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Abstract

We occasionally misinterpret ambiguous sensory input or report a stimulus when none is presented. It
is unknown whether such errors have a sensory origin and reflect true perceptual illusions, or whether
they have a more cognitive origin (e.g., are due to guessing), or both. When participants performed an
error-prone and challenging face/house discrimination task, multivariate EEG analyses revealed that
during decision errors (mistaking a face for a house), sensory stages of visual information processing
initially represent the presented stimulus category. Crucially however, when participants were
confident in their erroneous decision, so when the illusion was strongest, this neural representation
flipped later in time and reflected the incorrectly reported percept. This flip in neural pattern was
absent for decisions that were made with low confidence. This work demonstrates that decision
confidence arbitrates between perceptual decision errors, which reflect true illusions of perception,
and cognitive decision errors, which do not.
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Introduction

Our perceptual experience can deviate substantially from the actual input that reaches our senses.
Misperceiving or misinterpreting sensory input is a common characteristic of several neurological and
psychiatric disorders, such as schizophrenia, but also during drug-induced hallucinatory states (1, 2).
However, even in healthy people and under common circumstances, illusory perceptual experiences
may occur, as illustrated by famous illusions such as the Muller-Lyer and the Kanisza illusion (3). Further,
context and stimulus frequency can act as top-down priors that bias the interpretation of ambiguous
visual information (4-6). Yet, even in conditions without strong perceptual priors, perception can
spontaneously differ from the veridical sensory input. In particular when perceptual information is
sparse or ambiguous, interpretation of the visual input is challenged, resulting occasionally in incorrect
perceptual decisions (7, 8).The experiential aspect of such incorrect decisions is often inferred based
on participants’ behavioral report. However, even when one trust such introspective reports, the
source of these decision errors remains unclear. Most importantly, with behavioral measures it is hard
to disentangle whether decision errors originate from true illusions in perception (misperceptions) or
stem from guessing behavior (misreports), although procedures to do so have made rapid progress (9—
14). Here we investigated this issue and examined if misreported visual stimuli (e.g., face presented,
house reported) were misrepresented at the sensory stage or the decision stage.

To determine the nature of misreports, we dissociate sensory from post-sensory or decision-
related processes during human perceptual decision-making using electroencephalography (EEG) in
combination with multivariate pattern analyses (MVPA). Forty participants performed a challenging
perceptual discrimination task in which faces and houses were briefly presented, preceded and
followed by pattern masks, strongly reducing stimulus visibility. Participants discriminated which of the
two object categories was presented and indicated how confident they were in this decision (high/low
confidence) (15, 16). Discrimination correctness was titrated by individually adjusting stimulus duration
to reach approximately 70% correct decisions, thereby inducing a large number of decision errors for
our analyses (~30%). Multivariate pattern classifiers were then used to characterize the time course of
category-specific neural representations of correct and incorrect decisions, at different levels of
confidence. Confidence measures served as a proxy for the vividness of perceptual experience (17),
which allowed us to separate strong perceptual illusions (incorrect decision with high confidence) from
weak perceptual illusions or mere guessing behavior (incorrect decision with low confidence) (7).

We experimentally dissociated perceptual from decision-related neural processes by
employing two separate category localizer tasks: one uniquely tuned to sensory features of the images
and the other sensitive to both sensory features and decision processes. Using a between-task MVPA
generalization approach, we could track perceptual and decisional neural processes (18-20), while they
evolved across time and how these processes differed for correct and incorrect perceptual decisions as
a factor of confidence, and thus strength of perceptual experience. This strategy has a similar goal as
recent approaches in the field of consciousness science, in which no-report paradigms have been
introduced. In studies employing such no-report paradigms, neural processing is typically compared
between experimental conditions in which participants are aware of specific stimuli, but do not have a
task to do and thus merely passively perceive these stimuli, versus a condition where active report is
required. Contrasting these conditions, usually also including an unaware condition is thought to
separate neural signals associated with perceptual experience per se versus neural signals of post-
perceptual processes (or task-relevance in the broader sense) (21-26). We found that decision errors
made with high confidence were associated with neural representations reflecting the misperceived
object (e.g., a house could be decoded while a face was presented). This was the case even when the
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classifier was trained on a localizer task in which these objects were task-irrelevant and unattended,
showing that such decision errors stem from perceptual illusions that are sensory in nature.

Results

There were two experimental sessions. In the first, participants performed two category localizer tasks,
while their brain activity was measured using EEG. The localizer tasks were used to train our pattern
classifiers (LDA: Linear Discriminant Analysis) (27). In the sensory localizer task (Fig. S1A), participants
reported an infrequent contrast change of the central fixation dot (20% of trials). At the same time,
streams of house and face images were shown at the center of the screen, which were fully task-
irrelevant. In the decision localizer task (Fig. S1B), a masked image of a face or of a house was presented
and at the end of each trial participants indicated which stimulus category they had perceived. The
images were therefore task-relevant and attended. In the sensory localizer the classifiers’ sensitivity
was thus tuned mainly to sensory features of the two stimulus categories due to the absence of
attention/task-relevance of the face/house images (26, 28, 29). Therefore, the sensory localizer is
reminiscent of a so-called no-report paradigm (30, 31), but then used to train localizers instead of being
used as the main task of interest (22—24, 32). The decision localizer was, besides sensitive to sensory
features, also sensitive to post-perceptual decision processes. Stimulus-response mappings were
counterbalanced across blocks in the localizer tasks to prevent motor response preparation from
systematically biasing stimulus category decoding. The orientation of the presented images was either
left tilting or right tilting, with 50/50 likelihood. This feature of the stimulus was always task-irrelevant
and was used to test for differences in decoding between task-relevant (category) and task-irrelevant
features (orientation) in the main discrimination task, as a function of decision correctness and
confidence (see Fig. 1A for an illustration of the main task).
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Figure 1. Task and behavior. A) Each trial started with a central red fixation dot after which a forward mask was shown, followed
by an image of a face or a house and a backward mask. Images were either tilted to the right or to the left (task-irrelevant
feature, 5°or 355° angle. Note that in the example trial only a left-tilted house image is shown. Participants reported whether
they perceived a house or face and indicated their confidence in this decision. B) Perceptual sensitivity (d’) as a function of
decision confidence.

In the second session of the experiment, EEG recordings were obtained during the main perceptual
discrimination task, which was similar to the decision localizer task of the first session (33), but now
images were presented shorter (20 or 30 ms) and performance was staircased during practice blocks
in order to achieve ~65-70% discrimination accuracy. After each decision, participants also provided a


https://doi.org/10.1101/2022.11.16.476617

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.476617; this version posted November 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

confidence rating regarding their estimated accuracy of their face/house discrimination response.
Discrimination performance was kept low to elicit many incorrect perceptual decisions and hence to
induce enough misreports for subsequent analyses.

Participants correctly discriminated faces and houses in 69.47% of all images (SD=7.48) in the
perceptual discrimination task. There was a slight tendency to respond house more often than face
(58% vs. 42%), similarly to our previous study (33). As expected, signal detection theory (SDT)-based
perceptual sensitivity (d’) increased with reported confidence level (main effect of confidence:
F3,117=116.69, p<.001, n?=0.54, Fig. 1B) and ranged from d’=0.11 at confidence level 1 (least confidence)
to a d’ of 2.07 at confidence level 4 (most confidence).

The time-course of category representations: Decision localizer

To investigate the time course of category-specific neural representations, we trained classifiers on EEG
data recorded during the two localizer tasks and applied them to the main perceptual discrimination
task data. We will first report the classification when classifiers were trained on the decision localizer
(Fig. 2A) and then the cross-classification to the main task (Fig. 2B). Category-specific neural
representations could be decoded based on the decision localizer (10-fold validation scheme, i.e.,
within-task decoding, Fig. 2A). The generalization across time (GAT) matrix, time-locked to stimulus
onset, exhibited the expected mixture of transient and stable on-diagonal decoding as well as persistent
off-diagonal decoding profiles observed previously (33—35). Following the analysis approach by Weaver
et al. (2019), who used a similar face/house discrimination task, we used matching time-windows for
statistical analysis as used in that earlier study. For these analyses, based on Weaver et al., (2019),
decoding was examined on several stages, first of which a transient peak in an early time-window
between 150-200 ms (Fig. 2A, inset 2) (11, 13-15). The timing (150-200 ms; the decoding peak was
found at ~166 ms) and scalp topography of the early peak is probably related to the N170 ERP
component, often related to face processing (38—40), although also observed for letters, words and
biological motion (41, 42). Peaks of N170-like decoding have been associated with neural processes in
the occipital face area, superior temporal sulcus and/or the fusiform face area (FFA) in ventral-temporal
cortex (43—49). Previous work has also shown that the strength of this early face-selective component
is proportional to the strength (e.g. phase coherence of the stimulus) of the presented stimulus (18,
40).

We also focused on a more stable square-shaped decoding profile between 350-500 ms (on-
diagonal), capturing late category-specific processes (Fig. 2A, inset 3), with a central-parietal
topography (late-stage topography). This decoding profile has previously been suggested to reflect
global ignition, large-scale feedback processes allowing information to be broadcasted throughout the
entire brain, making information explicit for report and decision making (8, 34, 37, 50).

