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Abstract
Gene expression variance has been linked to organismal function and fitness but remains a commonly ne-
glected aspect of molecular research. As a result, we lack a comprehensive understanding of the patterns of
transcriptional variance across genes, and how this variance is linked to context-specific gene regulation and
gene function. Here, we use 57 large publicly available RNA-seq data sets to investigate the landscape of gene
expression variance. These studies cover a wide range of tissues and allowed us to assess if there are consis-
tently more or less variable genes across tissues and data sets and what mechanisms drive these patterns. We
show that gene expression variance is broadly similar across tissues and studies, indicating that the pattern
of transcriptional variance is consistent. We use this similarity to create both global and within-tissue rank-
ings of variation, which we use to show that function, sequence variation, and gene regulatory signatures
contribute to gene expression variance. Low-variance genes are associated with fundamental cell processes
and have lower levels of genetic polymorphisms, have higher gene-gene connectivity, and tend to be associ-
ated with chromatin states associated with transcription. In contrast, high-variance genes are enriched for
genes involved in immune response, environmentally responsive genes, immediate early genes, and are asso-
ciated with higher levels of polymorphisms. These results show that the pattern of transcriptional variance
is not noise. Instead, it is a consistent gene trait that seems to be functionally constrained in human popu-
lations. Furthermore, this commonly neglected aspect of molecular phenotypic variation harbors important
information to understand complex traits and disease.

Author Summary
Gene expression variance, or the variation in the level of gene expressionwithin a population, can have signifi-
cant impacts on physiology, disease, and evolutionary adaptations. While the average level of gene expression
is typically the focus of research, the variation around this average level (i.e., gene expression variance) can
also be important for understanding complex traits and disease. Here, we investigate the landscape of tran-
scriptional variance across tissues, populations, and studies. Using large publicly available RNA-seq data sets,
wewere able to identify the general properties associatedwith high- and low-variance genes, aswell as factors
driving variation in variance across genes. Specifically, we uncovered gene expression variance was signifi-
cantly associated with gene length, nucleotide diversity, the degree of connectivity and the presence of non-
coding RNA. Our results suggest that the mechanisms responsible for maintaining optimal levels of variation
in high- versus low-variance differ, and that this variability is the result of different patterns of selection.
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Introduction

Molecular phenotypes such as gene expression are powerful tools for understanding physiology, disease, and1

evolutionary adaptations. In this context, average trait values are usually the focus of investigation, while2

variation around the average is often considered a nuisance and treated as noise [1]. However, gene expres-3

sion variance can be directly involved in determining fitness [2,3], can drive phenotypic variation [4], and the4

genetic architecture of variance itself can evolve [5]. This suggests that studying gene expression variance5

as a bona fide trait, its genetic architecture, and the evolutionary mechanisms shaping andmaintaining gene-6

specific patterns of variance has the potential to further our understanding of complex traits and disease [6–8].7

Variability is ubiquitous in nature and is, alongside its counterpart, robustness, a fundamental feature ofmost8

complex systems. But, at the same time, the degree of variability seems to differ between genes [1] suggest-9

ing that it might be associated with biological function and therefore be shaped by selection. From a mech-10

anistic perspective, several competing forces act to shape transcriptional variance [5,9], and the outcome of11

the interaction between these processes is still poorly understood [10]. For example, we expect the influx of12

new mutations to increase the variance, while the selective removal of these polymorphisms, via purifying13

selection or selective sweeps, to decrease it [11,12]. From a quantitative trait perspective, stabilizing selection14

should decrease variation around an optimal value, and directional selection can lead to a transient increase15

in variancewhile selected alleles sweep to fixation, followed by a reduction in variance as these alleles become16

fixed. Pleiotropic effects are also important, as they allow selection on one trait to influence the variance of17

other traits [13,14]. Both indirect effects of directional selection on variance open the possibility that the main18

driver of gene expression variance is not direct selection on variance but indirect effects due to selection on19

trait means [10]. How the interaction of these processes shape gene expression variance is an open question.20

However, some general predictions can bemade. If a homogeneous pattern of stabilizing selection is themain21

driver of gene expression variance, wewould expect transcriptional variance to be consistent regardless of the22

population, tissue, or environmental context. If idiosyncratic selection or environmental patterns are more23

important, we could observe large differences in gene expression variance across studies.24

A key difficulty in addressing these questions is that the constraints on gene expression variance might also25

be dependent on the gene tissue specificity. Mean expression is known to differ across tissues [15], however,26

to what extent differential expression (i.e., differences in mean expression level) translate into differences in27

expression variance is not clear. Higher mean expression could lead to higher variance, but other processes28

can also affect transcriptional variance. For example, if a gene is expressed in more than one tissue and vari-29

ance regulation is independent across tissues, stabilizing selection on gene expression could be more intense30

depending on the role of that gene in a particular tissue, causing a local reduction in variation that leads to31

differences in variance across tissues (fig. 1 A). These across-tissue differences would not necessarily follow32
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mean expression. Alternatively, expression variation across tissues could be tightly coupled and, in this ex-33

ample, selection in one tissue would lead to a reduction in variance across tissues, resulting in a consistent34

pattern of variation (fig. 1 B). While we lack a clear picture of how tissue-specific gene expression variation is35

regulated, Alemu et al. [16] used microarray data from several human tissues to show that epigenetic mark-36

ers were linked to gene expression variation and that these markers were variable across tissues and between37

high- and low-variance genes.38

Figure 1: Example of how differences in the regulation of transcriptional variance can drive changes in the
correlations between gene expression variancemeasures. In (A), independent regulation causes the reduction
in variation to be restricted to context 1 (context here can refer to different tissues, environments, populations,
studies, etc.). On the right side of panel A, independent regulation results in low correlation across contexts.
In (B), a shared regulatory architecture maintains consistent variance across both conditions, leading to high
similarity in transcriptional variance across contexts. In (C), we see how the similarity seen in panel B can
be leveraged to create an across-context rank of gene expression variance. When transcriptional variance
ranks are highly correlated, the rank of the projection onto the first principal component (PC1) allows us to
summarize the across-context pattern of transcriptional variance.

