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ABSTRACT 26 

Inertial sensing and computer vision are promising alternatives to traditional optical motion 27 

tracking, but until now these data sources have been explored either in isolation or fused via 28 

unconstrained optimization, which may not take full advantage of their complementary strengths. 29 

By adding physiological plausibility and dynamical robustness to a proposed solution, 30 

biomechanical modeling may enable better fusion than unconstrained optimization. To test this 31 

hypothesis, we fused video and inertial sensing data via dynamic optimization with a nine degree-32 

of-freedom model and investigated when this approach outperforms video-only, inertial-sensing-33 

only, and unconstrained-fusion methods. We used both experimental and synthetic data that 34 

mimicked different ranges of video and inertial measurement unit (IMU) data noise. Fusion with a 35 

dynamically constrained model improved estimation of lower-extremity kinematics by a mean ± 36 

std root-mean-square error of 6.0° ± 1.2° over the video-only approach and estimation of joint 37 

centers by 4.5 ± 2.8 cm over the IMU-only approach. It consistently outperformed single-modality 38 

approaches across different noise profiles. When the quality of video data was high and that of 39 

inertial data was low, dynamically constrained fusion improved joint kinematics by 3.7° ± 1.2° and 40 

joint centers by 1.9 ± 0.5 cm over unconstrained fusion, while unconstrained fusion was 41 

advantageous by 3.0° ± 1.4° and 1.2 ± 0.7 cm in the opposite scenario. These findings indicate 42 

that complementary modalities and techniques can improve motion tracking by clinically 43 

meaningful margins and that data quality and computational complexity must be considered when 44 

selecting the most appropriate method for a particular application. 45 

Key words: kinematics, inertial measurement units, computer vision, direct collocation, simulation46 
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1. INTRODUCTION 47 

Accessible motion tracking could transform rehabilitation research and therapy. The traditional 48 

marker-based approach is limited to specialized laboratories equipped with expensive optical 49 

motion tracking systems and trained personnel. Inertial sensing and computer vision-based 50 

approaches offer greater flexibility, given their low cost and portability, but collective 51 

understanding of the strengths and weaknesses of kinematics estimation algorithms associated 52 

with each technology is still evolving (Table 1). Additionally, efforts to merge the strengths of these 53 

complementary technologies are sparse. 54 

 55 

Vision-based methods are successful in camera-dense environments, but occlusion continues to 56 

pose challenges in reduced-camera settings (Joo et al., 2019). Although now widely used in 57 

robotics applications, translation of vision-based methods to human movement sciences remains 58 

uncommon due to accuracy limitations (Seethapathi et al., 2019). Computer vison models are 59 

data-driven and typically not constrained to satisfy physiological constraints. Biomechanical 60 

modeling has been considered as a possible approach for improving the accuracy of computer 61 

vision approaches and making them more accessible to the biomechanics community (Kanko et 62 

al., 2021; Strutzenberger et al., 2021; Uhlrich et al., 2022). Although comparisons with marker-63 

based data suggest that the accuracy of these methods ranges widely between 3° – 20°, 64 

depending on the degree-of-freedom, no study to date has systematically discerned how this 65 

accuracy compares to alternative approaches and to what degree the incorporation of 66 

biomechanical models improves results. 67 

 68 

Similarly, converting multimodal time series data from inertial measurement units (IMU) into 69 

accurate joint kinematics remains challenging due to the many possible sources of uncertainty, 70 

including bias noise, thermo-mechanical white noise, flicker noise, temperature effects, calibration 71 

errors, and soft-tissue artifacts (Park & Gao, 2008; Picerno, 2017). Traditional sensor fusion filters 72 
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used to mitigate drift (Madgwick, 2010; Mahony et al., 2008; Sabatini, 2011) typically rely on 73 

magnetometers, which are susceptible to ferromagnetic interferences (de Vries et al., 2009). The 74 

results of sensor-fusion filters have been refined with biomechanical models (Al Borno et al., 75 

2022), but whether findings will translate to natural environments remains uncertain because 76 

marker-based motion capture was used for sensor-to-body calibration, IMUs impacted by 77 

ferromagnetic disturbances were manually excluded, and the effect of soft-tissue motion was 78 

partly eliminated by attaching IMUs to solid marker cluster plates, helping the IMUs move rigidly 79 

with the marker clusters. Deep learning has been proposed as an alternative (Mundt et al., 2020; 80 