Additionally, we examined decoding accuracy in a late time-window from 350-500 ms, based
on training on early 150-200 ms classifiers (i.e., off-diagonal decoding, (Fig. 2A, inset 4)). Given that
decoding is in this case based on early classifiers tuned to sensory features, this stage is thought to
reflect longer lasting sensory processes of categorical information across time (33, 34, 51). This late-
latency off-diagonal decoding pattern, referred to as the “perceptual maintenance” stage, has been
suggested to reflect reactivation of early sensory stages, through feedback processes (33—35).
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Figure 2. (A) GAT matrix for the decision localizer (all electrodes) and regions of interest (ROI) marked by inset black boxes
(numbers 1-4). On the right, covariance/class separability maps for each diagonal ROI, indicating the underlying data
contributing to the classification performance. Highlighted channels significantly contributed to the classification performance
after cluster-based permutation testing over channels (corrected for multiple comparisons). Covariance/class separability maps
2 and 4 are the same because decoding scores within insets 2 and 4 were obtained using the same training time-window. (B)
Classifiers trained on the decision localizer applied to the main discrimination task (cross-task validation procedure, all
electrodes), revealing a high degree of generalizability between the two tasks.

Finally, although decoding was pronounced during three time-windows observed previously by Weaver
et al. (2019) (insets 2, 3 and 4), it was also observed at an even earlier time-window (80-130 ms) with
a prominent occipital-parietal topography (Fig. 2A, inset 1, early-stage topography). Because this early
effect was absent in the same task when images where presented vertically (33), this early peak likely
reflects differences in the orientations of the images presented, which we varied systematically across
trials (see Fig. 5, note that training and testing was performed on balanced set of left and right oriented
images).. Although we follow a confirmatory approach by selecting time-windows of interest (TOI)
beforehand (33), we will always in addition use across time permutation tests with multiple
comparisons corrections to test for (unexpected) effects observed at other time-windows and to
further specify the approximate onset and/or duration of our significant effects (see Materials and
Methods for details).

Cross validation between the decision localizer and the main discrimination task (Fig. 2B for all
channels; see Fig. S2 for occipital-parietal channels) revealed a highly similar decoding profile for the
two tasks. Classifiers’ performance in differentiating between face and house images were highest on
occipital-parietal electrodes, particularly during early latencies (Fig. S2). Since our aim was to examine
whether decision errors have a perceptual origin, we report the decoding results based on data from
occipital-parietal channels here to maximize sensitivity to neural signals that distinguish between the
two categories. In the Supporting Information section, we also report the critical decoding analyses
using all channels, which yielded similar results.

Diagonal decoding based on decision localizer

Next, we examined decoding scores as a function of decision correctness (correct/incorrect) and
confidence (low confidence (LC): level 1 and 2 versus high confidence (HC): level 3-4, as in Weaver et
al. 2019). This created four conditions: HC correct, LC correct, HC incorrect, LC incorrect trials. GAT
matrices and on/off-diagonal time-courses for these four conditions are shown in Figure 3A-D. Note
that the “testing labels” for classification were based on the decision of the subject in the main task
(deciding face or house), not the presented stimulus. For correct trials the presented stimulus and the
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decision are by definition the same. For incorrect trials however, the stimulus and the decision are of
different categories. This means that if decoding scores are observed that are higher than chance level,
the underlying data pattern correlates with the category of the reported stimulus, the decision. We will
refer to this situation as positive decoding (with respect to chance level). In contrast, when below
chance level decoding is observed, this would reveal that the underlying data pattern correlates with
the presented stimulus, not with the reported stimulus (stimulus and response are different on
incorrect trials, see Methods for details). The classifier thus finds negative evidence for the decision,
and therefore we will refer to this situation as negative decoding (with respect to chance level).

Statistical analyses were performed on the diagonal and off-diagonal time courses (late sensory
traces) (Fig. 2C-D). We first report the analyses for the diagonal time courses using a 3-way repeated
measures ANOVA with the factors Latency, Correctness, and Confidence. As anticipated, category
decoding was better for correct than incorrect trials (F1,39=135.05, p<.001, n,?=0.78) as well as for HC
versus LC trials (F139=27.75, p<.001, n,?=0.42). Category decoding differed across the three (early, mid,
late) diagonal decoding time-windows (F»7s=32.16, p<.001, n,?=0.45), with differences being
modulated by the level of confidence (Latency x Confidence: F;75=6.88, p=.002, n,?=0.15; no evidence
for an interaction between confidence and correctness: F,78=0.022, p=.88, n,?=0.001). As
hypothesized, the characteristic pattern of decoding across three diagonal time-windows differed
between correct and incorrect trials (Correctness x Latency interaction: F»,75=36.57, p<.001, n,?=0.48),
independent of confidence (Correctness x Latency x Confidence interaction: Fy7s=1.12, p=.33,
n,2=0.03). As shown in Fig. 3C, diagonal decoding profiles were very different for correct and incorrect
decisions, especially for the early and mid-processing stages. Most prominently, it can be observed that
for correct trials, all processing stages show positive decoding, whereas in sharp contrast the two early
stages for the incorrect trials showed negative decoding. This negative decoding pattern on incorrect
decisions illustrates that early EEG data patterns look more similar to the presented stimulus category
than to the reported stimulus category (note again that the decisions were used as the classifier labels).
The fact that the late stage decoding flips to positive decoding illustrates that later EEG data patterns
are more similar to the reported category than the presented category (Fig. 2C). We will come back to
these effects later in the results section.
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Figure 3. Face/house classification in the main task while training on the decision localizer. (A) GAT matrices for correct trials
and (B) incorrect trials in the main discrimination task (occipital-parietal channels). Trials are separated by confidence - high
confidence (HC) and low confidence (LC) - in the decision. (C) On-diagonal and (D) off-diagonal (perceptual maintenance) time
courses of correct and incorrect decisions, separated by confidence. Black boxes indicate the time-windows (early, mid, late)
used for averaging the AUC scores. Colored horizontal lines indicate periods of significant decoding with respect to chance.
Longer-lasting sensory traces are derived by training a classifier on the time-window 150-200 ms and testing it across the entire
time-window (panel D). (E) Bar plots show average AUC values for the time-windows of interest highlighted in panels C-D.
Classification performance was evaluated at each time point using cluster-based permutation testing (two-tailed cluster-
permutation, alpha p<.05, cluster alpha p<.05, N permutations=1000).

For correct trials, decoding strength differed across the three TOI’s (F1,39=47.01, p<.001, n?=0.55) and
was overall better for HC trials than for LC trials (F1,35=31.91, p<.001, n?=0.45). Confidence interacted
with latency (TOl’s) (F,75=10.28, p<.001, n?=0.21), indicated by better decoding in the mid/late
processing stage for HC versus LC trials (mid-stage: t39=-6.92, p<.001, d=-1.09; late stage: t33=-3.06,
p=.004,d=-0.48; Fig. 3C), while we did not find evidence for this confidence modulation for the early
processing stage (tso=-1.25, p=.22, d=-0.2). These results are summarized in the bar plots of Figure 3E.

On incorrect decisions, decoding scores across three diagonal time-windows differed
(F2,78=18.84, p<.001, n,°=0.33) and while decoding was also higher for HC than for LC trials (F139=11.64,
p=.002, n,°=0.23, Fig. 3D), the interaction between these two factors was not robust, although
numerically, decoding was higher in HC compared to LC trials, in particular at the later vs. early stage
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(F2,78=2.81, p=.07, ny?=0.07, BFexa=1.96). A series of planned simple comparisons showed that the flip
from negative to positive decoding was stronger for high confidence decisions (results are summarized
in Fig. 3E). The below-chance decoding during the two early diagonal decoding time-windows on
incorrect decisions indicated that the classifiers were picking up the presented stimulus category during
sensory stages of visual information processing. At the earliest time-windows (80-130 ms), we did not
find evidence that decoding was modulated by confidence (HC vs. LC; t35=-0.28, p=0.78, d=-0.05,
BF01=5.64) and indeed, decoding was below chance-level for both confidence levels (LC: t39=-5.83,
p<.001, d=-0.92; HC: t39=-3.38, p=.002, d=-0.53). During the following mid-stage (150-200 ms),
classifiers also mainly decoded the veridical stimulus category, but interestingly in particular when
participants reported low confidence in their decision (LC: t39=-5.05, p<.001, d=-0.8; HC: t35=-0.35,
p=.73, d=-0.06, BF91=5.54; LC vs. HC: t35=-2.95, p=.005, d=-0.47). Then finally, during the late processing
stage (350-500 ms), patterns of neural activity represented the incorrectly reported stimulus category,
but in particular when participants where highly confident in their decision, so when the illusion was
strongest (HC: t39=3.53, p<.001, d=0.56; LC: t39=0.44, p=.67, d=-0.07, BF0;=5.36, LC vs HC: t39=-3.28,
p=.002, d=-0.52). These results show a reversal from the presented stimulus category to the reported
category for incorrect decisions, especially for high confidence decisions.