To explore the landscape of gene expression variance and the association between transcriptional variance39

and biological function, we use 57 publicly available human gene expression data sets spanning a wide range40

of experimental contexts and tissues. By comparing the gene expression variance measured across such het-41

erogeneous data sets, we show that the degree of expression variance is indeed consistent across studies and42

tissues. We use the observed similarities to create an across-study gene expression variance ranking, which43
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orders genes from least variable to most variable. We then integrate various genomic-level functional annota-44

tions as well as sequence variation to probe the drivers of this variance ranking. Finally, we explore the link45

between gene expression variance and biological function by leveraging gene ontology and other gene annota-46

tions.47

Results48

Figure 2: Overviewof the distribution of transcriptional variance across studies. (A)Heatmap showing the cor-
relation in transcriptional variance across studies (as the Spearman correlation of gene expression standard
deviations). Pairs of studies with more similar patterns of gene expression variance have higher correlations.
Studies are shown in the same order as in SI fig. 1, panel A. (B) Distribution of the pairwise Spearman corre-
lations between studies shown in the previous panel. (C) PCoA using the distance between studies derived
from the pairwise correlations. (D) Density plot of standard deviations after z-normalization. The inset plot
shows the distribution of mean-centered standard deviations grouped by study without normalization. The
corresponding rug plots show the location of the highest-ranking gene in standard deviation rank (HBB) (right,
blue) and lowest (WDR33) (left, red).
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Data sets49

We use 57 publicly available human gene expression RNA-seq data sets which were derived from the publica-50

tions listed in table 1 of the Methods section, and a complete metadata table for each study is available in the51

supporting information (SI data 1). We only use data sets that fulfilled the following conditions: samples came52

from bulk RNA-seq (and no single cell approaches), data sets were associated with a publication, sample-level53

metadata was available, and the post-filtering sample size was greater than 10 (note that we did not included54

data from non-baseline/exposure/stimulated datasets). These data sets span 13 different tissue types and the55

post-filtering mean sample size we used for each data set was 390, with a median of 251, and ranged from 12 to56

2931 samples. Several data sets were derived from two large consortia: GTEx [15] and TCGA [17], and we note57

the origin of the data sets in the figures where appropriate. We refer to data sets and studies interchangeably,58

and so each tissue in GTEx is referred to as a different study. The final list of genes used from each study can59

be found in SI data 2.60

Gene expression variance61

For each study, transcriptional variance per gene was measured as the standard deviation (SD) of the distri-62

bution of gene expression values for all individuals in a particular study. Mean and variance are known to63

be correlated in RNA-seq data, both due to the nature of count data and the expectation that more highly ex-64

pressed genes should have more variation. As our focus here is on variance, we control for both of these ex-65

pected drivers of transcriptional variation. To achieve this, SD was calculated using a unified pipeline that66

normalized the mean-variance relation in read-count data, controlled for batch effects, and removed outliers67

(see Methods for details, and the calculated values for means and standard deviations are available in SI data68

3). The observed range of gene expression SDs across genes is variable but can be normalized so that the dis-69

tributions are comparable (fig. 2 D). This comparison reveals differences in the range of gene expression SDs70

that can be due to any number of methodological or biological differences between the data sets. We avoid71

having to deal with these global differences in the range of variation by using only the ranking of the genes72

according to their gene expression SD in each study. Therefore, patterns of transcriptional variancewere com-73

pared across studies using Spearman correlations (ρs) between gene expression SDs. This comparison reveals74

a broadly similar rank of gene expression variance as the correlations across studies are mostly positive and75

high (75% of correlations are between 0.45 and 0.9, fig. 2 A and B), indicating that genes that are most vari-76

able in one study tend to be most variable in all studies. A principal coordinate analysis [18] using |1 – ρs| as77

a between-study distance measure does not show clearly delineated groups, but GTEx and TCGA studies are78

clustered among themselves and close together (fig. 2 C).This clustering indicates some effect of study source79

on the similarity between gene expression SD across studies, which we explore in detail below.80
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To characterize what factors may explain differences in across-study similarity, we directly modeled the81

across-study correlations using a mixed-effect linear model designed to account for the non-independence82

in pairwise correlation data [19,20]. In this model (see Methods), we use a random effect for individual83

study ID, a fixed effect for pairwise tissue congruence (whether a comparison is within the same tissue or84

different tissue), and a fixed effect for pairwise study source (which pair of sources among GTEx, TCGA, and85

miscellaneous is involved in a comparison) as predictors of the correlations (see Methods). This model (SI86

fig. 1) shows that comparisons of studies within GTEx and TCGA have on average higher values of 𝜌𝑠, but also87

that comparing studies across GTEx and TCGA also shows a mild increase in the average correlation (SI fig. 188

C). Correlations that do not involve studies from TCGA and GTEx (marked as “Misc.”) are on average lower89

(SI fig. 1 C). While we do not have a clear explanation for this pattern, since TCGA and GTEx are independent,90

this mild effect on the similarities could be due to the level of standardization of the data coming from these91

two large consortia. Tissue type also affects the degree of similarity in transcriptional variance, with studies92

using the same tissue being, on average, more similar (SI fig. 1 B). However, all these pairwise effects are mild,93

and the largest effects on the correlations are those associated with individual studies, in particular some94

specific tissues, i.e., comparisons involving BONE MARROW (from GTEx) and study SRP057500 (which used95

platelets) are on average lower (SI fig. 1 A). The only negative correlation we observe is between these two96

studies, which also appear further away in the PCoA plot in fig. 2 C.97

Transcriptional variance rank98

The strong correlations between transcriptional variance across studies suggest that variance rank is indeed a99

property of genes that can be robustly estimated. To estimate this gene-level rank, we devised an across-study100

approach that allowed us to rank individual genes according to their degree of transcriptional variance by101

averaging the ordering across all studies. We do this by calculating the score of each gene on the first principal102

component of the across-study Spearman correlationmatrix shown in fig. 2 A.This procedure is illustrated in103

fig. 1 C. Ordering genes using these scores generate a ranked list of genes, with themost variable genes having104

the highest rank. The position in the SD distributions shown in fig. 2 D of the most and least variable genes in105

this rank illustrates how the extremes of the rank are indeed some of the least and most variable genes across106

all studies. In addition, to be able to account for any residual effect ofmean expression on the variancewe also107

created a similar across-study rank for mean expression. To explore tissue-specific divers or transcriptional108

variation, we also create a set of tissue-specific SD ranks. To that end, we used the same procedure outlined109

above but using only studies that were performed on the same tissue. Both tissue-specific and across-study110

ranks are available in the Supporting Information (SI data 4).111
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Biological function explains gene-level transcriptional variance112

