

the observed syllable sequences before and shortly after deafening.173

Statistical test of POMM174

To find the POMM that is compatible with the observed set of syllable sequences, we need to175

devise a way of statistically evaluating the validity of the POMM. This problem can be cast176

as hypothesis test, in which the null hypothesis is that the observed set is generated by the177

POMM. We can use Pβ for this purpose. Ideally, Pβ of the observed set computed with the178
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POMM should be 1, which indicates that the POMM generates all of the unique sequences179

in the observed set, and importantly, does not generate unobserved sequences; moreover, the180

probabilities of the unique sequences agree with the observations. In practice, due to the finite181

number N of sequences observed, it is possible that the observed set does not contain all possible182

sequences that the bird is capable of producing. Therefore, Pc < 1 could be due to the smallness183

of N , and not because the model overgeneralizes. Additionally, mismatch in the probabilities of184

the unique sequences could be due to the inaccurate measurements of the transition probabilities185

when N is finite.186

To take into account the finite N effect, we generate random sets of N sequences from the187

POMM. For each generated set, we compute Pβ with the POMM. The Pβ distribution of the188

generated sets can be used to gauge the likelihood that the Pβ of the observed set is drawn from189

the distribution. Specifically, we compute the probability p that the observed Pβ is greater than190

the Pβ of the generated sets. If p < 0.05, we conclude that the observed Pβ is not likely drawn191

from the distribution, and the POMM is not likely the model that generates the observed set. If192

p > 0.05, the POMM is not statistically rejected and it is compatible with the observed set. In193

this work, we build the Pβ distribution by generating 10000 random sets of N sequences from194

the POMM.195

We illustrate this process with an example. In Fig. 3a, we show the “ground truth model”.196

It has 2 states for syllables A and C, and one state for each of syllables B,D,E. The model197

generates 7 unique sequences: A, probability 0.1; ACD, probability 0.36; ACE, probability 0.04;198

BCD, probability 0.05; BCE, probability 0.2; BAE, probability 0.125; and BA, probability199

0.125. From the model, we generate three sets of “observed sequences” with N = 10, N = 30200

and N = 60, as shown in the figure. Sequences generated from the ground truth model contain201

both type I and type II context-dependent syllable transitions.202

We construct Markov models from the observed sets by computing the probabilities of start-203

ing or ending at each syllable, and the probabilities of transitioning from one syllable to another.204

The Markov models are shown in Fig. 3b. We generate 10000 random sets of N sequences from205
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the Markov models, and compute Pβ of these generated sets with the Markov model. The distri-206

butions of Pβ are shown below the Markov models in Fig. 3b. The distributions shift towards 1207

as N increases (Fig. 3b). We then calculate the Pβ of the observed sets with the Markov models208

and indicate the values with red lines in Fig. 3b. The p-value is computed as the probability209

p that the observed Pβ is greater than the Pβ of the generated sets. In the examples shown in210

Fig. 3b, the p-values are p = 0.12 for N = 10; p = 0.002 for N = 30; and p = 0 for N = 60.211

We run this process for 100 observed sets generated from the ground truth model for each212

N , and compute the p-value distributions. For N = 10, we find that p = 0.27±0.28; for N = 30,213

p = 0.008±0.016; and for N = 60, p = 5×10−6±3.2×10−5. Therefore, for N = 30 and N = 60,214

the Markov model can be rejected based on the p < 0.05 criterion. For N = 10, however, the215

Markov model cannot be rejected, even though the ground truth model is non-Markovian.216

If the ground truth model is Markovian, increasing N does not lead to rejection of the217

Markov model, as expected (supplementary Fig. S1). Although we used the Markov model as218

an example, this process of statistical testing based on Pβ can be applied to any POMM.219

Inferring POMM from observed sequences220

Given a set of observed syllable sequences, we infer a POMM that is statistically compatible with221

the set. We also require that the POMM is a minimal model, such that the number of states222

for each syllable is as small as possible, and the transitions between the states are sparse. This223

is achieved through a procedure that consists of grid search in the state space, state reduction,224

and pruning of transitions between the states. We illustrate this procedure through the example225

shown in Fig. 3a.226

A POMM is determined by the number of states for each syllable, and the transition prob-227

abilities between the states. All possible POMMs thus can be represented as grid points in the228

state space. For example, the grid point (1, 1, 1, 1, 1) represents the POMM with syllables229

A,B,C,D,E each having one state, which is the Markov model; and the grid point (2, 2, 2,230

2, 2) represents the POMM with two states for each syllable. At each grid point, we find the231
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transition probabilities between the states by maximizing the likelihood that the model gener-232

ates the observed sequences using the Baum-Welch algorithm (Rabiner, 1989). To avoid local233

minima that the algorithm may encounter, we consider 100 runs of the algorithm with random234

seeds, and select the run with the largest likelihood.235

The search starts with the Markov model, the grid point (1, 1, 1, 1, 1). The model is236

evaluated with the stopping criterion that it passes the Pβ based statistical test with p > 0.05,237

as discussed above (Fig. 3). If the model does not satisfy the stopping criterion, the nearby238

grid points (2, 1, 1, 1, 1), (1, 2, 1, 1, 1), (1, 1, 2, 1, 1), (1, 1, 1, 2, 1), and (1, 1, 1, 1, 2)239

are accessed. Among them, the grid point with the largest likelihood is selected. If this newly240

selected point does not satisfy the stopping criterion, the search moves on to its nearby grid241

points. The process iterates until the stopping criterion is satisfied.242

It is possible that the search ends up with a more complex POMM than needed because243

the path is guided by local information on the grid. We therefore test reducing the POMM by244

deleting states, which is the reverse process of the grid search. Specifically, for all syllables with245

multiple states, we delete one state for each. We select the deletion with the largest likelihood,246

and test whether the reduced POMM satisfies the stopping criterion. If the stopping criterion247

is satisfied, we go on to the next round of deletions. The process continues until the reduced248