Off-diagonal decoding based on the decision localizer

Next, we examined decoding of the reported stimulus category off-diagonally, training on the N170
time-window (150-200 ms) using the decision localizer task data, separately for correct and incorrect
decisions (only one stage). First, on correct decisions, decoding of the reported stimulus category was
robust for both confidence levels (all p’s<.001), although decoding was higher for HC than LC decisions
(t30=-3.98, p=<.001, d=-0.63; Fig. 3C and 3E, right panel), suggesting that the veridical/perceived
stimulus category was maintained perceptually. On incorrect decisions, however, what was
perceptually represented off-diagonally was not the presented stimulus, but the misreported stimulus
category, and this effect was stronger for high confident than low confident incorrect decisions (HC:
t39=3.86, p<.001, d=0.61; LC: t3=1.41, p=.17, d=0.22, BF;=2.35; LC vs HC: t39=-3.06, p=.004, d=-0.48;
Fig. 3E). Thus, based on the transient decoding peak observed at early processing stages (150-200 ms
in the decision localizer), the erroneous and misreported stimulus category was represented in a
persistent perceptual format later in time, despite never being presented on the screen and never being
neurally represented at earlier time-points (Fig. 3C). Statistical tests across time revealed that the
incorrect off-diagonal decoding trace emerged relatively early, starting at approximately 213 ms, and
peaking at 236 ms after stimulus presentation (Fig. 3D, horizontal blue colored bars reflect significant
time points after cluster-based permutation testing). Although we observed a perceptual
representation of an incorrectly reported category, concluding that errors in decision making in this
task have a true perceptual origin (in the case confidence is high), based on the current results may be
premature, because the decoded signal could reflect a combination of perceptual and decision-related
processes (20, 52). Therefore, we further examined this issue further when training our classifiers on
the sensory tuned localizer.

The time-course of category representations: Sensory localizer

To explore to what extent errors in decision-making have a true perceptual origin we performed the
same set of analysis, but now while training the classifier, on the sensory localizer task. In this task
participants performed a simple change detection task on the color of the fixation cross making the
face/house images fully task irrelevant. Because the sensory localizer task does not have a decision
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component to the face/house images, it is uniquely sensitive to sensory features. Therefore, we
expected that the late square shaped on-diagonal decoding pattern, possibly related to global ignition
(34, 37, 50), would be strongly reduced or even disappear when cross classifying between the sensory
localizer and the main perceptual decision task. Previous studies have shown that this late square-
shaped decoding pattern is likely related to decision processes arising after perceptual analysis, which
disappear when visual input is task-irrelevant (18-20, 53). On the other hand, because decoding is still
performed on the face/house images, the sensory stages should be relatively unaffected by this task
relevance manipulation (18, 49). In this results section, we focus on those aspects of decoding that are
informative for addressing the question whether decision errors have a perceptual origin, but note that
all other effects were similar to the analyses reported in the “decision localizer” section and the details
thereof can be found in the supplementary material (including all the ANOVA’s).

For correct decisions, decoding was above chance for both confidence levels (all p’s <.001, see
Fig. 4C) in the early and mid-stage, but we did not find evidence for decoding at the late diagonal stage
(LC: t30=1.104, p=.28, d=0.18, BFn1=3.33; HC: t39=1.34, p=.19, d=0.21, BF»1=2.55). Thus, as anticipated,
the late on-diagonal 350-500 ms stage was not robust when training on the sensory localizer and
classifying on the main discrimination task, whereas all other stages of visual processing remained
relatively intact (Fig. 4C). During the perceptual maintenance stage, the activity patterns reflected the
veridical/reported stimulus category (both p’s <.001, LC vs. HC: t35=-0.98, p=.34, d=-0.15, BFo;=3.76, Fig.
4D).

For incorrect decisions, the early and mid-stage were also similar as compared to when the
classifiers were trained on the decision localizer (early stage: LC: t39=-3.4, p=.002, d=-0.54; HC: t3o=-
3.91, p<.001, d=-0.62; mid-stage: LC: t35=-3.04, p=.004, d=-0.48; HC: t3s=-0.11, p=.91, d=-0.02,
BF01=5.83). Specifically, we observed negative decoding for both early stages (again, except for HC trials
in the mid-stage), reflecting the processing of the veridical stimulus input. Crucially, also here, the late-
stage decoding disappeared (LC: t30=0.16, p=.88, d=-0.03, BF1=5.8; HC: t30=1.27, p=.21, d=0.2, BF(;=2.8,
Fig. 4C). However, most importantly, during the off-diagonal perceptual maintenance stage using the
classifier trained on the sensory localizer data, we could still decode the incorrectly reported stimulus
category, in particular when participants reported high confidence in their decision (LC: t39=1.78, p=.08,
d=0.28; BFp;=1.4; HC: t35=3.03, p=.004, d=0.48, BF¢1=0.12; LC vs. HC: t3s=-1.94, p=.06, d=-0.31,
BF01=1.07, Fig. 4D-E). Again, here as well, cluster-based testing across the entire time window revealed
that the perceptual representation of the incorrect stimulus spontaneously emerged right after the
150-200 ms time-window most strongly representing face/house differentiation (see Fig. 4D). This
finding shows that misreported decisions may be due to true perceptual illusions.


https://doi.org/10.1101/2022.11.16.476617

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.476617; this version posted November 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

A Sensory localizer AUC B Localizer » Discrimination task
_ 0.80 0.60
1) 1] :
E 600 0.70 £ 600 ’ 0.55
£ 3 0.60 £ ’
2 400 ' g 400
-g chance g chance
o 4 =
£ 200 = 0.40 £ 200 o 0.45
g 1 0.30 " ©
0 2 0
= 0.20 80-130ms 150 - 200 ms 350 - 500 ms = 0.40
0 200 400 600 ) (early stage)  (mid stage)  (late stage) 0 200 400 600 ’
Testing time in ms Testing time in ms
C Diagonal time-course D Perceptual maintenance
0.70 | ala 3 LC correct 0.70 | 7 LC correct
| === HC correct | === HC correct
0.65 | === | C incorrect 0.65 | === |C incorrect
| === HC incorrect | === HC incorrect
0.60 | 0.60 |
K
S oss} | \ VNN 9 oss} | A R
Es I AlAf Py 2 I oA s
i | o
chance ST MVIGA WS — — chance PSSV N~V — = N
N |
0.45 | 0.45 I
LU |
0.40 —1 0.40 —1 ===
0 200 400 600 ms 0 200 400 600 ms
E Diagonal time-course
AUC 1: early stage 2: mid stage 3: late stage 4: perceptual maintenance
0.8 08 0.8
0.7 g
06 : i
chance
0.4 )
031 |lcHe LocHe 08" cHC LcHe 03! LcHC LcHC 03" LcHC LCHC

correct incorrect correct  incorrect correct incorrect correct incorrect

Figure 4. Face/house classification based on the sensory localizer. (A) GAT matrix for the sensory localizer (all electrodes) and
regions of interest (ROl) marked by inset black boxes (numbers 1-4). On the right, covariance/class separability maps for each
diagonal ROI, indicating the underlying data contributing to the classification performance. Highlighted channels significantly
contributed to the classification performance after cluster-based permutation testing over channels (corrected for multiple
comparisons). Covariance/class separability maps 2 and 4 are the same because decoding scores within insets 2 and 4 were
obtained using the same training time-window. (B) Classifiers trained on the sensory localizer applied to the main discrimination
task (cross-task validation procedure, all electrodes). (C) On-diagonal and (D) off-diagonal time courses of correct and incorrect
decisions, separated by confidence. Black boxes indicate the time-windows (early, mid, late) used for averaging the AUC scores.
Colored horizontal lines indicate periods of significant decoding with respect to chance. Longer-lasting sensory traces are
derived by training a classifier on the time-window 150-200 ms and testing it across the entire time-window (panel D).
Classification performance was evaluated at each time point using cluster-based permutation testing (two-tailed cluster-
permutation, alpha p<.05, cluster alpha p<.05, N permutations=1000). (E) Bar plots show average AUC values for the time-
windows of interest highlighted in panels C-D. LC, low confidence; HC, High confidence.

Stimulus orientation decoding

Our results so far show that initial information processing stages are stimulus related, whereas later
off-diagonal decoding captures perceptual aspects of decision errors. To show that these effects are
specific for task-relevant features of the images (face/house category), we additionally focused on
stimulus orientation decoding as a function of correctness and confidence. Stimulus orientation was a
task-irrelevant feature of the stimuli and previous studies have shown that it can be decoded already
~100 ms post-stimulus (50). A single isolated decoding peak within the 30-130 ms post-stimulus was
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observed both for within-task decoding (Fig. 5A, 10-fold decoding) as well as cross-task classification
(decision classifiers = main discrimination task, Fig. 5B-C). Decoding strength was similar for correct
and incorrect decisions (F139=0.06, p=.82, n,2=0.001, BF;=5.7) and more evidence was observed for
the absence of an effect. We also did not find evidence that confidence modulated orientation
decoding in any way (F139=0.54, p=.47, n,=0.014, BFy;=4.77; interaction correctness x confidence:
F1,30=0.18, p=.67, N,’=0.005, BFexq=4.22).
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Figure 5. Tilt (right/left) classification based on decision localizer. (A) GAT matrix of the decision localizer data for arbitrating
left/right tilted stimuli (irrespective of face/house category, based on occipital-parietal channels). The black square-shaped
inset indicates the time-window used for averaging AUC decoding scores (30-130 ms). (B) On-diagonal time courses for correct
and incorrect decisions separated by confidence. Colored horizontal lines indicate periods of significant decoding with respect
to chance. Classification performance was evaluated at each time point using cluster-based permutation testing (two-tailed
cluster-permutation, alpha p<.05, cluster alpha p<.05, N permutations=1000). (C) Bar plots show average AUC values for the
time-window of interest highlighted in panels A-B. LC, low confidence,; HC, High confidence.