As a first step toward explaining the factors that drive variation in variability between transcripts, we focused113

on the top 5% most variable and the bottom 5% least variable genes in the across-study ranking (560 genes in114

each group). A Gene Ontology (GO) enrichment analysis shows 59 enriched terms in the low-variance genes,115

and 738 enriched terms in the high-variance genes (using a hypergeometric test and a conservative Benjamini-116

Hochberg (BH) adjusted p-value threshold of 10-3; see supporting information SI data 5 for a complete listing).117

Among the most variable genes, we observe enrichment for biological processes such as immune function,118

response to stimulus, maintenance of homeostasis, and tissue morphogenesis (SI fig. 2 A). Furthermore, we119

see a 7.7-fold enrichment for genes that encode secreted proteins in the most variable genes, relative to all120

other genes (hypergeometric test, p < 10-3).121

Among the least variable genes, we see enrichment for housekeeping functions such asmRNA processing, cell122

cycle regulation, methylation, histone modification, translation, transcription, and DNA repair (SI fig. 2 B);123

accordingly, we also find a 2.0-fold enrichment in previously characterized human housekeeping genes [21]124

(hypergeometric test, p < 10-3). The genes exhibiting the lowest variance are also enriched for genes that have125

beenpreviously shown tohave ahighprobability of being loss-of-function intolerant (pLI) [22] (1.2-fold enrich-126

ment, hypergeometric test, p < 10-3). Genes with a high pLI have been shown to be important in housekeeping127

functions and have higher mean expression values across a broad set of tissues and cell types [22]. The ob-128

servation that genes with low variance are enriched for both housekeeping genes and genes with high pLI is129

consistent with this previous report; and we further see that the mean expression of genes positively corre-130

lates with pLI (partial Spearman correlation 𝜌𝑠 = 0.32, p < 10-3), showing the opposite relationship between131

variance andmean expression when considering pLI.132

In the previous analysis, we explored the relationship between transcriptional variance and function by start-133

ing from the extremes of the variance distribution and searching for GO enrichment among these high- and134

low-variance genes. We also approach the problem from the opposite direction, starting from the genes as-135

sociated with each GO term and searching for enrichment for high- or low-variance genes among them. To136

this end, we gathered all biological process GO terms in level 3 (i.e., terms that are at a distance of 3 from the137

top of the GO hierarchy). Using level-3 terms gives us a good balance between number of terms and genes138

per term. We separated the genes associated with at least one of these level-3 terms into expression variance139

deciles, with the first decile having the lowest variance. We then counted howmany genes in each decile have140

been associatedwith each term. If variance rank is not associatedwith the GO annotations, terms should have141

an equal proportion of genes in each decile. Wemeasured how far from this uniform allocation each term is by142

measuring the Shannon entropy of the proportion of genes in each decile. Higher entropy is associated with a143
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Figure 3: Relationship between skew and entropy of rank decile distributions for each GO term. High entropy
terms, to the right of the plot, are associatedwith amore egalitarian proportion of genes in each of the SD rank
deciles. The termson the leftof the plot are associatedwithmore genes in someparticular decile. The skewness
in the y-axis measures if the high- or low-variance deciles are more represented for a particular term. Terms
on the positive side of the y-axis are associated with low-variance genes, and terms on the negative side of the
y-axis are associated with high-variance genes. The GO terms are filtered for gene counts greater than 100, as
in fig. 4. Some of the top high- and low-skewness terms are labeled for illustration.

more uniform distribution of genes across deciles. GO terms with low entropy indicate some deciles are over-144

represented in the genes associated with that term. We also measured skewness for each term, which should145

be zero if no decile is over-represented, negative if high-variance terms are over-represented, and positive146

if low-variance deciles are over-represented. The relation between skewness and entropy for each GO term147

can be seen in fig. 3. Positive-skew low-entropy terms, those enrichedwith low-variance genes, are associated148

with housekeeping functions, like RNA localization, translation initiation, methylation, and chromosome seg-149

regation (fig. 4 A). Likewise, termswith negative skew and low entropy, enriched for high-variance genes, are150

related to immune response, tissue morphogenesis, chemotaxis—all dynamic biological functions related to151

interacting with the environment (fig. 4 B).152

Both GO analyses suggest a strong association between biological function and the degree of transcriptional153

variance. Genes associatedwith baseline fundamental functions, expected to be under strong stabilizing selec-154

tion, are also low-variance; high-variance genes are associatedwith responding to external stimuli (i.e., tissue155

reorganization and immune response).156

Environmental sensitivity predicts transcriptional variance157

As suggested by our GO enrichment analyses, onemechanism thatmay generate consistent variability in gene158

expression is the response to environmental inputs. In other words, high-variance genes may be those that159
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Figure 4: Distributions of decile ranks of level-3 GO terms. Each plot shows the count of genes in each decile
of the rank. Only GO terms that are associated with at least 100 genes are used. We sort these terms by the
skewness of the distribution. The top panel (A) shows the 5 most positively skewed terms, and the bottom
panel (B) shows the 5 most negatively skewed terms.

are environmentally sensitive, while low-variance genes may be robust to environmental stimuli or pertur-160

bations (or alternatively, responsive to all stimuli, such that they are always highly expressed across individ-161

uals). To understand the relationship between environmental sensitivity and variance, we drew on gene ex-162

pression data from a recently generated catalog of environmentally responsive genes in lymphoblastoid cell163

lines (LCLs). This catalog was generated by exposing 544 LCLs derived from individuals included in the 1000164

Genomes Project to each of 11 in vitro exposures (including immune signalingmolecules, hormones, andman-165

made chemicals), aswell as a control; thesemanipulations of the cellular environmentwere followedbymRNA-166

seq and differential expression analyses comparing each treatment to its control [23]. Using lists of environ-167

mentally responsive genes derived from this study, we found that high-variance genes were more likely to168

respond to at least one in vitro exposure, relative to genes not classified as high- or low-variance (Fisher’s ex-169

act test: p < 0.05, odds = 1.524); as predicted, the same is not true for low-variance genes (Fisher’s exact test: p170

= 0.993, odds = 0.797). When we analyzed each exposure separately, we found that high-variance genes were171

more likely to be responsive to 4 out of the 10 environments we explored (1 environment was dropped due172

to a lack of differentially expressed genes in the original experiment; Fisher’s exact test, FDR < 10%; SI table173