POMM is rejected. The last deletion is then reversed.249

After state reduction, we simplify the transitions between the states in the POMM. We250

systematically cut every transition and recalculate the maximum likelihood of the observed se-251

quences. If the likelihood is larger than a threshold, the cut is accepted; otherwise the transition252

is retained. The threshold is set to the maximum likelihood of the POMM before cuts minus253

an estimate of the fluctuation of the likelihood due to inaccuracies in computing the likelihood,254

which is set to be the standard deviation of the likelihood in the 100 runs of the Baum-Welch255

algorithm with random seeds before the cuts. If the POMM after the accepted cuts no longer256

satisfy the stopping criterion, the threshold is raised and the cuts are redone.257

We show the accuracy of the above procedure by inferring POMMs from 100 sets of N258

12

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.11.15.516592doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.15.516592


observed sequences generated from the ground truth model (Fig. 3a). The results for N =259

10, 30, 90 are shown in Fig. 4. We display typical POMMs inferred, and the distributions of260

the total number of states in the POMMs inferred from the 100 sets. For N = 10, the total261

number of states is mostly 5, and the Markov model is accepted. This is because for most sets262

of N = 10, the Markov model passes the statistical test (Fig. 3b). Some models have 4 states263

because syllables D or E may not appear in the observed sequences due to the small N . For264

N = 30, the total number of states ranges from 5 to 7. Typical POMMs with 6 states are shown265

in the figure. For N = 90, the total number of states is mostly 7, and the inferred POMMs have266

the same structure as the ground truth model.267

This example shows that our procedure tends to fit a simpler POMM when the number of268

observed sequences is small. When the number is large, the procedure uncovers the ground269

truth model. Crucially, the procedure does not create more complex models than the ground270

truth model.271

Effects of deafening on the POMM syntax of Bengalese finch songs272

To see how auditory input affects the POMM syntax, we analyze songs of 6 adult Bengalese273

finches before and two days after deafening. The dataset was used previously for analyzing274

syllable repeats (Wittenbach et al., 2015). Here we focus on the non-repeat versions of the275

syllable sequences.276

We first test if Markov models are statistically compatible with the observed syllable se-277

quences using the p > 0.05 criterion. The results are shown in Fig. 5 for o10bk90, and in S2-S6278

for the other five birds. Three birds have non-Markovian syntax before and after deafening279

(o10bk90, normal p = 0, deafened p = 0, Fig. 5; bfa16, normal p = 0, deafened p = 0, Fig. S3;280

o46bk78, normal p = 0, deafened p = 0, Fig. S6). The other three birds have non-Markovian281

syntax before deafening, but after deafening the Markovian syntax is not statistically rejected282

(bfa7, normal p = 0, deafened p = 0.42, Fig. S2; bfa14, normal p = 0, deafened p = 0.56, Fig. S5;283

bfa19, normal p = 0.02, deafened p = 0.34, Fig. S4). These results suggest that deafening re-284
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duces Bengalese finch song syntax from non-Markovian to Markovian for some birds but not for285

all.286

Deafening also creates novel transitions between syllables, as well as novel starting and287

ending syllables. The transition probabilities of these novel transitions tend to be small (median288

P = 0.04), but 22% have probabilities larger than 0.1 (18 transitions out of 81). The majority289

of these novel transitions appear in two birds (27 for bfa14; 21 for bfa19). A small number (8)290

of transitions also disappear after deafening (median P = 0.02).291

As observed in previous studies (Woolley and Rubel, 1997; Okanoya and Yamaguchi, 1997),292

deafening increases sequence variability. The variability of transitions from a given syllable i (or293

the start state) is quantified with the transition entropy as Si = −
∑M

j=1 pij log2 pij , where M is294

the number of branches of the transitions, and pij is the probability of the j-th branch. If M = 1,295

the transition is stereotypical, and we have Si = 0. For a given M , the entropy is maximum296

if the transition probabilities for all branches are equal. This maximum entropy increases with297

M . The median of transition entropies is significantly larger after deafening (median, 0.95, s.d.,298

0.55) than before (median, 0.35, s.d., 0.51; p = 5× 10−6, Wilcoxon signed-rank one-sided test).299

The number of branches M is also significantly larger afer deafening (median, 4, s.d., 1.5) than300

before (median, 2, s.d., 0.90; p = 9.8× 10−7, Wilcoxon signed-rank one-sided test).301

We next construct POMMs from the observed syllable sequences before and after deafening.302

The inferred POMMs are shown in Figs. 6-11. In normal hearing condition, there are 44 syllables303

in the songs of the birds; among them, 25 require 1 state, 14 require 2 states, 2 require 3 states,304

and 3 require 4 states. So most syllables require 1 or 2 states. There are 77 states in the305

POMMs. Counting only transition branches with probabilities greater than 0.01, the majority306

of states have up to 3 outgoing branches (32, 29, 13 for branch numbers 1, 2, 3, respectively).307

After deafening, there are 43 syllables (syllable g for bfa7 drops out after deafening). Most308

syllables (40) require only 1 state, and the remaining 3 require 2 states. There are 52 states309

in the POMMs. Counting only the transition branches with probability greater than 0.01, the310

branch numbers range from 1 to 7, with counts 2, 19, 7, 13, 6, 3, 2, respectively.311
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Deafening significantly reduces the state multiplicity, as measured by the number of extra312

states (defined as the number of states for the syllables minus the number of the syllables)313