Discussion
The goal of this study was to investigate whether errors during perceptual decision making have a
sensory or a decisional origin. We isolated sensory versus decision-related neural processes by using
two distinct functional localizers, differently tuned to these processes (20). Replicating a wealth of
previous studies, the earliest neural responses reflected the physical properties of the presented
stimulus (e.g., 51, 52). The crucial finding reported here is however that when participants made an
incorrect perceptual decision with high confidence, early stages of visual information processing (<~200
ms post-stimulus) still represented object features of the presented stimulus (e.g., “faceness” in the
case a face stimulus was presented), while later stages represented the illusory perceptual properties
of the reported stimulus category (e.g., “houseness” in case a face was presented, but a house response
was given). More importantly, at least three findings reported here demonstrate the sensory and true
illusory nature underlying such high confident erroneous perceptual decisions and thereby go beyond
traditional interpretations associating late neural processing with largely stimulus-driven perception.
First, persistent sensory-based decoding across time (perceptual maintenance, off-diagonal
decoding) on incorrect trials was observed when training a classifier on the N170-like processing stage,
a peakin the EEG signal highly associated with face perception (39, 44, 49-51). Whereas low-level visual
features, such as stimulus orientation and position, drive early-latency decoding (< 100ms post-
stimulus), slightly later in time decoding has been shown to reflect the integration of sensory features
into coherent objects and object categories (as early as ~150 ms post-stimulus, (8, 19, 50, 51, 59)).
Regarding face perception, a recent MEG study showed that decoding of face representations peaked
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at ~160 ms post-stimulus, and this signal correlated with subjective ratings of “faceness” of inanimate
objects (57). By combining MEG and fMRI measures, it was shown that these face responses likely
originated from the FFA in ventral temporal cortex (see also (49)). This mid latency face-like component
has been shown to be relatively unchanged when object categories are task-irrelevant (18). Others have
also provided evidence for strong occipital contributions to the decoding of perceptually integrated
objects and object categories during similar early latencies (34, 60). These findings highlight that the
mid latency (150-200 ms) decoding stage indexes perceptually coherent category representations,
likely originating from (higher level) visual cortices. A novel line of evidence based on decoding and
generalization across time (61), has shown that these category representations are decodable for much
longer periods of time than originally anticipated, as reflected in off-diagonal decoding patterns,
focused on in this work (33—35, 53). Also in the data presented here, sensory representations were
decodable for relatively long periods of time (see Fig. 3 and 4) (35).

A second reason why erroneous decisions in our task are likely caused by true perceptual
illusions is that long-lasting late sensory representations were observed even when classifiers were
trained on the sensory-tuned localizer task (perceptual maintenance, Fig. 4D). Sensory-tuned classifiers
were trained on a task in which face/house images were fully task-irrelevant and participants focused
their attention on detecting small changes in the color of the fixation cross. Therefore, this classifier
was only able to pick up (unattended) sensory features of the images that arbitrate between faces and
houses, in the absence of most post-perceptual and decision-related processes (19, 20, 26, 62). That
we were successful in isolating sensory features was evident in the strong decrease of the late on-
diagonal “square-shaped” decoding profile while training on the sensory localizer task. Another
approach to isolate neural signals associated with perceptual experience from decision- and report-
related processes, is the development of no-report paradigms. In such paradigms, observers may be
aware or unaware of presented stimuli, but in all cases do not make perceptual judgements about
them. The resulting contrasts (aware versus unaware) is then supposed to isolate perceptual
experience, limiting the influence of post-perceptual processes. Also in this line of work it has been
shown that the majority of the high-level activations in frontal and parietal cortex disappear (similar to
our late square shaped decoding), and hence, that such activation patterns are mostly associated with
post-perceptual processes and much less so with perceptual experience itself (21-26).

Third and finally, the flip from veridical stimulus-related processing relatively early in time
towards illusion-based (or report-based) processing later in time was only observed for high confidence
decisions and not for low confidence decisions. In other words, the emergence of these perceptual
representations in the EEG signal depends on the strength of the perceptual illusion, assuming that the
perceptual illusion was strong for high confidence (inaccurate) decisions and weak for low confidence
decisions (see 63 for a way to explore “partial errors” by inspecting the electromyography signal on
correct responses). Low confidence decision errors were likely the result of guessing (7). In a related
fMRI study, Summerfield and colleagues have shown that misreporting a house for a face in a
challenging discrimination task similar to ours, is accompanied by increased fMRI BOLD activity in the
FFA, but not in other face responsive regions such as the occipital face area (OFA). This suggests that
the FFA is associated with illusory perception of faces, whereas earlier face processing regions in the
cortical hierarchy are not, and reflect the presented or veridical stimulus category (7, 64, 65). Although
in this fMRI study, discrimination responses were also given with high or low confidence, unfortunately
too few high confidence error trials could be obtained to perform the crucial analyses that test for
confidence modulations on decision errors). Furthermore, in the Summerfield et al. study, image
contrast varied across trials, and therefore correctness, confidence, and image contrast co-varied,
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which complicated the separation between perceptual effects and effects of bottom-up input strength
(e.g., decision errors were also often low contrast trials). However, together these results highlight that
relatively early stages in object processing, both in time as well as in the cortical hierarchy, are linked
to the image input, whereas later stages are more internally-driven or perceptual in nature. Intriguingly,
our results also show that emerging perceptual representations do not necessarily have to follow from
bottom-up sensory processes. When participants misreported the presented stimulus category (on
incorrect trials), we found no N170-like decoding pattern for high confidence decisions, but we did
observe the emergence of perceptual representations of the reported category later in time (Fig. 3B).
Thus, illusory category-specific perceptual signatures emerged without any clear bottom-up sensory
evidence for this percept.

Although these results reveal that high confidence errors are associated with neural
representations indicative of true perceptual illusions, they leave open the question what drives these
reversals in representations from the veridical to the misreported stimulus category. There are several
likely candidate mechanisms, which future studies should aim to arbitrate between. One intuitive
candidate may be decision-related feedback to visual cortex. The frontoparietal network involved in
perceptual decision making has strong feedback connections to sensory regions, and can continuously
inform sensory regions about the unfolding decision variables through feedback connections (66, 67).
In general, activity observed in sensory regions can thus be a mixture of both feedforward and feedback
processes, especially at longer latencies (>~100 ms) (39, but see 40), making it difficult to disentangle
sensory and post-sensory or decision processes even at the level of single sensory neurons (69-75).
Functional magnetic resonance imaging (fMRI) studies in humans have for example shown that early
visual cortex activity may reflect a combination of stimulus-related feedforward activity and post-
sensory decision related feedback (76) or top-down processes such as task set and expectations (77).
The observation that we only observed the flip form veridical to the reported perceptual
representations in high confidence trials runs contrary to the interpretation that decision-related
feedback may be the best explanation of the observed data patterns. If these effects were purely
decision-driven we should have observed similar decoding patterns for low confidence decisions,
although we cannot fully rule out the possibility that these sensory effects were caused by decision-
related feedback.

Another possibility is that, because the bottom-up visual input is impoverished due to strong
masking, higher-order areas may incorrectly explain the noisy bottom-up signals. Previous evidence
suggests that sensory templates can be implemented in a top-down manner even in anticipation of
sensory stimulation (78-80) and a body of work shows that the FFA is sensitive to top-down factors,
such as task-relevance, expectations and context (77). For example, seeing a face in ambiguous Mooney
images (81) or face-like inanimate objects, the phenomenon know as pareidolia (57), leads to stronger
FFA responses than when no face is perceived, despite very similar bottom-up input. That the FFA is
sensitive to context is also illustrated by the observation that the FFA activates to simple oval shapes
when the context suggests this shape might be a face (82). Furthermore, Summerfield and colleagues
showed effects of task set on object processing (83). They administered a task in which in one block of
trials participants had to detect faces among faces, houses, and cars, and in another block, they had to
detect houses, among the same three categories of stimuli. Thereby the authors manipulated the top-
down “perceptual set” while keeping the bottom-up input the same across blocks. When comparing
the overall activity in the FFA on blocks in which faces had to be detected versus houses had to be
detected, increased FFA activity was observed. The authors concluded that top-down signals from
frontal cortices could sensitize visual regions responsible for collecting evidence about the presence of
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faces. Although we did not directly manipulate context or expectations in our design (faces and house
were equiprobable), participants may have developed expectancies about image likelihood over time,
which may have then led to explaining the noisy sensory input, probably at the level of object-selective
cortex, in an erroneous way (7). Another related and interesting finding has been reported by Tu and
colleagues (8). In their task, participants had to discriminate faces from houses or cars while EEG and
fMRI were measured simultaneously. As the authors have observed in different task contexts (18, 84),
there were both early (~200 ms after stimulus) and late (~500 ms after stimulus) EEG components that
discriminated between stimulus categories. Interestingly, in behavior, participants had an overall face
bias: they often misreported non-faces as faces. By combining EEG with fMRI, the authors showed that
individual differences in the strength of this face-bias correlated across participants with the strength
of the interaction between "early" (e.g., FFA, parahipocampal place area, parietal regions) and "late"
neural networks (primarily frontal regions, e.g., anterior cingulate cortex). Therefore, the strength of a
face decision bias may depend on the degree of top-down predictive modulations from frontal to
sensory cortices. Because no single trial confidence reports were obtained in that study, the authors
could not relate their neural data and categorical responses to introspective confidence in the
observers’ decisions. Our study therefore extends this previous work by showing that (at least) high
confidence decision errors have a perceptual origin. In general, together these studies suggest that
both perceptual biases and decision biases depend on interactions between top-down and bottom-up
processes (see also (9, 12, 14, 85) for ways aiming to behaviorally disentangle sensory from decision
biases).