2). These exposures included key immune stimuli and hormones such as interferon gamma and dexametha-174

sone (a synthetic glucocorticoid). In contrast, we found that low-variance genes showed the opposite pattern:175

they are significantly underrepresented among environmentally responsive genes across 4/10 environments176

(Fisher’s exact test, FDR < 10%; SI table 2). Though not all of our environment-specific tests reached statistical177
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significance, it is also worth noting that almost all 10 environments showed concordance in effect size direc-178

tion (i.e., high-variance genes tended to be overrepresented among environmentally responsive genes and179

low-variance genes tended to be underrepresented). While the above analyses show that high-variance genes180

tend to overlapwith genes induced by a given exposure, we hypothesized that genes that are similarly induced181

by many different exposures may in fact exhibit moderate or low variance. In other words, genes induced by182

many stimuli may always be highly expressed across individuals, and thus low variance, while genes induced183

by select stimuli may only be upregulated in a subset of the population, and thus exhibit high variance. In184

support of this idea, we found that, among genes that responded to at least one environments in the LCL exper-185

iment, high-variance genes responded to a median of only one environment, while both low-variance genes186

and the background set responded to a median of 4/10 environments (generalized linear model comparing187

high-variance to background and low-variance, p < 10-7 and p < 10-11, respectively). Thus, high-variance genes188

are indeed more likely to be environmentally sensitive, but in a highly select and stimulus-specific manner,189

which we hypothesize drives their between-individual heterogeneity. We note that all analyses presented in190

this section focused on the composite set of high- and low-variance genes defined across tissues, butwe obtain191

similar results when focusing on blood, the tissue in our dataset most similar to LCLs (SI table 2).192

Evolutionary forces at play in shaping transcriptional variance193

We use three gene-level summary statistics, nucleotide diversity (π), gene expression connectivity, and the194

rate of adaptive substitutions (α), as a proxy to assess whether selection might be involved in shaping gene195

expression variance. For all the correlations in this section, we use partial Spearman correlations that include196

the mean gene expression rank as a covariate, which accounts for any residual mean-variance correlation.197

Nucleotide diversity in the gene region is used as a proxy for the impact of cis-regulatory genetic variation on198

transcriptional variance. As expected, low-variance genes tend to have lower levels of polymorphisms (partial199

Spearman correlation, ρs = 0.184, p < 10-10). Gene-gene connectivity, a proxy for gene regulatory interactions200

and selective constraints [24], is, in turn, negatively correlatedwith the expressionvariance (partial Spearman201

correlation, ρs = -0.024, p < 10-2), supporting the expectation that highly connected genes aremore constrained202

in their variation. Finally, we also find that low-variance genes tend to have fewer substitutions by comparing203

the across-study rank with𝛼 (partial Spearman correlation, ρs = -0.044, p < 10-2), in line with the expectation204

that genes under stronger selection should be less variable. Despite all associations being significant and in205

the expected direction, their effect sizes are very small, suggesting a weak link between these broadmeasures206

and transcriptional variance.207
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Specific gene regulatory signatures are associated with transcriptional variance208

To assess how local epigenetic features relate to gene expression variance we calculate the proportion of the209

gene (±10 kb) that corresponds to epigenetic signatures of gene regulation defined through ChromHMM [25]210

chromatin states. Chromatin states associated with distal (i.e., non-promoter) gene regulation are positively211

correlated with the across-study variance rank, regardless of whether the regulatory effect on gene expres-212

sion is positive or negative (fig. 5; see across-study correlations in SI fig. 3A). For example, both the proportion213

of gene regions made up of enhancers and repressed genomic states are positively correlated with gene ex-214

pression variance (BH adjusted Spearman correlation, p < 0.05). In contrast, histone modifications associated215

with active promoters, aswell as transcribed states, are inversely correlatedwith gene expression variance (SI216

fig. 3A), whereas they are positively correlated with the mean rank (SI fig. 3B). Taken together, these results217

are compatiblewith gene expression variance being regulated through distal (i.e., non-promoter) gene regula-218

torymechanisms, rather than the overall active transcriptional state of a gene region, as is the case withmean219

gene expression.220

Given that ChromHMM chromatin states are available for specific tissues, we asked whether the regulatory221

signatures associated with the across-study variance rank are recapitulated at the tissue level. Many of the222

across-study correlations are recapitulated at the tissue-specific level (with two exceptions noted below), in-223

cluding a strong and highly consistent positive correlation between the proportion of gene regions made up224

of enhancer states and that gene’s expression variance, and an inverse relationship between gene expression225

variance and histone marks associated with gene transcription (SI fig. 3A). Two blood associations stand out226

as being different from the consistent effects across the other tissue-level and across-study associations. First,227

the weak (i.e., histone marks associated with both activating and repressive functions) promoter state is posi-228

tively correlatedwith transcriptional variance in all comparisons except blood. Second, the consistent inverse229

correlation of gene expression variance with weak transcription is reversed in blood, such that there is a pos-230

itive correlation between histone marks associated with weak transcription and blood gene expression vari-231

ance (SI fig. 3A). Taken together, these results suggest that, rather than genes with a bivalent promoter state232

(i.e., poised genes) exhibiting more expression variance, blood high-variance genes are more likely already233

expressed at basal levels (i.e., weakly transcribed), as discussed previously [26].234

Immediate early genes (IEGs) respond quickly to external signals without requiring de novo protein synthe-235

sis, and a bivalent state has been reported to be associated with IEG promoters [reviewed in 27]. Given our236

results that geneswith high expression variance are enriched for cellular signaling and responsemechanisms237

(SI fig. 2 A), and bivalent promoter states are correlated with the gene expression variance rank (SI fig. 3A),238

we hypothesized that IEGs would be enriched within genes in the top expression variance ranks. This was239
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Figure 5: Proportion of gene regions made up of ChromHMM chromatin states for low- and high-variance
genes. The line plot contrasts the proportion of gene regions made up of the indicated chromatin states for
genes in the top and bottom 5% of the across-study variance rank metric. Ends denote the median proportion
of gene regionsmadeupof the chromatin state, and error bars represent the standard error of themean. States
colored black are not significant, all others exhibit significant differences between low- and high-variance
genes (BH adjusted Wilcoxon signed-rank test, p < 0.05). Het indicates heterochromatin; TSS, transcription
start sites; znf, zinc finger genes. Themean rank version of this analysis is shown in SI fig. 4.
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the case for all tissue-level gene expression variance ranks (enrichment ratios range from 3.3-8.8, Bonferroni-240

adjusted hypergeometric test, p < 0.05), except for blood (enrichment ratio = 1.2, hypergeometric test, p = 0.3).241