(Fig. 12a, the Wilcoxon signed-rank one-sided test, p = 0.016). The mean normalized transition314

entropy between the states (transition entropy divided by log2M , where M is the number of315

transitions from the state) is significantly larger after deafening for all but one bird (Wilcoxon316

signed-rank one-sided test, p = 0.03, tested with all birds). Thus, deafening reduces the com-317

plexity of song syntax, as indicated by the reduction of the extra number of states required.318

Additionally, transitions between the states become more random.319

The POMMs reveal context dependencies in the syllable transitions. In the following, we320

show such dependencies for each bird before and after deafening. We first show the major321

syllable transitions in the observed sets. We then point out how reducing the state multiplicity322

by merging states associated with the same syllable makes the POMM overgeneralize or produce323

some subsequences with enhanced probabilities. This merging technique is inspired by the324

example shown in Fig. 1. The state-merged POMM retains all state transition branches of325

the original POMM, but the transition probabilities are re-calculated with the Baum-Welch326

algorithm using the sequences in the observed sets.327

For each state-merged POMM, we use one or two selected subsequences for evaluation. We328

first calculate Ps of the subsequence in the observed set, defined as the fraction of sequences329

in the set that contain the subsequence. We then generate 10000 sets of N sequences from330

the POMM, where N is the number of sequences in the observed set. For each generated set,331

we compute Ps. This creates a distribution of Ps. We report the median value of Ps in this332

distribution to show how much the probability is enhanced. The significance of the enhancement333

is shown with the p-value, which is the probability p that Ps in the distribution is smaller than334

the observed Ps. The process is analogous to the test of POMMs shown in Fig. 3.335

For o10bk90 in normal hearing condition, syllables f and g are represented by two states336

each, reflecting the following context dependence of syllable transitions (Fig. 6):337

e f1 g1 � ,338
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d f2
g2 a

a
.339

Here � denote the end of the sequence, and the subscripts indicate different states for the same340

syllable. Merging f1 and f2 creates a subsequence341

e f a .342

This subsequence is unobserved, i.e. Ps = 0 in the observed set. From the distribution of Ps343

generated from the state-merged POMM we find that the median Ps = 0.13 and p = 0.0001,344

showing that the enhancement of Ps after merging the states is significant at the α = 0.05 level.345

In the observed set, the subsequence346

d f g �347

is rare (Ps = 0.016). Merging g1 and g2 significantly increases the probability, with median348

Ps = 0.27 and p = 0.349

After deafening, transition S → d is weakened, where S is the start state; and transitions350

S → a and S → g become stronger (Fig. 6). The state multiplicity for f persists, reflecting the351

context dependent transitions352

e f1 g ,353

d f2 a ,354

which is the same as before deafening. As in normal hearing condition, merging f1 and f2 creates355

unobserved subsequencre356

e f a357

with median Ps = 0.12 and p = 0. The subsequence d → f → g becomes rare after deafening358

(Ps = 0.5, before deafening; Ps = 0.007, deafened), indicating that deafening makes the transi-359

tion f2 → g2 rare. Syllable g is now represented with one state only, because this does not make360

the subsequence d → f → g → � more frequent than observed, unlike in the normal hearing361

condition.362

For bfa7 with normal hearing, syllable b has 2 states and syllables c and d have 4 states each363

(Fig. 7). The two states for b encode the following context dependence:364
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states merged subsequence Ps observed median Ps p

b1, b2 abcdg 0 0.07 0.004

c1, c2 fcdg 0 0.11 0

c1, c3 bcdcdb 0 0.04 0.0065

c1, c4 fcdb 0 0.07 0.0003

c2, c3 abcdg 0 0.04 0.0071

c2, c4 bcdb 0 0.04 0.007

c3, c4 bcdb 0 0.04 0.0078

d1, d2 fcdg 0 0.11 0

d1, d3 bcdcdb 0 0.04 0.0078

d1, d4 fcdb 0 0.07 0.0001

d2, d3 abcdg 0 0.04 0.0062

d2, d4 bcdb 0 0.04 0.0066

d3, d4 bcdb 0 0.04 0.0069

Table 1: Consequences of pairwise merging of states with the same syllables for bfa7 with normal
hearing. Listed are the pair of states merged, subsequences examined, Ps of the subsequences in
the observed set, median of the Ps distribution generated from the state-merged POMMs, and
the p-value.

d b1 c d g ,365

a b2 c d � .366

The state multiplicity for c and d reflects the following context dependencies:367

f c1 d1 c4 d4

�

b

a

,368

d b c2 d2 g ,369

a b c3 d3 � .370

The consequences of merging states are summarized in Table 1.371

Deafening leads to the appearance of c → a and h → a transitions, strengthening of d → a372

transition, and disappearance of d → c transition. Except for b, the sequence can now stop373

at all syllables. Interestingly, the d → g transition is lost and syllable g does not appear after374

deafening. The syntax is Markovian, suggesting that there is no context dependence.375

17

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.11.15.516592doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.15.516592


For bfa16 in normal hearing condition, there are two states for syllables a, d, and e (Fig. 8).376

The two states for a encode the following context dependence:377

S a1 b ,378

g a2
d

�
.379

Merging a1 and a2 creates an unobserved subsequence380

S a d381

with median Ps = 0.19 and p = 0. The two states for d encodes the following context dependence:382

c d1 e ,383

a d2 b .384

Merging d1 and d2 creates an unobserved subsequence385

c d b386

with median Ps = 0.22 and p = 0. The two states for e encodes the context dependence387

d e1
f

g
,388

f e2
a1

a2
.389

Merging e1 and e2 creates unobserved subsequence390

d e a391

with median Ps = 0.38 and p = 0.392

The major effects of deafening are the loss of the transition e2 → a2; the strengthening of the393

transition e2 → a1; and the enhancement of stopping after g. The only state multiplicity left is394

for syllable e, which encodes the same context dependency as in the normal hearing condition.395