Rapp et al., 2021) but has been limited by datasets that are not representative of all activities and 81 

clinical populations. Constrained optimization via biomechanical modeling, both static and 82 

dynamic, has also been used for estimation of both kinematics and kinetics. Static optimization 83 

approaches rely on zero-velocity detection algorithms from joint constraints, external contacts, 84 

and additional sensors (GPS, RF-based local positioning sensors, barometers, etc.) to correct the 85 

position of the model at each step (Karatsidis et al., 2019; Roetenberg et al., 2013), while dynamic 86 

optimization approaches currently require that the motion be periodic (Dorschky et al., 2019), both 87 

of which limit ease of implementation and generalizability.  88 

 89 

IMU and vision data have complementary strengths that can be leveraged to overcome their 90 

individual limitations, but it is unclear if fusion via a dynamically constrained biomechanical model 91 

would improve estimation of kinematics over unconstrained optimization (Halilaj et al., 2021). 92 

Inertial sensing can compensate for occlusions in videos, videos can compensate for drift in 93 

inertial data, and biomechanical models can add physiological plausibility and dynamical 94 

robustness. Here we fuse video and IMU data via dynamic optimization of a nine degree-of-95 

freedom (DOF) model (Fig. 1) and investigate the circumstances under which this approach 96 

outperforms (1) standard computer vision techniques using video data, (2) dynamic optimization 97 

of a biomechanical model using IMU data, and (3) fusion of IMU and video data via unconstrained 98 
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optimization (i.e., without a biomechanical model). In addition to comparing these methods using 99 

experimental data, we quantified their sensitivity to IMU and video data noise by scaling each 100 

subject’s unique noise backgrounds. We hypothesized that fusion of video and IMU data with 101 

biomechanically constrained optimization would improve estimation of kinematics over the 102 

alternatives under all the noise profiles. We have shared a MATLAB library to encourage testing 103 

of these techniques with additional data and the exploration of new scientific questions. 104 

 105 

2. METHODS 106 

2.1 Biomechanical Model  107 

The planar biomechanical model consisted of seven rigid body segments (Fig. 1). One segment 108 

represented the head, arms, and torso and three segments represented each leg. Body-segment 109 

lengths, masses, and mass moment of inertias were estimated by scaling a three-dimensional 110 

musculoskeletal model based on 21 cadavers and 24 young adults (Delp et al., 1990, 2007) with 111 

marker-based motion capture data. The model state, 𝒛, contained nine general coordinates, 𝒒, 112 

their generalized velocities, 𝒗, consisting of the horizontal and vertical sagittal plane translation of 113 

the pelvis, 𝑥 and 𝑦,  and the sagittal plane rotation of the pelvis, hip joints, knee joints, and ankle 114 

joints, 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , respectively: 115 

𝒛 =
𝒒         gen coords
𝒗    gen velocities

;     116 

𝒒 = [𝑥, 𝑦, 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 ]           117 

The model control vector, 𝒖, contained joint torques, 𝑻, contact forces, 𝑭, and residual forces 118 

accounting for dynamic inconsistencies due to modeling simplifications, 𝑹:  119 

 𝒖 =
𝑻                   joint torques
𝑭                 contact forces
𝑹               residual forces

;    120 
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𝑻 = [𝑇 , 𝑇 , 𝑇 , 𝑇 , 𝑇 , 𝑇 , 𝑇 ] ; 121 

𝑭 = 𝐹 , 𝐹 , 𝐹 , 𝐹 ;  122 

𝑹 = 𝑅 , 𝑅  123 

We used Autolev (Symbolic Dynamics Inc; Sunnyvale, CA) and Kane’s equations of motion to 124 

derive symbolic expressions for the nine equations of motion in their explicit form and 125 

implemented them in MATLAB (Mathworks, Inc; Natick, MA):  126 

 𝒛′ =  𝑓(𝒛, 𝒖) 127 

 128 

2.2 Experimental Data 129 

To test the four markerless approaches for predicting joint kinematics, we used overground 130 

walking data from five subjects (4 male; 1 female) from Total Capture (Fig. 2a), a publicly available 131 

dataset commonly used to benchmark computer vison methods for motion tracking (Trumble et 132 

al., 2017). Motion was captured in a 4 x 6 m area with eight high definition (HD) video cameras at 133 