Thus, once again blood stands out when attempting to understand genomic regulatory drivers of expression242

variance. In all, while high-variance genes are generally shared across tissues and enriched for immune and243

environmental signaling pathways, it seems that the gene regulatorymechanisms governing their expression244

are distinct between immune cell types and other tissues studied here.245

Linking expression variance and disease246

To explore the link between transcription variance and genes known to be associatedwith human diseases, we247

used a data set designed to provide causal relationships between gene expressions and complex traits/diseases248

(based on a probabilistic transcriptome-wide association study (PTWAS) [28]). Using the list of significant249

gene-diseasepairs at 5%FDRprovidedbyZhanget al. [28],weperformedahypergeometric enrichment test for250

the top 5%high- and low-variance genes in our across-study rank and in all tissue-specific gene variance ranks.251

Weuse both across-study and tissue-specific ranks because some genes only appear in the tissue-specific rank252

due to their limited tissue-specific gene expression. In the high-variance group, we find no enrichment in the253

across-study rank, but we do find enrichment of genes annotated for allergy, immune disease, and endocrine254

system disease among the high-variance genes in several tissue-specific variance ranks. For example, among255

high-variance genes in the colon, we see enrichment for endocrine system disease (1.77-fold, hypergeomet-256

ric test, p < 10-4). Among high-variance genes in the immune cells, we see enrichment for endocrine system257

disease (1.67-fold, hypergeometric test, p < 10-3), allergy (1.7-fold, hypergeometric test, p < 10-3), and immune258

disease (1.32-fold, hypergeometric test, p < 10-2). Amonghigh-variance genes in the thyroid,we see enrichment259

for endocrine system disease (1.9-fold, hypergeometric test, p < 10-5), allergy (1.85-fold, hypergeometric test, p260

< 10-4), and immune disease (1.45-fold, hypergeometric test, p < 10-4). These are all rather similar and suggest a261

stable pattern of high-variance gene expression across these tissues, with enrichment for these three classes262

of diseases. The link with immune diseases is expected given the high enrichment for immune-related genes263

in the high-variance group [8]. As for the low-variance group, we found strong enrichment for genes associ-264

ated with psychiatric and neurological disorders in the across-study rank and in some tissue-specific ranks265

(breast, liver, and stomach; ~1.2-fold enrichment, hypergeometric test, p < 0.05, for all cases). The psychiatric266

disease link is consistent with previous work [7] and is discussed below; however, the enrichment among the267

low-variance genes is weaker.268
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Discussion269

Using largepublicly available data sets allowedus toprobe the landscapeof transcriptional variance inhumans.270

Wefind a broadly similar pattern of transcriptional variance, evidenced by the high correlations between gene271

expression variance across most studies, consistent with measurements of expression variance in single cells272

and in populations of cells for various tissues [6,16,29]. Leveraging this similarity between gene expression273

variance across tissues and contexts, we developed amultivariate strategy to create a single rank of expression274

variance, which allowed us to order almost 13k genes (~65% of the genes expressed in humans) according to275

their transcriptional variance. Using this rank, we were able to study the general properties associated with276

high- and low-variance genes as well as factors driving variation in variance across genes.277

Some differences in gene expression variance were driven by technical aspects of gene expression measure-278

ment (with data derived from large consortia showingmore similar patterns of variance across genes), and by279

tissue (with studies using the same tissues also showing higher similarities). This suggests that careful consid-280

eration of sample sizes and experimental design are fundamental to the study of gene expression variance, and281

the usual small samples of RNA-seq studies might be underpowered for the study of this particular aspect of282

gene expression. However, both the effects of study origin and tissuewere small, and the largest drivers of dif-283

ferences across studies were idiosyncratic differences related to single data sets, with tissues known to have284

divergent gene expression patterns (i.e., bone marrow, blood, testis, and platelets) also showing the largest285

differences in gene expression variance. Understanding the consequences of these differences in variance for286

specific tissues is still an open field. It is clear, however, that differences in variance are informative beyond287

the differences in mean expression. Even after we account for differences in mean expression, differences in288

gene expression variance carry information about tissue origin and function.289

Functional analyses using GO enrichment indicated a clear link between function and gene expression vari-290

ance. On the one hand, geneswith high transcriptional variancewere enriched for biological functions related291

to response to environmental stimuli, such as immune function and tissue reconstruction. On the other hand,292

low-variance genes were enriched for basic cell functions, (e.g., RNA processing, translation, DNA methyla-293

tion, and cell duplication). These results are consistent with previous analyses of gene expression variance on294

a tissue-by-tissue basis [16]. This pattern of enrichment is also observedwhenwe look at enrichment for high-295

or low-variance genes within the genes associated with each term in the GO hierarchy. Basic cell function296

terms are enriched for low-variance genes, and terms involved in response to external stimulus are enriched297

for high-variance genes.298

While indirect, all these patterns point to a selective structuring of gene expression variance. Stabilizing and299

purifying selection are consistent: genes expected to be under strong stabilizing selection, those linked with300

fundamental baseline biological processes, are indeed overrepresented in the least variable genes. These same301

14

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2023. ; https://doi.org/10.1101/2022.11.15.516646doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.15.516646
http://creativecommons.org/licenses/by-nc/4.0/


genes are also expected to be under strong purifying selection and to show low levels of polymorphisms,which302

we observe. Likewise, genes whose function is constrained by myriad interactions with several other genes,303

those with high connectivity, are less variable. Furthermore, genes involved with direct interaction with the304

environment, whichmust change their pattern of expression depending on external conditions, are expected305

to be more variable, and again we see a strong enrichment of environmentally responsive genes among the306

most variable. Given this strong link between function and variance, it is not surprising that the gene variance307

ranking is similar across data sets.308

One interesting aspect of the GO term analysis shown in fig. 3 and fig. 4 is that there is no GO biological process309

term associated with enrichment for intermediate variance genes: the low-entropy terms have either positive310

or negative skew, never zero skew. In other words, there is no annotated biological process for which the as-311

sociated genes are kept at some intermediary level of variation. For the GO terms we used, either there is no312

relation between the transcriptional variance and the biological process, or there is a strong bias toward high313

or low-variance genes. This suggests that selective shaping of gene expression has two modes, corresponding314