Merging the two states for e again creates unobserved subsequence d → e → a with median396

Ps = 0.05 and p = 0.397

For bfa19 in normal hearing condition, there are two states for syllables b, c, e, and f (Fig. 9).398

The state multiplicity for b and c encodes the context dependence399
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states merged subsequence Ps observed median Ps p

b1, b2 abcf 0 0.38 0.0001

c1, c2 abcf 0 0.38 0

e1, e2 debcd 0 0.29 0.0015

f1, f2 gfg 0 0.29 0.0011

Table 2: Consequences of pairwise merging of states with the same syllables for bfa19 with
normal hearing.

a b1 c1
d

�
,400

e b2 c2 f .401

The state multiplicity for e and f reflects the context dependency402

d e1 b c f1 g ,403

g f2 e2 b c
�

d
.404

The consequences of pairwise state merging are shown in Table 2.405

After deafening, many novel transitions appear, most notably e→ g and f → g transitions.406

The model becomes Markovian, and all context dependencies disappear.407

For bfa14 in normal hearing condition, the POMM has two states for c and g (Fig. 10),408

reflecting context dependence409

b c1 g1 e ,410

f c2 g2
e

�
.411

Subsequence412

b c g �413

is rare in the observed sequences (Ps = 0.03). Merging c1 and c2 significantly boosts the414

probability, with median Ps = 0.23 and p = 0. Merging g1 and g2 does the same, with median415

Ps = 0.08 and p = 0.013.416

For this bird, deafening creates numerous novel transitions with small probabilities (< 0.1)417
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(Fig. 10). Novel transitions with large probability (> 0.1) also occur, which include transitions418

a→ h, b→ l, h→ f , and l → g, as well as from S to syllables b, c, e, f, l. Some transitions are419

weakened, which include transitions l→ c and f → c. The model becomes Markovian.420

For o46bk78 with normal hearing, the song is described by a POMM with state multiplicity421

for multiple syllables (Fig. 11). There are 4 states for b, 3 states for a and c, and 2 states for d and422

e, respectively. The state multiplicity for syllable a reflects the following context dependencies:423

S a1 b c d e
a

�
,424

b a2 b c d e a
b

�
,425

e a3
b

�
.426

The state multiplicity for syllable b reflects the following context dependencies:427

S a b1 c d e
a

�
,428

S b2
a b

c f
,429

S b a b3 c d e a
b

�
,430

e a b4 c f .431

The state multiplicity for syllable c and d encodes the following context dependencies:432

S a b c1 d1 e � ,433

S b
c3 f

a b c2 d2 e a
b

�

.434

The consequences of pairwise merging of states are shown in Table 3.435

After deafening, a novel transition d → a appears. Moreover, the probability of stopping436

after syllable a is strongly enhanced. State multiplicity disappears except for syllable b, which437
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states merged subsequence Ps observed median Ps p

a1, a2 Sabcdea� 0 0.04 0.029

a1, a3 Sa� 0 0.06 0.014

a2, a3 ba� 0 0.027 0

b1, b2 Sbcd 0.01 0.09 0.01

b1, b3 Sabcdea� 0 0.04 0.03

b1, b4 Sabcf 0 0.07 0.0058

b2, b3 babab 0 0.14 0

b2, b4 eaba 0.03 0.17 0

b3, b4 babcf 0.03 0.23 0

c1, c2 Sabcdea� 0 0.04 0.035

c1, c3 Sabcf 0 0.07 0.005

c2, c3 babcf 0 0.3 0

d1, d2 Sabcdea� 0 0.04 0.025

Table 3: Consequences of pairwise merging of states with the same syllables for o46bk78 with
normal hearing.

is still associated with two states, reflecting the context dependent transitions438

S a b1 c ,439

S b2
a

c
.440

This is a type II context dependence. In both cases, syllable b is followed by syllable a or c.441

However, from b1 the transition to c is favored, with probability 0.88; in contrast, from b2 the442

transition to a is favored with probability 0.77. In the observed set, the subsequences443

a b a ,444

S b c445

occur with probabilities Ps = 0.21 and Ps = 0.19, respectively. Merging b1 and b2 significantly446

enhances the probabilities, with median Ps = 0.37 and p = 0.001 for the first subsequence and447

with median Ps = 0.56 and p = 0 for the second subsequence.448
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Discussion449

Deafening induces rapid changes in syllable sequences in Bengalese finch songs (Woolley and450

Rubel, 1997; Okanoya and Yamaguchi, 1997; Wittenbach et al., 2015). In this work we analyze451

the changes in song syntax by inferring minimal POMMs from syllable sequences. The multi-452

plicity of states in the POMMs reveal context dependencies in syllable transitions (Jin, 2009;453

Jin and Kozhevnikov, 2011). We find that deafening reduces the state multiplicity but does454

not eliminate it. Our results indicate that intact auditory feedback plays an important but not455

exclusive role in creating context dependencies in Bengalese finch songs.456

Previous deafening studies in the Bengalese finch emphasized the loss of sequence stereotypy457

shortly after deafening and suggested that online auditory feedback is required for producing458

stereotyped syllable sequences (Woolley and Rubel, 1997; Okanoya and Yamaguchi, 1997) . We459

confirm that deafening makes syllable sequences more random. However, an alternative explana-460

tion could be that the activity of the auditory system becomes more random after being deprived461

of inputs (Resnik and Polley, 2021). We find that deafening leads to the appearance of many462

novel transitions with small probabilities (< 0.1). Novel transitions with large probability also463

occur, but are less frequent. Some transitions with small probabilities disappear after deafening.464