Predictions, however, do not have to be strategic or conscious, but may fluctuate naturally over
time in neural activity, e.g., in object selective cortex (86). It has been argued that ongoing fluctuations
of neural activity are not random (i.e., stochastic noise), but may contain content-specific information,
for example associated with previously experienced stimuli and (perceptual) learning (87—94). It has,
for example, been shown recently that when patterns of pre-stimulus neural activity measured with
magnetoencephalography matched the stimulus category that was later presented, which had to be
discriminated from other object categories by human participants, perceptual sensitivity was improved
(86). Thus, another possibility is that, in the face of uncertainty, when sensory input is weak or
ambiguous, the system may settle on the most likely interpretation of the sensory input, integrating
the sensory evidence and the ongoing activity present at the moment the stimulus travels through the
cortical hierarchy. In our study, when perceptual decisions were incorrect, but made with high
confidence, the perceptual system may have settled in a state coding for the specific stimulus category
that was perceived, leading to a true illusion in perception. Yet, in low confidence decision error trials,
the perceptual system may have not settled on any of the two stimulus categories, as strikingly
reflected in the absence of significant decoding for either the presented or the reported object
category.

To conclude, we find that object categorization errors are associated with a quick reversal in
sensory representation from the veridical, presented stimulus category to the reported stimulus
category, but only for decision made with high confidence. This finding shows that high-confidence
decision errors are caused by true illusions in perception.
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Methods

Ethics statement

Participants provided written informed consent prior to the start of the experiment and were tested
following a protocol approved by the ethical committee of the Department of Psychology of the
University of Amsterdam (project number: 2019-BC-10724).

Participants

44 participants (33 female, mean age=23.34; SD=5.68) from the University of Amsterdam, all right-
handed, with reported normal or corrected-to-normal vision and no history of a psychiatric or
neurological disorder, were tested in this study. Participants received research credits or money (10
euros per hour) for compensation. Forty participants, all between the age of 18 and 35, completed two
experimental sessions of this study and comprised the final sample included in all reported analyses (30
female, mean age=22.83; SD=3.31). The remaining 4 participants were tested in only one session, after
which they were excluded from further participation. One participant was excluded from the final
analysis because of surpassing the age criterion (age > 35), while the other three participants were
excluded due to the around-chance performance in one or both localizer tasks in the first session.

Materials

All tasks used in the current study were developed and executed using Matlab 8 and Psychtoolbox-3
software within a Matlab environment (Mathworks, RRID:SCR_001622). Stimuli were presented on
1920x1080 pixels BenQ XL2420Z LED monitor at a 120-Hz refresh rate on a black (RGB: [0 0 0], + 3
cd/m?) background and were viewed with a distance of 30 cm from the monitor using a chin rest.

Procedure and stimuli

The experiment consisted of 2 sessions, each approximately 3 hours long and scheduled on two
different days for each participant. In the first session, participants completed a change detection task
and a discrimination task while we measured their brain activity using EEG. In the change detection
task, participants focused on the central fixation cross and reported its color change whenever it
changed from red to light red, while a stream of brief house and face images was shown simultaneously
on the screen (Fig. S1A). In the discrimination task, in every trial, participants saw a masked image of a
face or a house (Fig. S1B). At the end of each trial, they were asked to indicate which stimulus category
they perceived. The discrimination task administered in the second session was highly similar (see the
details of the design below), but in addition to reporting which stimulus category they perceived,
participants also provided confidence ratings regarding their decision.

Multivariate pattern analysis (MVPA) classifiers were trained on EEG data recorded during the
first session, separately for the change detection task (“sensory” localizer) and the discrimination task
(“decision” localizer), which were then applied to the discrimination task EEG data recorded in the
second session.

Session 1: Change Detection Task (sensory localizer). In this task, participants focused their attention on
a centrally presented fixation cross, which was superimposed on a rapidly changing sequence of house
and face images (Fig. S1A). The fixation cross remained present on the screen throughout a block of
trials. Participants’ task was to monitor the fixation cross and report its brief color change, from red
(RBG: [255 0 0]) to a lighter shade of red (RBG: [125 0 0]) for 100 ms on 20% of randomly chosen trials.
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Participants were instructed to press the spacebar whenever they noticed the color change of the
fixation cross. Note that this change detection task adds an orienting response to the fixation cross on
some trials, which was however unrelated to, and not predictive of, the occurrence of the task-
irrelevant face or house stimuli.

Stimuli set consisted of 180 unique houses and 180 unique faces (90 male and 90 female). Face
and house images were grey scale stimuli, obtained from Weaver et al. (2019). Face and house stimuli
were equated for spatial frequency and luminance (for details, see Weaver et al., 2019). All stimuli
subtended 16x20° visual angle, were presented centrally on a black background, and were tilted to the
right or left at an 5° or 355° angle, respectively. Each image was shown for 100 ms with the ISI that was
jittered between 1200-1400 ms. The task-relevant color change of the fixation cross could occur only
in the ISI, at a randomly determined moment 15 ms after the start of the ISl and 130 ms before its end.
Participants were instructed not to pay attention to images of houses and faces while maintaining their
fixation at the center of the screen. Images of houses and faces were thus task-irrelevant, although
they were concurrently processed visually.

By ensuring that participants’ attention was focused on the centrally-presented task, the aim
was to minimize the possibility that MVPA classifiers were impacted by systematic eye movements that
could be strategically deployed to discriminate between stimuli classes (95). For instance, a consistent
eye-movement towards the top of the stimulus to detect face-defining features (e.g., eyes) could alone
drive multivariate differences between houses and faces stimuli.

In total, 200 images of houses and faces (100 of each category, half tilted to the right and half
tilted to the left) were shown in each of 6 experimental blocks. Before the start of the first experimental
block, each participant completed one practice block of 100 trials in order to get familiar with the task.

Session 1: Discrimination task (decision localizer). The task design was highly similar to the task
developed by Weaver, et al. (2019). An overview of the trial procedure can be found in Figure 1A (and
Fig. S1B). Each trial started with a fixation dot that remained on the screen throughout the duration of
the trial. After a fixation-only interval that was jittered between 600-1000 ms, a scrambled mask
stimulus appeared on the screen for 50 ms, followed by a target face or a house stimulus, shown for 80
ms. The target image was followed by another 50ms-long scrambled mask stimulus. A response screen
was presented for 1000 ms immediately after the offset of the second mask stimulus, during which
participants needed to give a speeded response indicating whether they saw a house or a face, using a
left-handed (z’) or right- handed (‘m’) keyboard response. Stimulus-response mappings were
randomized across blocks of trials to prevent motor response preparation before the response screen
was shown. The correct stimulus-response mapping (e.g., a left button press for a face and a right
button press for a house stimulus) was presented at the beginning of each block. Furthermore, letters
F and H (approximate size 4x4°), for faces and houses respectively, were shown during the entire trial
in the right and left upper corner (centered approximately 20x24° from fixation), or vice versa,
depending on the block, as a as a reminder of the response mapping to the button press.

Face, house, and mask stimuli were obtained from the study by Weaver et al. (2019). Stimuli
set consisted of 180 unique houses and 180 unique faces of which 90 faces were male and 90 were
female. Face and house stimuli were equated for spatial frequency and luminance (for details see
Weaver et al., 2019). Visual masks were selected from 900 scrambled face and house images (parsed
into 12x15 tiles and randomly shuffled) that had been made transparent and superimposed. All stimuli
were grey-scale, subtended 16x20° visual angle, and were presented centrally on a black background.
Target stimuli and masks were shown tilted to the right or left, at an 5° or 355° angle respectively.

16


https://doi.org/10.1101/2022.11.16.476617

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.476617; this version posted November 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Participants completed 14 experimental blocks containing 64 trials each, 896 trials in total. In
each block, an equal number of faces and houses were shown, half of which were tilted to the right and
half to the left. Before the first experimental block, each participant completed one practice block of
64 trials to get familiar with the task.

Session 2: Discrimination Task. The task and procedure of the second session discrimination task was
highly similar to the discrimination task administered in the first session (cf. (33)). Here, participants
again viewed a rapid stream of house and face images and their task was to report at the end of the
trial whether they had seen a house or a face. Right (5°) or left (355°) tilted house and face images were
preceded and followed by visual masks, which were also tilted in the same direction. The trial procedure
was identical to the discrimination task of session 1, except that the target face or house was presented
for 20 ms or 30 ms. The duration of target stimuli was determined per participant depending on the
discrimination performance during practice blocks, with the aim of achieving ~65% discrimination
accuracy. Specifically, if a participant scored 60% or higher in correctly discriminating target stimuli
when they were shown for 20ms, this timing was used as the target duration for the remaining
experimental blocks. Otherwise, target stimuli were shown for 30 ms.