60 Hz, seven Xsens IMUs (Xsens; Enschede, The Netherlands) positioned on the pelvis, left and 134 

right thigh, left and right shank, left and right foot at 1000 Hz, and a marker-based motion capture 135 

system (Vicon Industries, Inc; Hauppauge, NY) at 100 Hz. Sagittal plane projections of the video 136 

and IMU data were used as inputs for the biomechanical model. 137 

 138 

2.3 Kinematics Estimation: Vision-Only  139 

We extracted two-dimensional (2-D) keypoints (i.e., joint centers) and the confidence score 140 

associated with each keypoint from each video camera using the Cascaded Pyramid Network 141 

(CPN) (Chen et al., 2018). We triangulated the keypoints by using a direct linear transformation 142 

algorithm to extract three-dimensional (3-D) keypoints (Hartley & Sturm, 1997).  Contributions 143 

from each video were weighted by the confidence score associated with the corresponding 2-D 144 
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keypoint. We computed kinematics by minimizing the error between the triangulated keypoints 145 

derived from video data and the joint centers of the biomechanical model.  146 

 147 

2.4 Kinematics Estimation: Dynamically Constrained Fusion 148 

Our proposed approach fuses video and IMU data by finding the model states 𝒛(𝑡) and controls 149 

𝒖(𝑡) over time, such that the simulated keypoint locations and body segment accelerations and 150 

angular velocities from the model state match those obtained from experimental video and IMU 151 

data. This was done by formulating the following optimal control problem and solving it via direct 152 

collocation: 153 

 minimize
𝒙( ),𝒖( )

   𝐽 𝒛(𝑡), 𝒛 (𝑡), 𝒖(𝑡)  154 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝒛′ =  𝑓(𝒛, 𝒖)  155 

                        𝒙𝑳 ≤ 𝒙 ≤ 𝒙𝑼 156 

                   
   
   𝒖𝑳 ≤ 𝒖 ≤ 𝒖𝑼 157 

The cost functional 𝐽 𝒛(𝑡), 𝒛 (𝑡), 𝒖(𝑡)  is minimized with respect to a bounded state and control 158 

and a constraint on the first derivative of the state vector from the explicit form of the equations of 159 

motion. The cost functional includes a tracking term for both the keypoints and the inertial data, 160 

𝐽 , as well as an effort term for both the joint torque actuators and the residual forces, 𝐽 : 161 

 𝐽 = 𝐽 + 𝐽 ; 162 

 𝐽 = ∑ 𝑥 − 𝑥 + 𝑦 − 𝑦
  

 … 163 

         + ∑ �̈� − �̈� + �̈� − �̈� + 𝜔 − 𝜔  ; 164 

 𝐽 = ∑ (𝑇 )     + ∑ (𝑅 )            165 
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We transcribed the large-scale, sparse nonlinear optimization problem via direct collocation using 166 

the OptimTraj library for MATLAB (Kelly, 2017). 167 

 168 

2.5 Kinematics Estimation: IMU-Only 169 

To perform dynamic optimization with IMU data alone, we took the same steps as in the 170 

dynamically constrained fusion approach (2.4) but removed the keypoint terms from within the 171 

𝐽  portion of the cost. We followed a previously proposed method and applied the assumption 172 

that motion was periodic to overcome the drift resulting from integrating noisy IMU data (Dorschky 173 

et al., 2019). This involved segmenting the walking data into individual gait cycles and using the 174 

mean gait cycle as the input to the 𝐽  term. 175 

 176 

2.6 Kinematics Estimation: Unconstrained Fusion 177 

For fusion of IMU and video data via unconstrained optimization, we formulated a simplified 178 

optimization problem where 𝐽  from the IMU and vision optimization was minimized, excluding 179 

𝐽  and constraints on system dynamics and model controls (Halilaj et al., 2021). Here, the 180 

optimal set of kinematics was determined by minimizing the error between the experimental IMU 181 

and video data and the synthetic IMU and keypoint profiles projected from the subject’s current 182 

state. 183 

 184 

2.7 Synthetic Data Generation 185 

In addition to building simulations with the experimentally captured data, we generated synthetic 186 

data to investigate how each of the four approaches responded to changes in noise magnitude. 187 