The appearance (and disappearance) of transitions with small probabilities is consistent with465

the idea that the HVC activity is more random after deafening. NIf (the nucleus interfacialis466

of the nidopallium) is a major source of auditory inputs to HVC (Coleman and Mooney, 2004).467

During sleep, NIf activity drives random activations of HVC projection neurons (Hahnloser and468

Fee, 2007). It is conceivable that deafening deprives structured auditory inputs to NIf, and469

causes NIf to be randomly active during singing. Lesioning NIf in the Bengalese finch makes470

song sequences more stereotyped (Hosino and Okanoya, 2000), which suggests that NIf input is471

capable of influencing syllable transitions.472

On average across the birds, the transition entropy at the branching points of syllable tran-473

sitions tends to increase after deafening (Fig. 12b). This increase is mostly due to the branching474

points that have dominant transitions becoming more “equalized”, such that the branches have475
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similar transition probabilities. Similar effects were seen in real-time manipulation of auditory476

feedback (Sakata and Brainard, 2006), cooling HVC (Zhang et al., 2017) or enhancing inhibition477

(Isola et al., 2020) in HVC of the Bengalese finch. It would be interesting to investigate whether478

there is a common neural mechanism across these manipulations.479

In the framework of syllable-chains driving syllable productions (Hahnloser et al., 2002;480

Fee et al., 2004; Jin, 2009; Chang and Jin, 2009), transitions between syllable-chains are con-481

trolled by both the connections between the syllable-chains and the auditory inputs to the482

HVC projection neurons (Jin, 2009; Hanuschkin et al., 2011; Wittenbach et al., 2015). Strong483

auditory inputs can bias transitions towards the targeted branches. Context dependence can484

thus be encoded with many-to-one mapping from the syllable-chains to syllables (Jin, 2009;485

Cohen et al., 2020), or with the auditory feedback promoting different transitions depending on486

the preceding syllables (Fig. 2). These intrinsic and reafferent mechanisms can coexist. Deaf-487

ening reduces context dependence, as indicated by the reduction of the state multiplicity in the488

POMMs after deafening. The state multiplicity remains for some syllables in some birds, sug-489

gesting the existence of the intrinsic mechanism. Additionally, because the delay of the auditory490

feedback is limited to about 70 - 90 ms (Sakata and Brainard, 2006), context dependence span-491

ning many syllables is unlikely due to auditory feedback (Cohen et al., 2020). There are alterna-492

tive frameworks on how syllables are driven by the song system in songbirds (Amador et al., 2013;493

Hamaguchi et al., 2016; Troyer et al., 2017). It would be interesting to show how these frame-494

works can explain our observations on the context-dependent syllable transitions in Bengalese495

finch songs.496

Our method of inferring a POMM from observed sequences is conservative. The method497

is designed to find the minimal POMM given the observed sequences. When the number of498

observed sequences is small, the method tends to underestimate the true number of multiple499

states (Fig. 4). This is because not all context dependencies are sufficiently represented in the500

observed sequences. One way to gauge whether there are enough number of observed sequences501

is to see if the sequence completeness Pc computed with the POMM is close to 1 for the observed502
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sequences. The quantity 1− Pc can be used as a rough estimate of the total probability of the503

missing unique sequences.504

We identify two types of context dependencies. Simple models that are incapable of capturing505

type I context dependencies overgeneralize, creating unobserved sequences. This is captured with506

Pc. In the case of sufficient number N of observed sequences, 1− Pc is the total probability of507

the unobserved sequences. A perfect model should have Pc = 1. However, a model could have508

Pc = 1 but still miss type II context dependencies, which describe how transition probabilities509

change depending on the preceding syllables. This type can be captured by the total variation510

distance d, which is the sum of the differences of the model’s and the observed probabilities511

of the unique sequences in the observed set. To capture both types of context dependencies,512

we combine Pc and d with a parameter β into the augmented sequence completeness Pβ. An513

ideal model should have Pβ = 1. Accurate measurements of the sequence probabilities require514

large N . If N is small, type II context dependencies may be obscured by the fluctuations in the515

measured probabilities. In this case it is better to de-emphasize the contribution of d by setting516

β close to 0. We find that setting β = 0.2 is a reasonable choice for our data set. Because517

Pc is the sum of the probabilities of the unique sequences, it is more robust against inaccurate518

measurements of the probabilities.519

The method depends on the distribution of Pβ for the sequences sampled from the candidate520

POMM. Some sequences that the model generates may be not observed not because the model521

overgeneralizes, but because there is not enough number of observations. This finite N effect522

can be estimated by sampling sets of N sequences from the model and computing Pβ. This523

distribution is used to calculate the p-value of the Pβ of the observed set computed with the524

POMM. We used the criteria p < 0.05 for rejecting the POMM. Lowering this cut off value so525

that rejection is more stringent should enable acceptance of POMMs with fewer number of extra526

states. Our approach for deriving POMM from observed sequences is computationally intensive.527

The major cost is the sampling step. It would be interesting to investigate better methods for528

estimating the state multiplicity. One possibility is to measure the predictive information in529
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the syllable sequences and infer the number of parameters needed for encoding the sequence530

complexity (Bialek et al., 2001).531

POMMs were inferred in a previous study by fitting probabilities distributions such as N-532

gram distributions, which are the probabilities of subsequences of lengthN (Jin and Kozhevnikov,533

2011). The method involved multiple heuristic steps, and was not easy to implement. Addi-534

tionally, the method required a large N because it relied on accurate measurements of the535

probabilities. In contrast, our method is principled, and can work with smaller N . Even though536

our method does not directly fit N-grams, the statistics of 2- to 7-grams agree between the537

observed sequences and the sequences generated by the POMMs (Fig. S7 and Fig. S8).538

In conclusion, we devised a method of inferring minimal POMMs from observed sequences.539