After a 50 ms-long post-mask, a response screen was presented for 1300 ms, during which
participants needed to give a speeded response indicating whether they saw a house or a face using a
left-handed (‘z’) or right- handed (‘m’) keyboard response. Additionally, following the discrimination
response, participants needed to indicate their confidence in the accuracy of their discrimination
response using a 4-point scale (1 — unsure, 4 — sure). The next trial began after the response had been
given or after a 3 -second timeout if no response was recorded. An equal number of right and left tilted
faces and houses were shown in each block.

The discrimination task started with 4 practice blocks of 84 trials each, administered to
familiarize participants with the task and to get an indication of target presentation time for the
remainder of the task. This was done to ensure that the stimulus presentation time was sufficiently
long, so that accuracy scores during the practice averaged to around 65%. Following the practice, each
participant completed 16 experimental blocks of 84 trials each.

EEG measurements and preprocessing

The electroencephalogram (EEG) and electro-oculogram (EOG) were recorded using the Biosemi
Functional Two system (Biosemi.com). 64 sintered AG/AgCl electrodes were positioned according to
the 64 standard international 10/20 system, 6 external electrodes were placed on the earlobes and
around the eye. The vertical EOG (VEOG) was recorded from two external electrodes located above
and below the right eye. The horizontal EOG (HEOG) was recorded from two external electrodes located
next to the external canthi of the eyes. The VEOG was used to detect eyeblinks and the HEOG was used
to detect horizontal eye movements. Electrophysiological signals were digitized at a sampling rate of
512 Hz.

EEG data was preprocessed and cleaned before further analysis using custom scripts, the
EEGLAB toolbox (v2019_1), and the Amsterdam Decoding and Modeling toolbox (ADAM; (96). EEG data
was re-referenced to the average of the earlobes, high-pass filtered at 0.5 Hz and low-pass filtered at
40 Hz, in separate steps as recommended by EEGlab. Note that a high pass filter may distort the
temporal estimates of the EEG signal (97, 98), which was not the case in our dataset (see supplementary
Figure S3 illustrating this). The continuous data was then epoched from -500 ms to 2000 ms around
stimulus onset. Trials containing jump artifacts were removed from the data using an adapted version
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of ft_artifact_zvalue muscle artifact detection function from the FieldTrip toolbox. Eye blink artifacts
were removed from the data using a standard regression-based algorithm. A baseline correction in the
200 ms pre-stimulus onset interval was performed. Data were then downsampled to 128 Hz.

Statistical analyses

All analyses were done using custom scripts, the EEGLAB toolbox (v2019 1), the Amsterdam Decoding
and Modeling toolbox (ADAM; (96) and JASP software. We took a frequentist statistical approach and
chose an alpha of p<.05 as the threshold for significance as is typical, to guard against false positives.
Note, however, that this threshold is relatively arbitrary, and that frequentist statistics cannot provide
evidence for the null hypothesis (absence of an effect) (99). Therefore, we also report effect sizes, and
in case of non-significant effects as indicated by p>.05, followed up with a Bayesian equivalent of the
same test in order to quantify the strength of evidence for the null hypothesis (Ho). By convention,
Bayes factors from 1 to 3 were considered as anecdotal, 3 to 10 as substantial, and those above 10 as
strong evidence in favor of Ho.

Behavior

Trials in which participants made a discrimination response <200ms after the stimulus presentation
(3.39%) or gave no response at all (1.86%) were discarded from the analysis. To evaluate participants’
behavioral performance, we computed d-prime (d’, Type-l sensitivity), a measure of perceptual
sensitivity to presented stimuli, separately for each confidence level and analyzed using a one-way
repeated measures ANOVA with reported confidence ratings (1-4) as within-participant factor.

Decoding analyses

Multivariate pattern analysis (MVPA) was applied to EEG data in order to decode patterns of neural
activity specific to house and face stimuli. First, to test if we could decode category-specific neural
representations in the localizer tasks, we used a 10-fold cross validation scheme. In this procedure,
separately per localizer task, after randomizing the order of trials, the dataset was split into 10 equally
sized folds. Equal number of house and face stimuli were present in each fold. We then trained a linear
discriminant classifier (linear discriminant analysis: LDA) (27) to differentiate between house and face
images using 9 folds and tested its performance on the remaining fold (using the standard Matlab
function fitcdiscr). This was repeated 10 times, until all data were tested exactly once. Classification
performance was evaluated for each participant separately by computing the area under the curve
(AUC), which indicates the degree of separability between classes of the receiver operating
characteristic (ROC) curve. First, we computed the proportion of correct classifications for each
stimulus category, after which the scores were averaged across stimulus categories and over the 10
folds. Prior to training and testing procedures, EEG data was downsampled to 128 Hz and epochs were
shortened to -100 to 800 ms, centered on the target stimulus, in order to decrease the computational
time needed for MVPA.

Decoding analyses were carried out using EEG data recorded at all electrodes and a set of
occipital-parietal electrodes (33). The occipital-parietal set of electrodes, chosen so that it captures
early visual “N170-like” response to houses and faces, consisted of Iz, Oz, 01, 02, POz, PO3, PO4, PO7,
POS8, Pz, P1, P2, P3, P4, P5, P6, P7, P8, P9 and P10 electrodes.

To test our specific research questions, we used the cross-task validation scheme to evaluate
the performance of each classifier (trained on either the sensory or the decision localizer task data) in
differentiating between stimulus classes in the main decision task. We applied the same linear
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discriminant classifier to raw EEG data from the localizer task using voltages at each time sample to
train the classifier, which was then applied to the main discrimination task data. This was done for
separately for the sensory and decision localizer tasks. Following this procedure, we could examine
whether and when house- and face-specific neural representations were associated with participants’
confidence in their perceptual decision, and whether perceptual decisions, in particular when incorrect,
rely on the category-specific pattern of activation that is specific for the reported percept, or
alternatively, representations are specific for the presented category. Moreover, critically, we could
isolate sensory versus decision-related neural processes as the two localizers were differently tuned to
these processes.

To examine the representational nature of decision errors, and to uncover how category-
specific representations evolve across time, and across distinct processing stages, we used the
generalization across time (GAT) approach in applying the pattern classifiers (61). Specifically, a
classifier trained on a specific time point was tested on that time point as well as on all other time
points. The resulting GAT matrix (training time x testing time) thus reveals dynamic changes of neural
representations across time. For instance, a classifier trained to decode between house and face images
at 170 ms can generalize to a wider time-window, e.g., 170-350 ms, in which case it would indicate that
the early neural representation was maintained in time. This approach is thus informative of how neural
representations change across different stages of visual information processing, also permitting us to
examine when in time neural representations differ between the perceived stimulus classes and
depending on the correctness and confidence therein.

Decoding analyses were performed separately for correct and incorrect trials as a function of
two confidence levels. Trials in which participants reported confidence ratings 1 and 2 were aggregated
into “low” confidence trials, and those on which ratings 3 and 4 were given into “high” confidence trials.
Toillustrate, when decoding was performed for incorrect high and low confidence trials, classifiers were
trained on the presented image category of the localizer task but were tested using trials in which
participants reported seeing incorrect stimulus category, followed by high vs. low confidence rating.
Besides the stimulus category, we also decoded its orientation, i.e., whether a stimulus was tilted to
the right or to the left, separately for correct and incorrect trials, as a function of confidence level. This
analysis served two purposes. First, we wanted to verify that stimulus processing from the very bottom-
up input did not differ between high versus low confidence trials. Low-level visual features such as
orientation should be encoded in early brain activity in a bottom-up manner (50), but were not
expected to be modulated by confidence due to the early timing of that processing stage. Second, the
stimulus orientation was a task-irrelevant feature that participants did not need to do anything with
and was therefore useful to tests whether task-irrelevant features are processed differently on high
versus low confidence trials. To this end, classifiers were trained to distinguish between right versus
left tilt of the stimulus using localizer data and then tested on right versus left images orientations using
trials in which the correct versus incorrect stimulus category was reported.

Statistical analyses were performed on average classification scores (AUC) in time-windows
which we preselected based on previous empirical work. Typically, studies report two processing stages
using the GAT approach: an early (<250-300ms) cluster of diagonal decoding reflecting initial sensory
processes and a late processing stage (>300ms), which was found to associate with conscious report
(33, 34, 37). Additionally, some studies have reported a third stage of visual information processing,
starting at early latencies and generalizing off-diagonal, presumably reflecting maintenance of early
sensory stimulus representations (33, 34, 53). Following this body of work, and the study by Weaver et
al. (2019), who used an almost identical task design as in the present study, we focused our statistical
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analyses on two decoding clusters on-diagonal (classifiers were trained and tested on the same time
point) and one decoding cluster off-diagonal (training and testing were done on different time points).
The two on-diagonal clusters were 150-200 ms and 350-550 ms. The off-diagonal time-window
spanned from 150-200 ms training time to 350-550 ms testing time (see below for more details). Finally,
although decoding was pronounced during three time-windows observed previously by Weaver et al.
(2019), it was also observed at an even earlier time-window (80-130 ms) with a prominent occipital-
parietal topography (Fig. 2A, inset 1, early-stage topography). Because this early effect was absent in
the same task when images where presented vertically (33), this early peak likely reflects differences in
the orientations of the images presented, which we varied systematically across trials. This early
window was also used as an event of interest in this study.