with (1) biological processes under strong stabilizing selection (i.e., variance-reducing selection) or (2) biolog-315

ical processes under disruptive selection (i.e., variance-increasing selection). In short, we find strong support316

for the idea that there are genes with consistently more (or less) variable expression levels, and that these317

differences in variance are the result of different patterns of selection.318

FollowingAlemu et al. [16], we observe that epigenetic signatures of gene regulation, such as enhancer histone319

marks, make up a higher proportion of the surrounding genomic regions of genes that exhibit higher variance320

in expression. In contrast, an accumulation of strongpromoter elements and overall transcriptional activation321

is associated with genes with lower expression variance. These results suggest the presence of distinct modes322

of regulation for genes with high vs. low variance. Combined, the differences in the types of genomic regula-323

tory features surrounding the high- and low-variance genes and their distinct functional annotations suggest324

different mechanisms of regulation of their gene expression variance [16]. This heterogeneity could lead to325

detectable differences in selection signatures between distal regulatory elements and promoters depending326

on the transcriptional variance. This heterogeneity in regulation for high and low-variance genes suggests327

that important biological information has been overlooked given the focus that the field has placed on under-328

standing gene expression robustness, in the sense of reducing variation [30–33]. For example, Siegal and Leu329

[30] provide several examples of known regulatory mechanisms for reducing gene expression variance, but330

no examples for the maintenance of high gene expression variance. We posit that it should be possible to go331

beyond the usual characterization ofmechanisms of gene expression robustness, in the sense of reducing vari-332

ation, and to explore mechanisms for the robustness of plasticity, that is, the maintenance of high levels of gene333

expression variation given environmental cues.334
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Given the broad consistency of gene expression variance in healthy tissues, a natural question is how do these335

well-regulated levels of variation behave in disease conditions. We find some suggestive links between tissue-336

specific variance ranks and disease, but these links need to be further explored using more specific methods.337

Comparing two HapMap populations, Li et al. [6] showed that gene expression variance was similar in both338

populations and that high-variance genes were enriched for genes related to HIV susceptibility, consistent339

with our observation of enrichment for immune-related genes among those with more variable expression.340

In a case-control experiment, Mar et al. [7] showed that expression variance was related to disease status in341

Schizophrenia andParkinson’s disease patients, with altered genes being non-randomly distributed across sig-342

nalingnetworks. These authors alsofinda linkbetweengenenetworkconnectivity andexpressionvariance, in343

agreement with the effect we find using the gene expression variance rank. The pattern of variance alteration344

differed across diseases, with Parkinson’s patients showing increased expression variance, and Schizophrenia345

patients showingmore constrained patterns of expression. The authors hypothesize that the reduced variance346

in Schizophrenia patients reduces the robustness of their gene expression networks, what we refer to as a loss347

of plasticity. This suggests that several types of shifts in gene expression variation are possible, each with dif-348

ferent outcomes. We highlight three distinct possibilities: First, low-variance genes, under strong stabilizing349

selection, could become more variable under stress, indicating a reduced capacity for maintaining homeosta-350

sis. Second, high-variance genes, expected to be reactive to changes in the environment, could become less351

variable, indicating a reduced capacity to respond to external stimuli. Third, the covariance between different352

genes could be altered, leading to decoherence between interdependent genes [34]. Any one of these changes353

in expression variance patterns could have physiological consequences and exploring these differences should354

be a major part of linking gene expression to cell phenotypes and function (see Hagai et al. [8] for example).355

Genes are also expected to differ in their capacity to maintain an optimal level of gene expression variance356

[32]. Variation in robustness is linked to gene regulatory networks and epigenetic gene expression regulation357

[31,35] and, therefore, should differ across high- and low-variance genes. Our results suggest that the mecha-358

nisms responsible for maintaining optimal levels of variation in high- and low-variance could differ and that359

this variability is the result of different patterns of selection.360

Methods361

Data sources362

We selected 57 human RNA-seq data sets from the public gene expression repositories recount3 [36] and Expression Atlas363

[37]. We only used data sets with an associated publication, for which raw read count and sample-level metadata were364

available. Because we are interested in individual-level variation of gene expression, we exclude single-cell studies. Meta-365

data and details on the included data sets can be found in the supporting information. We use the word “studies” to refer366
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to independent data sets, which could have been generated by the same consortium. For example, the GTEx data are sepa-367

rated by tissue, and we refer to each tissue as a separate study. We divide our data sets into three categories depending on368

their origin: GTEx, TCGA, andMiscellaneous.369

Table 1: Data set source references. Columns show the study ID, with the corresponding tissue in parenthesis,
and the source publication.

Study ID Citation

ADIPOSE_TISSUE (Fat), ADRENAL_GLAND (Adrenal), BLOOD (Blood),

BLOOD_VESSEL (Blood_vessel), BONE_MARROW (Marrow), BRAIN

(Neuron), HEART (Heart), BREAST (Breast), SALIVARY_GLAND (Salivary),

COLON (Colon), LIVER (Liver), NERVE (Neuron), LUNG (Lung), PANCREAS

(Pancreas), MUSCLE (Muscle), THYROID (Thyroid), OVARY (Ovary),

STOMACH (Stomach), ESOPHAGUS (Esophagus), SPLEEN (Spleen),

PROSTATE (Prostate), SKIN (Skin), PITUITARY (Pituitary), TESTIS (Testis)

The GTEx Consortium, 2020 - [38]

LUSC (Lung), STAD (Stomach), COAD (Colon), LUAD (Lung), BRCA (Breast),

KIRC (Kidney), KIRP (Kidney), LIHC (Liver), THCA (Thyroid), PRAD

(Prostate), UCEC (Uterus)

The Cancer Genome Atlas Research

Network et al., 2013 - [17]

SRP150552 (Blood) Altman et al., 2019 - [39]

SRP101294 (Fat) Armenise et al., 2017 - [40]

SRP057500 (Platelets) Best et al., 2015 - [41]

SRP051848 (Immune) Breen et al., 2015 - [42]

SRP187978 (Liver) Çalışkan et al., 2019 - [43]

E-ENAD-34 (Immune) Chen et al., 2016 - [44]

SRP059039 (Blood) DeBerg et al., 2018 - [45]

SRP174638 (Immune) Dufort et al., 2019 - [46]

E-GEOD-57945 (Colon) Haberman et al., 2014 - [47]

SRP162654 (Blood) Harrison et al., 2019 - [48]