Application of the method to the syllable sequences of Bengalese finch songs before and after540

deafening suggests that the auditory system helps to create context-dependences in syllable541

transitions. Our method should be broadly applicable to other animal behavioral sequences.542

Materials and Methods543

Data set544

The data set in this work was previously used for analyzing syllable repeats (Wittenbach et al.,545

2015) (available for download from http://personal.psu.edu/dzj2/SharedData/KrisBouchard/).546

Details of recording songs, annotating syllables, and deafening through bilateral cochlear re-547

moval, as well as the Ethics Statement can be found in the published paper (Wittenbach et al.,548

2015). We specifically used the data collected from six male adult Bengalese finches before and549

after deafening (labeled bfa14, bfa16, bfa19,bfa7, o10bk90, and o46bk78).550

In the data set, syllables are labelled a through l, and x through z. Some ambiguous syllables551

are noted with symbols 0 and −, and they are skipped. Bengalese finch song bouts typically552

begin with short introductory notes. They are labeled as i, j and k. We define song sequences553

as segments of syllables that are bracketed by periods of introductory notes and the end of the554
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recordings.555

POMM556

A POMM is specified by a state vector V = [S,E, s3, s4, · · · , sn], where s1 = S and s2 = E are557

the start and the end states, n is the total number of states, and si for i = 3, · · · , n is the syllable558

symbol associated with the ith state. The same syllable symbol can appear multiple times in559

the state vector. Transitions between the states are described by a transition matrix T , whose560

element Tij gives the probability of transition from state i to state j. There are no transitions561

to the start state, i.e. Ti1 = 0; and there are no transitions from the end state, i.e. T2j = 0.562

Sequence generation from a POMM starts with the S state. At state i, the next state j is563

chosen with the probabilities Tij among possible choices of state 2 to state n. Once chosen, the564

symbol sj is added to the sequence. This process repeats until the E state is reached, at which565

point the sequence generation is complete.566

A POMM is visualized with the software Graphviz (Ellson et al., 2001). To reduce clutter,567

only transitions with probabilities larger than 0.01 are shown. Additionally, the E state is not568

shown. Instead, the states that can transition to the E state are shown in cyan. The transition569

probability from one state to the E state is 1 minus the sum of the transition probabilities to570

other states. If a state does not transition to the E state with a probability larger than 0.01,571

the state is shown as white. The start state is shown in pink.572

Markov model573

A Markov model is a special case of POMM for which each syllable symbol appears only once

in the state vector. The transition probabilities T can be computed as

Tij =
Nij

Ni
,
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where Ni is the total number of times si appears in the set Y of sequences, and Nij is the total

number of the times that the two-symbol subsequence sisj appears in Y . Note that

Ni =
n∑
j=1

Nij ,

so we only need to compute Nij .574

Baum-Welch algorithm575

Computing T for POMM with state multiplicity is more complicated than that for the Markov

model, but the approach is similar. Starting from a set of random transition probabilities, the

state transition sequences that correspond to the syllable sequences in Y are worked out. The

transition probabilities are then updated according to

Tij =
Nij

Ni
,

where Ni is number of times the state i appears in the state sequences, and Nij is the number576

of times the subsequence of states ij appears. With the updated T , the process is repeated.577

The process stops when the changes in T is smaller than 10−6. Because the result might be578

dependent on the initialization of T , the process is run for 100 times with different seeds for579

random number generator. The T that maximizes the probabilities of generating Y from the580

POMM is selected.581

The computation is efficiently implemented with the Baum-Welch algorithm (Rabiner, 1989).

Consider a sequence y1y2 · · · yt · · · ym in the set Y . Here t is the step in the sequence and m is

the maximum length of the sequence. The algorithm consists of three parts. First, calculate

the forward probability αi(t), which is the probability of being at state i at step t given the

proceeding sequence is y1y2 · · · yt−1. This is computed iteratively with

αi(t+ 1) = δi(yt+1)
n∑
j=1

αj(t)Tji.
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Since all sequences start from the S state, the initial condition is α1(0) = 1 and αj(0) = 0 for all

j 6= 1. Here δi(yt+1) = 1 if the symbol yt+1 at step t+ 1 is the same as the symbol si associated

with state i; otherwise, δi(yt+1) = 0. Second, calculate the backward probability βi(t), which

is the probability being at state i at step t and the follow-up sequence is yt+1, · · · , ym. This is

calculated iteratively with

βi(t) = δi(yt)
n∑
j=1

Tijβj(t+ 1).

Since all sequences end at the end state, the initial condition is β2(m+1) = 1 and βj(m+1) = 0

for all j 6= 2. Third, calculate Ni and Nij . The forward and backward probabilities αi(t) and

βi(t) should be computed for each sequence in Y . The number of transition from state i to state

j is given by

Nij =
∑
Y

m∑
t=1

αi(t)Tijβj(t+ 1).

For a given sequence y1y2 · · · ym, the probability that the POMM generates it is given by

Py = α2(m+ 1),

which is the forward probability of ending at the end state at step m+ 1.582

The total probability of the set Y is given by

PY = Πy∈Y Py.

It is most convenient to use the log likelihood, which is

LY = logPY =
∑
y∈Y

logPy.
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Sequence completeness, total variation distance and augmented sequence com-583

pleteness584

For a set of sequences Y , the sequence completeness on a POMM is computed as

Pc =
∑
y∈Y

Py,

where y is a unique sequence in Y . The sum is over all the unique sequences in the set.585

For a set of observed sequences Yo, the total variation distance is defined as

d =
1

2

∑
y∈Yo

|Py − Py,m|.

Here Py,m is the probability of the unique sequence y computed on the POMM and then nor-

malized among the unique sequences such that

∑
y∈Yo

Py,m = 1.