We first estimated the naturally occurring noise background, 𝜑, from the experimental data. 188 

Ground truth trajectories for each joint center’s position and each body segment’s accelerations 189 

and angular velocities were calculated via marker-based motion capture data and analytic 190 
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equations formed in Autolev, as noted above. Noise was defined as the difference between the 191 

ground-truth trajectories and IMU-based (angular velocity and linear acceleration) or video-based 192 

(joint center position) trajectories. We the multiplied this experimental noise background by a 193 

scale factor,  𝑆, to achieve synthetic data with new noise magnitudes, without editing the shape 194 

of the experimentally observed noise distribution: 195 

𝜑 = 𝑑𝑎𝑡𝑎 − 𝑑𝑎𝑡𝑎  196 

𝑑𝑎𝑡𝑎 =  𝑆𝜑 + 𝑑𝑎𝑡𝑎  197 

 198 

Using marker-based motion capture as the ground truth, the mean ± standard deviation keypoint 199 

root-mean-square error (RMSE) for the five subjects was 3.5 ± 0.2 cm. We scaled the naturally 200 

occurring noise background, 𝜑, for each subject to RMSEs of 6.0, 3.5, and 1.0 cm by adjusting 201 

only the scale of the noise background while maintaining its original distribution. These new noise 202 

background magnitudes represented low, medium, and high accuracy conditions, based on 203 

single-view and multi-view approaches (Iskakov et al., 2019; Kadkhodamohammadi & Padoy, 204 

2019; Kanazawa et al., 2018; Kocabas et al., 2020). An RMSE of 6.0 cm corresponds to single-205 

view approaches such as the Human Mesh Recovery (HMR) (Kanazawa et al., 2018) and Video 206 

Inference for Body Pose And Shape Estimation (VIBE) (Kocabas et al., 2020). An RMSE of 3.5 207 

cm corresponds to multi-camera algebraic triangulation approaches like what was used in this 208 

study. An RMSE of 1.0 cm corresponds to multi-camera methods incorporating learnable 209 

triangulation (Iskakov et al., 2019; Kadkhodamohammadi & Padoy, 2019). The IMU data had a 210 

mean ± standard deviation signal-to-noise ratio (SNR) of 13.2 ± 0.4 dB.  211 

 212 

To generate the IMU synthetic data, we scaled the naturally occurring noise background for each 213 

subject to SNRs of 10, 17.5, and 25 dB, which represented low, medium, and high IMU accuracy 214 

conditions. These conditions corresponded to IMU data influenced by electrical noise in the form 215 
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of white noise, scale factor noise, and bias nose (Park & Gao, 2008), a range of commonly 216 

occurring static misplacement and misorientation errors (Tan et al., 2019), and a range of 217 

previously established soft-tissue motion magnitudes naturally occurring during walking 218 

(Fiorentino et al., 2017). To determine appropriate magnitudes to which the experimental IMU 219 

noise backgrounds would be scaled, we simulated combinations of misplacement, misorientation, 220 

and soft-tissue motion artifacts by formulating analytic equations for each body segment’s 221 

accelerations and angular velocity in Autolev: 222 

𝒂𝒙, 𝒂𝒚, 𝝎𝒛 =  𝑓(𝒒, 𝑒 , 𝑒 , 𝑒 ) 223 

𝑒 ∼ 𝒩(μ,  σ ) 224 

We added error terms while deriving the body segment inertial profiles to model the static 225 

misplacement, 𝑒 , the static misalignment,  𝑒 , and the variable misplacement due to 226 

soft-tissue motion, 𝑒 . We calculated the noise background magnitudes corresponding to 227 

these errors as the difference between the inertial profiles of the body segments derived with and 228 

without incorporating the sources of error, and then scaled the error terms to represent the range 229 

of expected naturally occurring noise magnitudes (Table 2). We sampled 𝑒  from a normal 230 

distribution with μ and σ equivalent to the mean and standard deviation of soft-tissue motion 231 

magnitudes measured through X-rays (Fiorentino et al., 2017). 232 

 233 

2.8 Performance Evaluation 234 

We computed mean-per-joint position error and joint angle error between the simulation results 235 

and ground truth marker-based motion capture data for each optimization approach and noise 236 

profile. We used a one-way repeated measures analysis of variance (RM-ANOVA) and Tukey’s 237 