SRP095272 (Blood) Jadhav et al., 2019 - [49]

SRP102999 (Blood) Kuan et al., 2017 - [50]

SRP145493 (Immune) Kuan et al., 2019 - [51]

E-GEUV-1 (Immune) Lappalainen et al., 2013 - [52]

SRP035988 (Skin) Li et al., 2014 - [53]

SRP192714 (Blood) Michlmayr et al., 2020 - [54]

ERP115010 (Blood) Roe et al., 2020 - [55]

E-ENAD-33 (Neuron) Schwartzentruber et al., 2018 - [56]
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Study ID Citation

SRP181886 (Neuron) Srinivasan et al., 2020 - [57]

SRP098758 (Blood) Suliman et al., 2018 - [58]

SRP032775 (Blood) Tran et al., 2016 - [59]

SRP069212 (Liver) Yang et al., 2017 - [60]

Processing pipeline370

We use a standardized pipeline to measure gene expression variance while removing extraneous sources of variation. Be-371

cause we are interested in variation under non-perturbed conditions, data from case-control studies were filtered to keep372

only control samples. Technical replicateswere summed. For each study,wefiltered genes that did not achieve aminimum373

of 1 count per million (cpm) reads in all samples and amean of 5 cpm reads across samples. To account for library size and374

the mean-variance relation in RNA-seq count data, we applied a variance stabilizing transformation implemented in the375

function vst from the DESeq2 R package [61] to the genes passing the read-count filters. This mean-variance correction376

was verified by plotting mean-variance relations before and after correction, and these plots can be seen in the support-377

ing information (SI appendix 1). Various technical covariates (like experimental batch, sex, etc.) were manually curated378

from the metadata associated with each study and accounted for using an independent linear fixed-effects model for each379

study. A list of covariates used for each study is available in the supporting information (SI data 1). Outlier individuals in380

the residual distribution were removed using a robust Principal Component Analysis (PCA) approach of automatic outlier381

detection described in [62]. This procedure first estimates robust Principal Components for each study and thenmeasures382

the Mahalanobis distance between each sample and the robust mean. Samples that are above the 0.99 percentile in Maha-383

lanobis distance to the mean are marked as outliers and removed. We verify that the batch effect correction and outlier384

removal are reasonable by using PCA scatter plots after each step of the pipeline to check the result for residual problems385

like groupings or other artifacts. These PCA plots before and after batch correction and outlier removal are also included386

in SI appendix 1. After all sample filtering, the mean sample size we used for each data set was 390, with a median of 251,387

and ranged from 12 to 2931 samples. Gene expression standard deviations (SDs) are measured as the residual standard388

deviations after fixed effect correction and outlier removal. We choose standard deviation as a measure of variation to389

have a statistic on a linear scale, and we do not use the coefficient of variation because we have already corrected for mean390

differences and for themean-variance relation inherent to RNA-seq count data [1]. The full annotated pipeline is available391

on GitHub at github.com/ayroles-lab/expressionVariance-code.392

Correlations in transcriptional variance393

Weassessed the similarity in gene expression variance across studies by using a across-study Spearman correlationmatrix394

of themeasuredSDs. Only genes present in all studieswereused to calculate the Spearman correlationmatrix, ~4200genes395

in total. Using Spearman correlations avoids problems related to overall scaling or coverage differences, and allows us to396

assess if the same genes are usuallymore or less variable across studies. To investigate the factors involved in determining397
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correlations between studies, we used a Bayesian varying effects model to investigate the effect of study origin and tissue398

on the correlations across studies. This model is designed to take the non-independent nature of a set of correlations into399

account whenmodeling the correlation between gene expression SDs. This is accomplished by adding a per-study random400

effect, see [20] for details. The Fisher z-transformed Spearman correlations across studies (𝑧(𝜌𝑖𝑗)) are modeled as:401

𝑧(𝜌𝑖𝑗) ∼ 𝑁(𝜇𝑖𝑗, 𝜎)

𝜇𝑖𝑗 = 𝜇0 + 𝛼𝑖 + 𝛼𝑗 + 𝛽𝑋

𝛼𝑖 ∼ 𝑁(0, 𝜎𝛼)

The 𝛼𝑖 terms account for the non-independence between the pairs of correlations and estimate the idiosyncratic contri-402

bution of each study to all the correlations it is involved in. The fixed effects encoded in the design matrix 𝑋 measure403

the effects of tissue congruence and study-origin congruence. We also explored a version of this model that included the404

effect of sample size on the pairwise correlations, but sample size did not have a relevant effect and so was dropped in the405

final model. All fixed effect parameters (𝛽) and per-study parameters (𝛼𝑖) receive weakly informative normal priors with406

a standard deviation of one quarter. For the overall variance (𝜎) we use a unit exponential prior, and for the intercept407

(𝜇0) a unit normal prior. This model was fit in Stan [63] via the rethinking R package [64], using eight chains, with 4000408

warm-up iterations and 2000 sampling iterations per chain. Convergence was assessed using R-hat diagnostics [65], and409

we observed no warnings or divergent transitions.410

Gene expression SD rank: Given that most of the variation in the Spearman correlation across studies is explained by a411

single principal component (PC1 accounts for 62% of the variation in the across-study Spearman correlationmatrix, while412

PC2 accounts for only 5%; see SI fig. 5), we use the ranked projections of gene expression SDs in this principal component413

(PC1) to create an across-study rank of gene variation. The higher the rank, the higher the expression SD of a given gene.414

Genes that were expressed in at least 50% of the studies were included in the rank. To project a particular gene onto the415

PC1 of the across-study correlation matrix, we impute missing values using a PCA-based imputation [66]. The imputation416

procedure has minimal effect on the ranking and imputing missing SD ranks at the beginning or at the end of the ranks417

produces similar results. We also create a tissue-specific variance ranking, using the same ranking procedure but joining418

studies done in the same tissue type. For this tissue-level ranking, we only use genes that are expressed in all studies of a419

given tissue, and in this case, no imputation is required. For tissues that are represented by a single study, we use the SD420

ranking for that study as the tissue rank.421

Gene expressionmean rank: We also use the same strategy to create a mean gene expression rank, repeating the process422

but using mean expression instead of standard deviation. All ranks are available in the supporting information.423