To inspect the pattern of neural activity that drove classification performance, we computed
topographic maps for each classifier set (early, mid, late). Weights resulting from backward decoding
models are not interpretable as neural sources (100). For that reason, we plotted topographic maps
resulting from multiplying the data covariance matrix with the classifier weights, yielding activity
patterns that are interpretable as neural sources underlying decoding results (96). These
covariance/class separability maps were then normalized across electrodes for each participant (mean
activity over electrodes was thus zero).

In order to statistically evaluate classifiers’ performance, we extracted diagonal and off-
diagonal traces of GAT matrices. Average AUC values within specified clusters were analyzed using
repeated measures ANOVA with factors decoding latency (early, late) and confidence (low, high).
Specific hypotheses-driven comparisons between conditions were additionally evaluated using paired-
sample t-tests on AUC values averaged within our time-windows of interest. To evaluate decoding off-
diagonal, specifically, when the training was done using 150-200 ms classifiers which were then applied
to the late 350-500 ms time-window, we compared average decoding in this time-window between
two confidence levels (low vs. high) using a paired-sample t-tests as well. In cases where a specific
hypotheses-driven comparison did not indicate a significant result as indicated by an alpha of p<.05,
we followed up that null-effect by a Bayesian equivalent of the same test in order to quantify the
strength of evidence for the null hypothesis (Ho). By convention, Bayes factors from 1 to 3 were
considered as anecdotal, 3 to 10 as substantial, and those above 10 as strong evidence in favor of Ho.
Besides our hypothesis-driven analyses based on our predefined selection of time-windows, we
additionally statistically compared each time point to chance (both for on- and off-diagonal decoding)
by applying group-level permutation testing with cluster correction for multiple comparisons. We
employed two-tailed cluster-permutation testing with an alpha of p<.05 and cluster alpha p<.05 (N
permutations=1000, as implemeted in ADAM toolbox). These latter analyses were mainly performed
to evaluate whether our hypothesis-driven analyses may have missed potentially relevant effects, and
if so, we recommend future studies to replicate these effects to evaluate the robustness of them (99).

Data availability
The data and analysis scripts used in this article is available on Figshare: [insert URL here after
acceptance]
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Supporting information

The time-course of category representations: Sensory localizer - full results

The 3-way repeated measures ANOVA (factors Latency, Correctness, and Confidence) on decoding
scores using the sensory classifier and the occipital-parietal set of electrodes indicated that decoding
was overall better for correct than for incorrect decisions (F139=61.01, p<.001, n,?=0.61) and for HC
versus LC trials (F139=9.93, p=.003, n,2=0.203). As in the previous set of analyses using the decision
localizer, we found differences in decoding scores across three diagonal time windows (main effect of
Latency: F,78=25.56, p<.001, n,?=0.4), which were modulated by response correctness (Correctness x
Latency: F78=33.93, p<.001, n,2=0.47) and confidence therein (Latency x Confidence: Fy7=5.27,
p=.007, n,’=0.12). We did not find evidence that correctness and confidence in interaction (F1,39=0.288,
p=.59, n,?=0.007, BFe=6.67) and a three-way interaction between correctness, confidence, and
latency (F2,78=1.03, p=.36, n,°=0.03, BFex=9.502) affected decoding significantly. We continue to
unpack these results by performing a repeated measures ANOVA separately for correct and incorrect
trials.

For incorrect trials, decoding differed among three diagonal time-windows (F,7s=5.91, p=.004,
n,>=0.13), but the evidence for a modulation by confidence was weak (Latency x Confidence: F,75=2.25,
p=.11, n,?=0.06, BFex=2.49). The main effect of confidence was not robust overall (F139=3.23, p=.08,
n,2=0.08, BFo1=1.86, Fig. 4). Next, we performed a set of planned comparisons examining decoding in
each window of interest as a function of confidence. In the earliest time-window (80-130 ms) decoding
was significantly below chance for both confidence levels (LC: t3g=-3.4, p=.002, d=-0.54; HC: t39=-3.91,
p<.001, d=-0.62). We found that decoding was below chance in the following 150-200 ms time-window,
in particular for LC trials (LC: t39=-3.04, p=.004, d=-0.48; HC: t35=-0.11, p=.91, d=-0.02, BF(1=5.83). We
did not find evidence for late decoding stage (350-500 ms) for either confidence levels (LC: t35=0.16,
p=.88, d=-0.03, BF;=5.8; HC: t39=1.27, p=.21, d=0.2, BF01=2.8). Thus, early sensory stages represented
the veridical stimulus category, while category representations of misreported stimuli could not be
decoded at any stage along the diagonal.

For correct trials, decoding scores depended on the decoding latency (F,7s=48.17, p<.001,
n2=0.55), confidence (F139=11.96, p<.001, n,?=0.24) and their interaction (Latency x Confidence:
F278=7.77, p<.001, n,°=0.17). Decoding was above chance for both confidence levels in the early and
mid-stage (all p’s <.001, see Fig. 4C), but there was no evidence for decoding in the late diagonal stage
(LC: t39=1.104, p=.28, d=0.18, BF;=3.33; HC: t39=1.34, p=.19, d=0.21, BFp;=2.55). Again, this was
unsurprising, given that a decision was not required in the sensory localizer task. In line with the
previous analyses, we only found evidence that the mid-decoding window (150-200 ms) was modulated
by confidence (LC vs. HC: t39=-5.2, p<.001, d=-0.82, all other p’s>.23, BFy;>2.97). Thus, as expected,
these results suggest that early sensory stages of processing represented the presented stimulus
category both on trials in which the stimulus category was later correctly and incorrectly reported,
while the 350-500 ms late-stages decoding did not contain any categorical information specific for
either the presented or reported stimulus.

Confirming our previous results, during the perceptual maintenance stage, we decoded the
incorrectly reported stimulus category when participants reported high confidence in their decision,
but we did not find evidence for this in LC trials (LC: t39=1.78, p=.08, d=0.28; BFg;=1.4; HC: t35=3.03,
p=.004, d=0.48, BF01=0.12, decoding in LC vs. HC: t39=-1.94, p=.06, d=-0.31, BF0;=1.07, Fig. 4E). Sensory
classifiers were not sensitive to decision processes (notice the absence of the late decoding stage in
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Fig. 4C), which thus eliminates the possibility that this effect was decision-related. On correct trials,
during the perceptual maintenance stage, the activity patterns reflected the veridical stimulus category,
irrespective of reported confidence (decoding in low vs. high-confidence trials: t35=-0.98, p=.34, d=-
0.15, BFo1=3.76, Fig. 4D-E).

Note that cluster-based permutation test on each sample of off-diagonal decoding scores for
correct and incorrect report trials (Fig. 4C-D) suggested that early classifiers (150-200 ms) generalized
significantly to even earlier latencies than 350 ms. For instance, as shown on Fig. 4D, decoding was
significantly above chance for high-confidence trials already from ~210-300 ms post-stimulus, starting
again at around 370 ms. Early latencies to which 150-200 ms sensory-tuned classifiers generalized,
further corroborate the conclusion that we were indeed observing a perceptual effect.

A Sensory localizer B  Decision localizer

fixation
(600-1000 ms)

fixation
(1200-1400 ms)

task-irrelevant
stimulus

T (100 ms)

fixation color —
change : post-mask
(100 ms) % {90 )

Figure S1. Trial sequence of the sensory and decision localizer task. A) Each trial of the sensory localizer task started with a
central red fixation dot for 1200-1400 ms, during which an infrequent contrast change of the dot could happen (20% of trials).
Participants needed to press the spacebar as soon as they noticed the contrast change. In the same time interval, a house or a

pre-mask

response window

Have you seen a house
or a face? (1300 ms)

fixation
(1200-1400 ms)

face image was briefly shown on the screen, which needed to be ignored. Images were either tilted to the right or to the left
(task-irrelevant feature) at an 5° or 355° angle. Note that in the example trial only a left-tilted house image is shown. B) Each
trial of the decision localizer task started with a central red fixation dot after which a forward mask was shown, followed by an
image of a face or a house and a backward mask. Images were either tilted to the right or to the left (task-irrelevant feature)
at an 5° or 355° angle. On every trial, participants reported whether they perceived a house or a face and indicated their
confidence in this decision.
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Figure S2. A) GAT matrix for the decision localizer and regions of interest (ROl) marked by inset black boxes (numbers 1-4). B)
Classifiers trained on the decision localizer applied to the main discrimination task (cross-task validation procedure). C) GAT
matrix for the sensory localizer. D) Classifiers trained on the sensory localizer applied to the main discrimination task (cross-
task validation procedure. E) Classifiers trained on the sensory localizer applied to the decision localizer (cross-task validation
procedure). F) Classifiers trained on the decision localizer applied to the sensory localizer (cross-task validation procedure). All
GAT matrices are based on occipital-parietal electrodes.
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Figure S3. Filtering effects on the timing of ERP components. ERPs are time-locked to stimulus onset in the passive localizer

with three different high pass filtering settings. The region of interest plotted consists of the following electrodes: 01,02, PO3,
PO4, PO7, POS.
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Decision localizer: all electrodes

We also examined cross-task decoding as a function of decoding latency (early, mid, late), decision
correctness (correct/incorrect) and confidence (low confidence (LC): level 1 and 2 versus high
confidence (HC): level 3-4) using the decision localizer and all electrodes (Fig. S4). Testing labels in the
main discrimination task were based on the decision of the subject (being face or house), not the
actually presented stimulus.