This normalization is necessary because Py,m is compared to Py, which is normalized:

∑
y∈Yo

Py = 1.

The total variation distance ranges from 0 to 1.586

The augmented sequence completeness is defined as

Pβ = (1− β)Pc + β(1− d).

Here β is a parameter that can be chosen in the range (0, 1). The value of Pβ ranges from 0 to587

1. A perfect POMM for the observed set should yield Pβ = 1 because Pc = 1 and d = 0. When588

N is small, the measurements of Py are not accurate. For this case, the contribution from d589
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should be reduced by taking a small value for β. In our work, we chose β = 0.2.590

Statistical test591

To test whether an observed set Yo with N sequences could be generated from a POMM, we

generate M = 10000 sets of N sequences, and compute the Pβ of the generated sets, which

gives a distribution of Pβ. We also compute the augmented sequence completeness Pβ,o of the

observed set. In the distribution, we count the number K of Pβ that are smaller or equal to

Pc,o. To avoid small fluctuations in Pβ making K artificially small, we added 10−10 to Pβ,o. The

p-value is

p =
K

M
.

The POMM is rejected if p < 0.05, and accepted otherwise.592

Inferring minimal POMM593

For a given set Y of N syllable sequences, the minimal POMM is inferred through three steps:594

grid search in the state space; state deletion; and removal of transitions. Let k be the number595

of syllables. The grid space has k dimensions, and the grid points (x1, x2, · · · , xk) specifies a596

state vector V in which syllable si appears xi times. Grid search starts with the Markov model597

(1, 1, · · · , 1). The model is tested for statistical significance of the Pβ of Y on the model. If598

the Markov model is rejected, the nearby grid points (2, 1, · · · , 1), (1, 2, · · · , 1), · · · , (1, 1, · · · , 2)599

are evaluated. The transition matrix T for each corresponding POMM is inferred using the600

Baum-Welch algorithm. The grid point with the maximum log-likelihood is selected, and the601

corresponding POMM is tested for the Pβ significance. If rejected, the nearby points of the602

newly selected grid point are evaluated. This process continues, until one POMM is accepted603

according to the Pβ statistical test.604

Because grid search is a local “hill climbing” scheme, the POMM at which the search605

stops may not be the minimal POMM. We therefore perform state deletion, which is oppo-606

site of grid search. From the accepted POMM (x1, x2, · · · , xk) in the grid search, we test grid607
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points with one less number of states for one of the syllables: (x1 − 1, x2, · · · , xk), (x1, x2 −608

1, · · · , xk), (x1, x2, · · · , xk − 1). The grid point with the maximum log-likelihood is selected, and609

the POMM is tested for the Pβ statistics. If the POMM is accepted, the next round of state dele-610

tion is performed. This process repeats, until no POMM at the tested grid points is accepted.611

The last accepted POMM in the process is the minimal POMM.612

The final step is minimization of the number of transitions in the POMM. We first remove

all transitions with probability smaller than 0.001. We then remove the remaining transitions

one by one, and re-compute the transition matrix T after each removal. To remove a transition

from state i to state j, we set Tij = 0 in the initial transition matrix for the Baum-Welch

algorithm. The algorithm ensures that this transition element remains 0. If the log-likelihood

remains within the threshold, the removal is accepted and kept; otherwise the removal is rejected

and reversed. The threshold is

Lθ = Lmax − µσL,

where Lmax is the log-likelihood of the original POMM before any deletions, and σL is the613

standard deviation of the log-likelihood of the 100 runs of Baum-Welch algorithms with different614

random seeds. The parameter µ is set to 1. If after the deletions the p-value of the Pβ test goes615

below 0.05, µ is reduced to 0.5, and the deletion process is done again. This reduction in µ is616

rarely needed.617

Probability of finding a subsequence618

The probability Ps of finding a subsequence in a set Y is defined as

Ps =
K

N
,

where N is the number of sequences in the set, and K is number of sequences that contains the619

subsequence.620
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State merging tests621

To evaluate the context dependent syllable transitions encoded by state multiplicity in a POMM,622

we perform pairwise state merging tests. The merged state retains all transitions to and from623

the two states. The transition probabilities of the state-merged POMM are recomputed using624

the Baum-Welch algorithm and the observed set Yo. By examining the states transitioning into625

the two states, and the states that follow the two states, we find possible subsequences that626

can show overgeneralization after the state merger. We find a subsequence that either is unseen627

in the observed set (Ps,o = 0) or has small probability Ps,o. To see whether the subsequence628

is significantly more probable in the sequences generated from the state-merged POMM, we629

generate 10000 sets of N sequences from the POMM. Here N is the number of sequences in Yo.630

For each generated set, we compute Ps. This creates a distribution. We count the number of Ps631

that is smaller than or equal to Ps,o + 10−10. The p-value is the ratio of this number and 10000.632

We add a small number 10−10 to Ps,o. This is for avoiding artificially lowering p-value due to633

those Ps that are equal to Ps,o. For example, if the subsequence is unobserved (Ps,o = 0) and634

the state-merged POMM does not generate it either, we would have a situation that Ps = 0 for635

all of the sampled set. By adding the small number to Ps,o, we ensure that p = 1, as it should636

be. If p < 0.05, we conclude that the enhancement of Ps after state merger is significant.637

Wilcoxon signed-rank test638

For comparing distributions of paired data in Fig. ??, we use Wilcoxon signed-rank test using639

scipy.stats.wilcoxon, which is in the Python module scipy.640
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Figure Legends

Figure 1: Two types of context dependent syllable transitions. Two examples are used

to illustrate the computations of sequence completeness Pc, the total variation distance d, and

the augmented sequence completeness Pβ. Example 1 shows type I context dependence, and

Example 2 shows type II context dependence.
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Figure 2: Neural mechanisms of POMM. Schematics of how chain networks in HVC can

be wired to implement the state multiplicity in POMMs. a. In the intrinsic mechanism, the

multiple states for a syllable (C in this example) correspond to multiple syllable-chains that

drive the production of the same syllable. b. In the re-afferent mechanism, the multiple states

are due to auditory feedback biasing transition probabilities at the branching points.
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Figure 3: Statistical test of a POMM. a. The ground truth POMM for generating the

“observed set” of sequences from which the Markov models are derived. The POMM has two

states for syllables A and C, and one states for syllables B, D, and E. The two states for A

encodes type I context dependence, and the two states for C encodes type II context dependence.