Honest Significant Difference (HSD) for post-hoc analysis to test the leading hypothesis that 238 

dynamically constrained fusion would result in lower kinematic errors compared to the other three 239 

approaches. The test was carried out for two primary kinematic outcomes: the mean full-body 240 
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RMSEs for joint angles and joint center positions. A two-way RM-ANOVA followed by an HSD 241 

test within noise conditions were used to test the second hypothesis that dynamically constrained 242 

fusion would outperform the other three methods when the data were characterized by different 243 

noise profiles. The two-way RM-ANOVA considered both the four competing methods and the 244 

nine repeated combinations of IMU and video data noise profiles. Results are presented as mean 245 

± standard deviation of the per-joint RMSE compared to marker-based motion capture. An 246 

Anderson-Darling test for normality was used to confirm that the data were normally distributed 247 

(Yap & Sim, 2011). 248 

 249 

3. RESULTS 250 

3.1 Comparison of Modeling Approaches 251 

Dynamically constrained fusion performed better than single-modality methods, but similarly to 252 

unconstrained fusion when using the experimental data (Fig. 2b; Fig. 3). It improved estimation 253 

of joint angles by 6.0° ± 1.2° (p < 0.0001) over the vision-only approach and joint centers by 4.5 254 

± 2.8 cm (p = 0.0018) over the IMU-only approach. Joint angle estimates with the vision-only 255 

approach were the least accurate of the four approaches, with RMSEs of 5.1° ± 1.7° at the hip, 256 

9.7° ± 3.2° at the knee, and 16.0° ± 1.2° at the ankle. Similarly, joint center position estimates with 257 

the IMU-only approach were the least accurate of the four approaches, producing errors ranging 258 

from 5.6 ± 2.4 cm at the hip to 6.8 ± 3.3 cm at the ankle. The two fusion approaches performed 259 

similarly to each other and better than single modality approaches by maintaining accuracy with 260 

respect to both joint angles and joint positions. However, dynamically constrained fusion did 261 

facilitate improvements over unconstrained fusion in estimates of the ankle angle by 3.3° ± 1.3° 262 

(p = 0.0076). 263 

 264 

3.2 Sensitivity to Noise 265 
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Dynamically constrained fusion performed better than unconstrained fusion when the accuracy of 266 

IMU data was low and the accuracy of the video data was high, whereas unconstrained fusion 267 

performed better in the opposite scenario (Fig.  4). When the IMU data were of low quality (SNR 268 

of 10 dB) and the predicted keypoints from video data were of high quality (RMSE of 1.0 cm), 269 

constrained fusion improved estimates of joint angles by RMSEs of 3.7° ± 1.2° (p < 0.0001) and 270 

joint centers by 1.9 ± 0.5 cm (p < 0.0001) over unconstrained fusion. When the IMU data were of 271 

high quality (SNR of 25 dB) and the predicted keypoints were of low quality (RMSE of 6.0 cm), 272 

unconstrained fusion improved estimates of joint angles by 3.0° ± 1.4° (p = 0.0049) and joint 273 

center positions by 1.2 ± 0.7 cm (p = 0.0183) over constrained fusion. However, when the quality 274 

of IMU data and predicted keypoints was scaled up and down simultaneously, differences 275 

between the fusion techniques were not significant.  276 

 277 

Single-modality approaches generally performed worse than fusion approaches across the varied 278 

data qualities, with some exceptions (Fig. 5). The vision-only approach resulted in significantly 279 

worse joint angle estimates than the fusion approaches at every condition except when very low 280 

IMU data quality (SNR of 10 dB) was paired with very high keypoint data quality (RMSE of 1 cm). 281 

At this condition, vision-only matched constrained fusion (p = 0.8071) with a joint angle RMSE of 282 

3.3° ± 0.5°. The IMU-only approach resulted in significantly worse joint center position estimates 283 

compared to the fusion approaches at five out of the nine conditions (Fig. 6). At combinations of 284 

medium to excellent IMU data accuracy (17.5 – 25 dB) and poor to medium keypoint data 285 

accuracy (6.0 – 3.5 cm), the IMU-only approach performed equivalently to fusion methods. 286 