The omnibus ANOVA with factors Latency, Confidence and Correctness indicated that decoding
was overall better for correct versus incorrect trials (F139=137.89, p<.001, n?=0.78) as well as for HC
versus LC trials (F139=18.48, p<.001, n?=0.32). Decoding differed across the three decoding stages
(F2,78=30.18, p<.001, n?=0.44), but this depended on the trial correctness (Correctness x Latency:
F,76=38.62, p<.001, n?=0.5) and decision confidence (Confidence x Latency: F»7=5.37, p=.007,
n?=0.12). We were unable to find evidence that decoding was affected by an interaction between
correctness and confidence (F139=0.094, p=.76, n,?=0.002, BFe«=6.39) or the three-way interaction
between correctness, confidence, and latency (F2,78=0.61, p=.55, Ny*=0.02, BFexq=10.322).

A Diagonal time-course B Perceptual maintenance
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| === HC correct | === HC correct
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Figure S4. Face/house classification based on the decision localizer. (A) On-diagonal time courses of correct and incorrect
decisions, separated by confidence (LC = low confidence, HC = high confidence). Black boxes indicate the time-windows (early,
mid, late) used for averaging the AUC scores. (B) Perceptual maintenance is derived by training a classifier on the time-window
150-200 ms and testing it across the entire time-window. In A and B, colored horizontal lines indicate periods of significant
decoding with respect to chance. Classification performance was evaluated at each time point using cluster-based permutation
testing (two-tailed cluster-permutation, alpha p<.05, cluster alpha p<.05, N permutations=1000). (C) Bar plots showing average
AUC values for the time-windows of interest highlighted in panel A and B.

The follow-up repeated measures ANOVA with factors Latency (early, mid, late) and Confidence (low,
high), separately for correct and incorrect trials, yielded largely similar results to those reported in the
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main text using the occipital-parietal electrode set. For correct trials, decoding was better for HC than
for LC trials (F1,36=30.97, p<.001, n?=0.44). Decoding differed across three diagonal stages (F»7s=51.25,
p<.001, n?=0.57), also in interaction with confidence (Confidence x Latency: F;7=6.81, p=.002,
n?=0.15). In each but the earliest processing stage, decoding was modulated by confidence and was
better for HC than LC trials (early stage: t39=-1.83, p=.075, d=-0.29, BF;=1.29; mid-stage t39=-5.38,
p<.001, d=-0.85; late stage: t35=-3.27, p=.002, d=-0.52). We also tested the off-diagonal decoding stage
reflective of the perceptual maintenance of category information. There too, decoding was better for
HC versus LC trials (t39=-3.22, p=.003, d=-0.51). Decoding on HC and LC trials in all three diagonal stages
and in the off-diagonal perceptual maintenance stage was significantly different than chance (all p’s >
.001).

On incorrect trials, decoding was modulated by confidence (F139=5.79, p=.021, n?=0.13),
latency of the diagonal decoding stage (F,76=10.81, p<.001, n?=0.22), but we did not find evidence for
their interaction (Latency x Confidence: F,7g=2.27, p=.11, n?=0.06, BFexs=2.21). Decoding on HC and LC
trials in the earliest 80-130 ms window did not differ (t39=-0.19, p=0.854, d=-0.03, BF;=5.77), but it was
in both cases significantly below chance (LC: t35=-5.34, p<.001, d=-0.85, HC: t39=-2.28, p=.028, d=-0.36).
This suggested that the earliest stage of visual information processing represented the veridical
stimulus category, irrespective of confidence. Decoding was also below chance for incorrect trials in
150-200 ms time-window when participants expressed low confidence in their decision (t3s=-6.39,
p<.001, d=-1.01), but we did not find evidence that this was the case when they were highly confident
(t3g=-0.604, p=.55, d=-0.1, BFp1=4.49; HC vs. LC: t39=-2.77, p=.009, d=-0.44). In the later 350-500 ms
window, we found the opposite decoding pattern. Above chance decoding was observed in particular
for HC trials (LC: t3o=-1.44, p=.16, d=-0.23, BFp1=2.27; HC: t39=2.07, p=.045, d=0.33), which also
significantly differed from LC trials (t35=-2.72, p=.01, d=-0.43).

Decoding was significantly above chance in the late off-diagonal perceptual maintenance stage,
however, again in particular for high-confidence trials (LC: t39=1.06, p=.296, d=0.17, BF;=3.48; HC:
t39=2.36, p=.024, d=0.37), but evidence for the difference between confidence levels was marginal
(t30=-1.87, p=.07, d=-0.3, BFp;=1.2). These findings suggest that when participants misreported a
stimulus category, neural activity patterns reflected the veridical stimulus category during early and
mid-latencies, however, specifically on LC trials in the mid-stage (150-200 ms), thus when participants
were uncertain in their decisions. Later in time (350-500 ms) and specifically when participants were
confident in their decision, mental representations reflect the misreported stimulus category. These
results are thus consistent with the results presented in the main text.

Sensory localizer: all electrodes

Using all electrodes, decoding was also examined as a function of decoding latency (early, mid, late),
decision correctness (correct/incorrect) and confidence (low confidence (LC): level 1 and 2 versus high
confidence (HC): level 3-4) based on the sensory localizer task (Fig. S5). Testing labels in the main
discrimination task were again based on the decision subjects made (being face or house), not the
actually presented stimulus. Overall, the results are consistent with the results presented in the main
text, obtained on the occipital-parietal electrode set.

The omnibus ANOVA indicated that decoding was overall better for correct versus incorrect
trials (F1,39=53.48, p<.001, n?=0.58). Decoding was also overall better for HC versus LC trials (F139=8.75,
p=.005, n?=0.183). Decoding also differed depending on the decoding latency (F7=21.51, p<.001,
n?=0.36). Consistent with previous analyses, correctness and confidence interacted with decoding
latencies (Correctness x Latency: F,78=30.49, p<.001, n?=0.44; Confidence x Latency: F»7s=5.07, p=.009,
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n?=0.12). We did not find evidence for an interaction between correctness and confidence (F139=0.13,
p=.73, n,?=0.003, BFx=6.14) nor a three-way interaction between correctness, confidence and latency
(F2,76=0.17, p=.85, np?=0.004, BFexq=12.89).
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Figure S5. Face/house classification based on the sensory localizer. (A) On-diagonal time courses of correct and incorrect
decisions, separated by confidence (LC = low confidence, HC = high confidence). Black boxes indicate the time-windows (early,
mid, late) used for averaging the AUC scores. (B) Perceptual maintenance is derived by training a classifier on the time-window
150-200 ms and testing it across the entire time-window. In A and B, colored horizontal lines indicate periods of significant
decoding with respect to chance. Classification performance was evaluated at each time point using cluster-based permutation
testing (two-tailed cluster-permutation, alpha p<.05, cluster alpha p<.05, N permutations=1000). (C) Bar plots showing average
AUC values for the time-windows of interest highlighted in panel A and B.

On correct trials, decoding was higher for HC versus LC trials (F139=14.02, p<.001, n?=0.26), and
confidence further modulated differences in decoding across diagonal decoding stages (main effect of
Latency: F,78=48.65, p<.001, n?=0.55; Confidence x Latency: F,7=8.65, p<.001, n?=0.18). In the early
and mid-stage, decoding was above chance for both confidence levels (all p’s <.001, see Fig. S5A). The
late-late stage decoding for both confidence levels was also different than chance, but it was not as
robust (LC: t39=2.3, p=.03, d=0.36; HC: t39=2.28, p=.03, d=0.36). During the perceptual maintenance
stage, the activity patterns as well reflected the veridical/reported stimulus category (both p’s <.001),
and we found no evidence that this depended on the level of confidence (LC vs. HC: t35=-0.98, p=.34,
d=-0.15, BF01=3.76).

On incorrect trials, decoding did not differ substantially between HC and LC trials (F139=2.01,
p=.165, n?=0.05, BF»;=2.07) and also not across diagonal decoding stages (F2,7s=0.96, p=.39, n?=0.024,
BFo1=7.94). We also found no evidence that decoding performance was modulated by confidence in
interaction with decoding latency (Confidence x Latency: F27s=1.28, p=.28, n?=0.03, BFe«=5.88). The
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planned comparisons per confidence level across diagonal decoding stages revealed that the veridical
stimulus category on incorrect trials could be decoded in particular on low confidence trials in the early
(LC: t39=-4.46, p<.001, d=-0.71; HC: t39=-1.5, p=.14, d=-0.24; LC vs. HC: t39=-0.56, p=.58, d=-0.09) and
mid-stage (LC: t39=-3.94, p<.001, d=-0.62; HC: t35=-0.32, p=.75, d=-0.05; LC vs. HC: t39=-2.18, p=.04, d=-
0.35, thus reflected in negative decoding scores). Late-stage decoding was not different than chance
on LC (t3e=-1.23, p=.23, d=-0.19) and HC (t39=-0.24, p=.81, d=-0.04; LC vs. HC: t39=-0.28, p=.78, d=-0.045)
trials. However, importantly, during the perceptual maintenance stage we could decode the incorrectly
reported stimulus category when participants reported high confidence in their decision, similarly to
the results reported in the main text (LC: t39=0.26, p=.79, d=0.04; BF0;=5.67; HC: t35=2.64, p=.01, d=0.42;
LC vs. HC: t39=-2.35, p=.02, d=-0.37, Fig. S5C).

32


https://doi.org/10.1101/2022.11.16.476617