The sequences generated from the POMM are shown for N = 10, 30, 60. b. Markov models

derived from the observed sets (up) and the distributions of Pβ of 10000 sets of N sequences

generated from the Markov models. The redlines indicate the Pβ of the generated sequences

computed with the Markov model. Three cases for N = 10, 30, 60 are shown.
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Figure 4: Derived POMMs for the example. POMMs are derived from 100 sets of N =

10, 30, 90 generated from the ground truth model shown in Fig. 3a. Typical structures of the

POMMs (top) and distributions of the number of states for the syllables (bottom) are shown.
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Figure 5: Test of Markov model for bird o10bk90. The Markov models (top) and the

Pβ distributions (bottom) are shown for the normal hearing condition (left) and after deafening

(right). The red lines are Pβ of the observed sets computed with the Markov models. For both

before and after deafening, the Markov models are rejected (p = 0 in both cases).
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Figure 6: POMM for bird o10bk90. The POMMs before (left) and after (right) deafening are

shown. The syllables with multiple states are highlighted with red. The p-values, the number

N of sequences in the observed sets, and the Pβ are displayed. Before deafening, syllables f and

g each have two states. After deafening, f still has two states but g has one state.

670

671

672

673674

Figure 7: POMM for bird bfa7 . Same as in Fig. 6. Before deafening, syllable b has 2 states,

and syllables c and d each has 4 states. After deafening, there is no state multiplicity. Note that

syllable g is dropped after deafening.
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Figure 8: POMM for bird bfa16. Same as in Fig. 6. Before deafening, syllables a, d and e

each has 2 states. After deafening, only syllable e retains 2 states.
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Figure 9: POMM for bird bfa19. Same as in Fig. 6. Before deafening, syllables b, c, e and

f each has 2 states. After deafening, the state multiplicity disappears. Many novel transitions

appear after deafening for this bird.
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Figure 10: POMM for bird bfa14. Same as in Fig. 6. Before deafening, syllables c and g each

has 2 states. After deafening, the state multiplicity disappears. Many novel transitions appear

after deafening for this bird.
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Figure 11: POMM for bird o46bk78. Same as in Fig. 6. Before deafening, all but one syllable

f has multiple states (a, 3; b, 4; c, 3; d, 2; and e 2). After deafening the many-to-one disappears

for all but syllable b, which still has 2 states.
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Figure 12: Summary of the effects of deafening on POMM. (Left ) The total numbers of

extra states in POMMs decrease for all birds. (Right) The mean normalized transition entropies

at branching points in the POMMs increase for all but one bird (bfa16), indicating that the

transitions at branching points tend to become equally probable after deafening.
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Figure S1: (Supplementary) Statistical test of Markov model. a. The ground truth

model is a Markov model. Contrast this with the model in Fig. 3a. b. Examples of sequences

generated from the ground truth model. c. From the “observed” sets of N sequences generated

with the ground truth model (N = 10, 30, 60), Markov models are derived. The Markov models

are tested with the distribution of Pβ. The red lines indicate the Pβ of the generated sequences

from the Markov models. As expected, for all N the Markov model is not rejected.
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Figure S2: (Supplementary) Test of Markov model for bird bfa7. Same as in Fig. 5.

Before deafening, the Markov model is rejected (p = 0). After deafening, the Markov model is

not rejected (p = 0.42).
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Figure S3: (Supplementary) Test of Markov model for bird bfa16. Same as in Fig. 5.

Both before and after deafening, the Markov models are rejected (p = 0 in both cases).
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Figure S4: (Supplementary) Test of Markov model for bird bfa19. Same as in Fig. 5.

Before deafening, the Markov model is rejected (p = 0.02). After deafening, the Markov model

is not rejected (p = 0.34).
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Figure S5: (Supplementary) Test of Markov model for bird bfa14. Same as in Fig. 5.

Before deafening, the Markov model is rejected (p = 0). After deafening, the Markov model is

not rejected (p = 0.56).
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Figure S6: (Supplementary) Test of Markov model for bird o46bk78. Same as in Fig. 5.

Both before and after deafening, the Markov models are rejected (p = 0 in both cases).
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Figure S7: (Supplementary) Comparisons of N-gram distributions in normal hearing

condition. For each bird, the probability distributions of 2- to 7 -grams of the sequences in the

observed set are plotted in red. The N-grams are sorted in the decreasing orders of probabilities

in the red curves. For comparisons, the probabilities of the same N-grams are computed for 100

sets of sequences generated from the POMM. Each set contains the same number of sequences

as in the observed set. The N-gram probabilities are plotted with gray lines. For all birds, the

red lines overlap with the gray lines, suggesting that the N-gram distributions agree between

the observed sets and the generated sets.
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Figure S8: (Supplementary) Comparisons of N-gram distributions after deafeninig.

The same as in Fig. S7 but for the deafened cases.
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Fig. S1 (Supplementary) Statistical test of Markov model.778779
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Fig. S5 (Supplementary) Test of Markov model for bird bfa14.792793
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Fig. S8 (Supplementary) Comparisons of N-gram distributions after deafeninig.804805
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