 287 

4. DISCUSSION 288 

The complementary strengths of wearable sensing, computer vision, and biomechanical modeling 289 

could enhance our ability to capture motion and study gait with greater flexibility and cost-290 

effectiveness than current marker-based approaches. Here, we proposed to fuse video and 291 
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inertial data with a biomechanical model that simultaneously tracks video and IMU data and 292 

investigated when this method improves estimation of kinematics over single-modality methods 293 

and unconstrained fusion. We found that fusion of video and inertial data improves kinematics 294 

over single-modality methods by achieving high accuracy for both joint angles and joint center 295 

positions across all the tested video and IMU noise backgrounds. We also found that dynamically 296 

constrained fusion with a biomechanical model is advantageous over unconstrained fusion when 297 

the quality of inertial sensing data is low and the quality of computer vision models is high, 298 

whereas unconstrained fusion is advantageous in the opposite case. When the inertial and vision 299 

data noise is equally low or equally high, both types of fusion work equally well, but unconstrained 300 

is more computationally efficient. 301 

 302 

When interpreting these findings, it is important to consider some of the study’s limitations. 303 

Biomechanical modeling simplifications—reducing degrees of freedom, modeling the head, arms, 304 

and torso as a single rigid body, and connecting bones to joints by their end points—can affect 305 

the results of simulations. Yet, this simplified approach provides baseline insight on how physics-306 

based modeling can contribute to improvement of IMU-video fusion. We expect that models with 307 

greater complexities and constraints, like OpenSim, will amplify but not overturn the conclusions 308 

drawn here. Furthermore, we created synthetic data for testing each approach across different 309 

noise magnitudes by simply scaling the noise backgrounds inherent to the experimental IMU and 310 

video data. We find this approach elegant and the assumption that the noise distribution remains 311 

constant across noise magnitudes more reasonable than making assumptions about that 312 

distribution (e.g., Gaussian, uniform, etc.), but a validation of the synthetically scaled noise profiles 313 

could be used to test that hypothesis in the future. A final limitation is that only walking was 314 

considered here. It remains to be determined if the reported findings hold across other activities. 315 

 316 
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The finding that fusion of video and IMU data is advantageous to single-modality approaches is 317 

consistent with findings from other disciplines, despite the lack of exploration in biomechanics. 318 

State estimation and simultaneous localization and mapping (SLAM) in autonomous robot 319 

navigation is commonly achieved by fusing IMU and video data with extended Kalman filters (R. 320 

Smith et al., 1990) and modified particle filters (Montemerlo et al., 2002). Currently, this fusion 321 

method provides the most viable alternative to GPS and lidar-based odometry in aerial navigation 322 

(Scaramuzza & Zhang, 2020). IMUs overcome visual SLAM limitations like occlusion, motion blur, 323 

a lack of visible textures, and inaccurate velocity and acceleration estimates, while videos help 324 

enable IMU recalibration in real-time to overcome drift (Mirzaei & Roumeliotis, 2008; Nikolic et al., 325 

2014). The complementary nature of videos and IMUs explains why fusion methods consistently 326 

outperformed single-modality methods across the entire range of tested noise conditions and why 327 

they should be adopted in biomechanics as they are in robot-state estimation. However, while 328 

fusion is generally better, attention must be paid to both data quality and computational cost to 329 

select the most appropriate fusion approach for a particular application. 330 

 331 

The overlap between biomechanical models and IMUs causes the unconstrained and 332 

biomechanically constrained fusion approaches to diverge under specific noise conditions. 333 

Biomechanical models provide mathematical expressions relating applied forces to rigid-body 334 

accelerations and velocities. IMUs provide experimental measurements of rigid-body 335 

accelerations and angular velocities. When IMU data are inaccurate, adding a model is beneficial 336 

because the underlying optimizer can leverage the model’s physics information and reduce its 337 

dependence on the suboptimal IMU data. However, when the IMU data are more accurate than 338 

the model, given modeling simplifications, adding the model becomes detrimental. Because IMU 339 

data quality is limited by miscalibration errors and soft-tissue artifacts, the incorporation of a 340 

biomechanical model will likely remain beneficial for natural environment applications of fusion 341 
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methods. Furthermore, incorporation of a model is likely to benefit measurements of faster 342 

activities associated with larger skin deformations. 343 

 344 

As the prevalence of health monitoring in natural environments increases, so will the frequency 345 