Gene level statistics424

Genetic variation: Genetic variation measures were obtained from the PopHuman project, which provides a comprehen-425

sive set of genomic information for human populations derived from the 1000 Genomes Project. Gene-level metrics were426

usedwhen available. If onlywindow-basedmetrics are available, we assembled gene-level information from 10 kbwindow427
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tracks where eachwindow that overlaps with a given genewas assigned to the gene and themeanmetric value is reported.428

In parallel, we use the PopHumanScan data set, which expands PopHuman by compiling and annotating regions under429

selection. Similarly, we used gene-level information when possible, and for tracks with only window-basedmetrics, gene-430

level informationwas assembled from the 10 kbwindows using the same assignmentmethod described above. Nucleotide431

diversity (𝜋), the average pairwise number of differences per site among the chromosomes in a population [67], provides432

insight into the genetic diversity within a population, in this case, the CEU population within 1000 genomes.433

Gene connectivity: For each data set, we calculated the average weighted connectivity for all genes by creating a fully434

connected gene-by-genegraph inwhich each edge isweightedby theSpearmancorrelationbetweengene expression levels435

across samples. We then trimmed this graph by keeping only edges for which the Spearman correlation is significant at436

a BH false discovery rate of 1%. In this trimmed network, we then took the average of the Spearman correlation of all437

remaining edges for each gene. So, for each study, we have a measure of the average correlation of each gene with every438

other gene. The average connectivity for each gene is the average across all studies in which that gene is expressed.439

Cross-tissue vs. tissue-level chromatin states: We use the universal [68] and tissue-specific [69] ChromHMM [25] chro-440

matin states to compare the non-overlapping genome segmentation to cross-tissue and tissue-level gene expression vari-441

ance metrics. We use the proportion of the gene regions (gene ± 10 kb) made up of each of the ChromHMM chromatin442

states.443

Correlations: We use the ppcor R package v1.1 [70] to run the pairwise partial Spearman correlations between gene-level444

statistics and the gene expression variance rank while controlling for the mean expression rank. P-values are corrected445

using the Benjamini-Hochberg procedure and comparisons with an adjusted p<0.05 are considered significant.446

Gene function assessment447

GO term enrichment: All gene ontology (GO) analyses were done using the clusterProfiler R package v4.2.2 [71] and the448

Org.Hs.eg.db database package v3.14.0 [72]. GO and all further enrichment analyses used the hypergeometric test to assess449

the significance of the enrichment.450

Environmentally responsive genes: We used the list of environmentally responsive genes available in the supporting451

information from Lea et al. [23]. When we overlapped the list of LCL-expressed genes with our list of ranked genes, we452

retained 9282 genes in the cross-tissue analyses presented in the main text, and 5574 genes in the blood-specific analyses453

presented in SI table 1. We used Fisher’s exact tests to ask whether high-variance genes were more likely to be respon-454

sive to >0 environments relative to all genes not included in the low-variance category (and vice versa for low-variance455

genes). We also used Fisher’s exact tests followed by Benjamini-Hochberg false discovery rate correction to ask whether456

high-variance genes were more likely to be responsive to each individual environment relative to all genes not included457

in the low-variance category (and vice versa for low-variance genes). Finally, we used generalized linear models with a458

Poisson error structure to test for an effect of gene category (high-variance, low-variance, or neither) on the number of459

environments that a gene responded to (ranging from 0-11).460

Housekeeping genes: Human housekeeping genes were identified as genes that are expressed with low variance in all 52461
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human cell and tissue types, assessed in over 10,000 samples [21]. We test for enrichment of housekeeping genes in the462

genes within the highest and lowest 5% of gene expression variance rank.463

Probability of being loss-of-function intolerant (pLI): Genes that are likely haploinsufficient (i.e., intolerant of heterozy-464

gous loss-of-function variants) were detected as those with fewer than expected protein-truncating variants (PTVs) in465

ExAC [73]. We use geneswith a pLI > 0.9 to test for the enrichment of loss-of-function intolerant genes in the genes exhibit-466

ing the highest and lowest 5% gene expression variance estimates.467

Secreted genes: We use The Protein Atlas [74] to extract information on which proteins are secreted [75] and test for en-468

richment of genes with secreted products in the genes within the highest and lowest 5% of gene expression variance rank.469

Immediate early genes (IEGs): Human IEGswere curated from the literature in [76] as genes that respond to experimental470

stimulation through up-regulationwithin the first 60minutes of the experiment. Weuse the hypergeometric test to assess471

the significance of the enrichment. Immediate early genes (IEGs): Human IEGs were curated from the literature in [76] as472

genes that respond to experimental stimulation through up-regulation within the first 60 minutes of the experiment.473

Disease annotations: We use the gene annotations for involvement with diseases provided by the supporting information474

Table S2 from Zhang et al. [28] and test for enrichment for disease annotations in the genes within the highest and lowest475

5% of gene expression variance rank.476

Code availability477

Code for reproducing all analyses and figures, along with a walk-through, is available at github.com/ayroles-478

lab/expressionVariance-code.479

Supporting information480

Supporting information is available at github.com/ayroles-lab/expressionVariance-manuscript.481

1. SI figure 1 - Modeling the correlations between transcriptional variance across studies.482

2. SI figure 2 - GO enrichment analysis of the most and least variable genes.483

3. SI figure 3 - Across-study and tissue-specific gene expression variance andmean correlationswith non-overlapping484

chromatin states through ChromHMM.485

4. SI figure 4 - Proportion of gene regionsmade up of ChromHMMchromatin states for genes in the top and bottom 5%486

of the across-study mean rankmetric.487

5. SI figure 5 - Scree plot showing variance explained by each PC of the across-study Spearman correlation matrix of488

gene expression standard deviations.489

6. SI table 1 - Variance andmean rankmetrics and the corresponding ChromHMM annotations used.490

7. SI table 2 - Enrichment analysis of environmentally responsive genes in LCLs.491

8. SI appendix 1 - Diagnostics plots for processing pipeline.492
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9. SI data 1 - Studymetadata -Metadata file describing the data used in the study as well as some intermediate process-493

ing information.494

10. SI data 2 - Study gene lists - List of genes included in each study after filtering.495

11. SI data 3 - Gene expression means and standard deviations - Tables with final calculated means and standard devia-496

tions.497

12. SI data 4 - Gene ranks - Gene expression mean and variance ranks, across-study and tissue-specific.498

13. SI data 5 - GO enrichment - Combined table describing gene ontology enrichment in the top 5% and bottom 5% of499

genes as ranked by variance.500
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