with which patients and clinicians are charged with setting up lightweight and portable health-346 

monitoring systems. Markerless motion capture methods must therefore be robust to the IMU and 347 

camera miscalibrations resulting from suboptimal setups by nonexperts. Since fusion of 348 

complementary modalities has proven to be more robust to noisy data than single modality 349 

methods, we recommend greater emphasis be placed on thoroughly exploring and benchmarking 350 

data fusion approaches for biomechanical applications. Our work provides a preliminary 351 

comparison of emerging techniques that could make motion capture more accessible. Our 352 

findings could help researchers and clinicians make more informed decisions, weighing the 353 

required accuracy for a given application against sensor density and computational complexity. 354 

Our published code provides an opportunity to further verify our conclusions with real video and 355 

IMU data from different laboratories.  356 
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TABLES 514 

  515 

Table 1.  Qualitative comparison of state-of-the-art IMU and video-based motion capture techniques for measuring 

joint kinematics. 

Modality Method Example Articles Advantages Disadvantages 
     

IMUs Sensor-fusion 
Filters (e.g., 

EKF, Madgwick, 
Mahoney) 

Mahony, 2008. 
Madgwick, 2010. 
Sabatini, 2011. 
Joukov, 2014. 

Al Borno, 2022. 

Computationally efficient; 
 

 Open source  
 

Magnetometers are often 
unreliable 

 
Magnetometer-free 

approaches are inaccurate 
 

 
 Deep Learning 

(e.g., CNNs, 
LSTMs, 

Transformers) 

Huang, 2018. 
Rapp, 2021.  
Yi, 2021-22. 

Mundt, 2020-2021. 

Implicitly learns noise; 
 

Open source 
 

Training data are not 
sufficiently representative 

of pathologies and 
activities 

  
 Biomechanical 

Modeling: Static 
Optimization 

Roetenberg, 2013. 
Karatsidis, 2016-19. 

Predicts GRFs, muscle forces, 
and joint reaction forces 

 

Requires drift correction 
using additional sensors; 

 
Computational cost; 

 
Closed source 

 

 

Biomechanical 
Modeling: Direct 

Collocation 

Dorschky, 2019. 
 

Predicts GRFs, muscle forces, 
and joint reaction forces 

 

Requires drift correction 
using limiting assumptions; 

 
Computational cost; 

 
Closed source 

 
Videos Deep learning   

& Unconstrained 
Optimization 

Kanazawa, 2018. 
Iskakov, 2019. 
Zhang, 2020. 

Kocabas, 2020-21. 
 

Computationally efficient; 
 

Open source 

Data-driven: training data 
not representative of 
clinical populations; 

 
Sensitive to occlusions 

 
 Deep Learning 

& Biomechanical 
Modeling 

Kanko, 2021. 
Strutzenberger, 2021. 

Uhlrich, 2022. 

Predicts GRFs, muscle forces, 
and joint reaction forces; 

 
Open source 

Data-driven: training data 
not representative of 
clinical populations; 

 
Computational cost 

 
 

IMUs & Videos  Deep learning   
& Unconstrained 

Optimization 

Halilaj, 2021. 
 

Computationally efficient; 
 

Merges complementary 
modalities; 

 
No integration of inertial data 

necessary 
 

Poor initial estimations 
from video are propagated 

in the optimization 
 

 Deep learning  
& Dynamically 
Constrained 
Optimization 

Proposed Method Predicts GRFs, muscle forces, 
and joint reaction forces; 

 
Merges complementary 

modalities while satisfying the 
laws of physics 

 
No integration of inertial data 

necessary; 
 

Accurate with noisy IMU data 

Currently, 2-D proof of 
concept with 3-D validity 
remaining to be tested; 

 
Computational cost 
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  516 

Table 2. Sources of uncertainty for each modeled IMU signal-to-noise ratio (SNR) profile. 

Misplacement (cm) Misalignment (deg) Soft-Tissue Motion (cm) IMU SNR (dB) 

0.5 1 0.5 26.7 

2.5 5 1.0 17.7 

5.0 10 5.0 10.1 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.15.516673doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.15.516673
http://creativecommons.org/licenses/by-nd/4.0/


 23

FIGURES  517 

 518 

Fig. 1. Biomechanical Model and Dynamics Overview. Video and inertial measurement unit (IMU) data are fused 519 

into a single optimal control trajectory tracking problem, where the state of a planar musculoskeletal model is optimized 520 

to produce joint center trajectories and inertial profiles that match the experimental data. A nine degree-of-freedom (two 521 

translational, seven rotational) model is actuated by seven joint torques, four ground contact forces, and two residual 522 

forces accounting for dynamic inconsistencies due to modeling simplifications. The model fuses data from eight 523 

anatomical keypoints acquired from three-dimensional triangulation of video data and seven inertial measurement units 524 

placed on each rigid body segment. Direct collocation is used to minimize a cost functional with keypoint and IMU 525 

tracking error costs and an effort cost for regulating the joint torques and residual forces.  526 
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  527 

Fig. 2. Experimental Data and Resulting Markerless Kinematics. (a) Total Capture is a public dataset of five 528 

subjects performing different activities, while recorded with marker-based motion capture, inertial measurement units 529 

(IMU), and four videos. Only the walking trials were analyzed here. The IMU data had a signal-to-noise (SNR) ratio of 530 

13.2 dB, while the video-based keypoints (i.e., joint center estimations) had a root-mean-squared error (RMSE) of 3.4 531 

cm. (b) Dynamically constrained fusion of IMU and video data via a biomechanical model and direct collocation (Cnstr 532 

Fusion, in solid magenta) improved kinematic predictions over competing markerless motion capture approaches 533 

(shown for a single female subject). Each approach was tested on all subjects in the Total Capture Dataset after 534 

calibrating IMU data, triangulating video data into 3D keypoints, and projecting 3D data into each subject’s sagittal 535 

plane. Noise levels of IMU and keypoint data were calculated with respect to marker-based motion capture as the 536 

ground truth. Constrained fusion outperformed both single modality approaches and unconstrained fusion (Uncon 537 

Fusion, in dashed gray) across the hip, knee, and ankle joint angles. 538 
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 539 

Fig. 3. Comparison of Markerless Approaches. Fusion approaches result in lower mean per joint (MPJ) angle root-540 

mean-square errors (RMSEs) (top left) than the vision-only approach and lower MPJ position RMSEs (top right) than 541 

the IMU-only approach when tested on experimental data from the Total Capture dataset. Fusion methods resulted in 542 

better accuracy than single modality methods by maintaining consistent accuracy with respect to both joint angles and 543 

joint center positions across all individual joints. (*p < 0.05) 544 
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 545 

Fig. 4. Sensitivity of Fusion Approaches to Noise. Dynamically constrained fusion was advantageous at lower IMU 546 

accuracies and higher keypoint accuracies, whereas unconstrained fusion was advantageous at higher IMU accuracies 547 

and lower keypoints accuracies. This phenomenon occurs due to the sometimes complementary, but sometimes 548 

redundant nature of IMU data and modeling constraints since both provide information on the first and second order 549 

derivatives of the body segment motions.  Mean ± standard deviation is plotted here with *p < 0.05.  550 
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 551 

Fig. 5. Sensitivity of Markerless Approaches to Noise. Fusion approaches improve results over single modality 552 

approaches across almost the entire noise spectrum with few exceptions. Vision-only is consistently outperformed with 553 

respect to joint angles, while IMU-only is consistently outperformed with respect to joint center positions. The mean ± 554 

standard deviation MPJ angle RMSE (top) and MPJ position RMSE (bottom) show the difference in kinematics 555 

predictions across each noise condition for all four techniques. (*p < 0.05) 556 
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 557 

Fig. 6. Error Accumulation with IMU Methods. Observing the full body joint center position error over the gait cycle 558 

reveals that dynamically constrained fusion and the other techniques eventually reach an equilibrium error, while the 559 

IMU-only dynamic optimization continues to accumulate error throughout the simulation duration regardless of the 560 

starting IMU data accuracy or the level of denoising. All other approaches can also be run for any arbitrary amount of 561 

time, but IMU-only is restricted to complete gait cycles if the periodicity assumption is implemented to reduce drift. 562 

However, the rate of error accumulation can be reduced by averaging over multiple periodic gait cycles. 563 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.15.516673doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.15.516673
http://creativecommons.org/licenses/by-nd/4.0/

