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Abstract

BACKGROUND: In droplet-based single-cell and single-nucleus RNA-seq experiments,

not all reads associated with one cell barcode originate from the encapsulated cell. Such

background noise is attributed to spillage from cell-free ambient RNA or barcode swapping

events. Here, we characterize this background noise exemplified by three single-cell RNA-seq

(scRNA-seq) and two single-nucleus RNA-seq (snRNA-seq) replicates of mouse kidney cells.

For each experiment, kidney cells from two mouse subspecies were pooled, allowing to

identify cross-genotype contaminating molecules and estimate the levels of background noise.

RESULTS: We find that background noise is highly variable across replicates and individ-

ual cells, making up on average 3-35% of the total counts (UMIs) per cell and show that this

has a considerable impact on the specificity and detectability of marker genes. In search of

the source of background noise, we find that expression profiles of cell-free droplets are very

similar to expression profiles of cross-genotype contamination and hence that the majority

of background molecules originates from ambient RNA. Finally, we use our genotype-based

estimates to evaluate the performance of three methods (CellBender, DecontX, SoupX) that

are designed to quantify and remove background noise. We find that CellBender provides the

most precise estimates of background noise levels and also yields the highest improvement

for marker gene detection. By contrast, clustering and classification of cells are fairly robust

towards background noise and only small improvements can be achieved by background

removal that may come at the cost of distortions in fine structure.

CONCLUSION: Our findings help to better understand the extent, sources and impact

of background noise in single-cell experiments and provide guidance on how to deal with it.
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Background

Single cell and single nucleus RNA-seq (scRNA-seq, snRNA-seq) are in the process of 1

revolutionizing medical and biological research. The typically sparse coverage per cell and 2

gene is compensated by the capability of analyzing thousands of cells in one experiment. 3

In droplet-based protocols such as 10x Chromium, this is achieved by encapsulating single 4

cells in droplets together with beads that carry oligonucleotides. These usually consist of a 5

oligo(dT) sequence which is used for priming reverse transcription, a bead-specific barcode 6

that tags all transcripts encapsulated within the droplet and unique molecular identifiers 7

(UMIs) that enable the removal of amplification noise [1, 2, 3]. As proof of principle that 8

each droplet encapsulates only one cell, it is common to use mixtures of cells from human 9

and mouse [3]. Thus doublets, droplets containing two cells, can be readily identified as they 10

have an approximately even mixture of mouse and human transcripts. However, barcodes 11

for which the clear majority of reads is either mouse or human, still contain a small fraction 12

of reads from the other species [3, 4, 5]. Furthermore, presumably empty droplets also yield 13

sequence reads [4]. 14

One potential source of such contaminating reads or background noise is cell-free ’ambient’ 15

RNA that leaked from broken cells into the suspension. The other potential source are 16

chimeric cDNA molecules that can arise during library preparation due to so-called ’barcode 17

swapping’. The pooling of barcode tagged cDNA after reverse transcription but before 18

PCR amplification, is a decisive step to achieve high throughput. However, if amplification 19

of tagged cDNA molecules occurs from unremoved oligonucleotides from other beads or 20

from incompletely extended PCR products (originally called template jumping [6]), this 21

generates a chimeric molecule with a ”swapped” barcode and UMI [7, 8]. When sequencing 22

this molecule, the cDNA is assigned to the wrong barcode and hence ’contaminates’ the 23

expression profile of a cell. Another type of barcode swapping can occur during PCR 24

amplification on a patterned Illumina flowcell before sequencing [9] with the same effects, 25
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although double indexing of Illumina libraries has reduced this problem substantially. This 26

said, here we focus on barcode swapping that occurs during library preparation. 27

Irrespective of the source of background noise, its presence can interfere with analyses. 28

For starters, background noise reduces the separability of cell type clusters as well as the 29

power to pinpoint important (marker) genes via differential expression analysis. Moreover, 30

reads from cell type-specific marker genes spill over to cells of other types, thus yielding novel 31

marker combinations and hence implying the presence of novel cell types [10, 8]. Besides, 32

background noise can also confound differential expression analysis between samples, e.g. 33

when looking for expression changes within a cell type between two conditions. Varying 34

amounts of background noise or differences in the cell type composition between conditions 35

can result in dissimilar background profiles, which might generate false positives when 36

identifying differentially expressed genes. To alleviate such problems during downstream 37

analysis, algorithms to estimate and correct for the amounts of background noise have been 38

developed. 39

SoupX estimates the contamination fraction per cell using marker genes and then decon- 40

volutes the expression profiles using empty droplets as an estimate of the background noise 41

profile [11]. In contrast, DecontX defaults to model the fraction of background noise in a cell 42

by fitting a mixture distribution based on the clusters of good cells [8], but also allows the 43

user to provide a custom background profile, e.g. from empty droplets. CellBender requires 44

the expression profiles measured in empty droplets to estimate the mean and variance of the 45

background noise profile originating from ambient RNA. In addition, CellBender explicitly 46

models the barcode swapping contribution using mixture profiles of the ’good’ cells [4]. 47

In order to evaluate method performance, one dataset of an even mix between one mouse 48

and one human cell line [3] is commonly used to get an experimentally determined lower 49

bound of background noise levels that is identified as counts covering genes from the other 50

species [4, 8, 11, 12]. Since this dataset is lacking in cell type diversity, it is common to 51
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additionally evaluate performance based on other datasets that have a complex cell type 52

mixture and where most cell types have well known profiles with exclusive marker genes. 53

In such studies the performance test is whether the model removes the expression of the 54

exclusive marker genes from the other cell types. In both cases, the feature space of the 55

contamination does not overlap with the endogenous cell feature space. Mouse and human 56

are too diverged, so that mouse reads only map to mouse genes and human reads only to 57

human genes. Similarly, when using marker genes it is assumed that they are exclusively 58

expressed in only one cell type, hence the features that are used for background inference 59

are again not overlapping. However, in reality background noise will mostly induce shifts in 60

expression levels that cannot be described in a binary on or off sense and it remains unclear 61

how background correction will affect those profiles. 62

Here, we use a mouse kidney dataset representing a complex cell type mixture from three 63

mouse strains of two subspecies, Mus musculus domesticus and M.m.castaneus. From both 64

subspecies, inbred strains were used and thus we can distinguish exogenous and endogenous 65

counts for the same features using known homozygous SNPs [13]. Hence, this dataset serves 66

as a much more realistic experimental standard, providing a ground truth in a complex 67

setting with multiple cell types which allows to analyze the variability, the source and the 68

impact of background noise on single cell analysis. Moreover, this dataset enables us to 69

better benchmark existing background removal methods. 70

Mouse kidney single cell and single nucleus RNA-seq data 71

We obtained three replicates for single cell RNA-seq (rep1-3) data and two replicates for 72

single nucleus RNA-seq (snRNA-seq, nuc2 & nuc3) data from the same samples that were 73

used in scRNA-seq replicates 2 and 3, respectively. Each replicate consists of one channel of 74

10x [3] in which cells from dissociated kidneys of three mice each were pooled: one M.m. 75

castaneus from the strain CAST/EiJ (CAST) and two M.m. domesticus, one from the 76
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Figure 1. Generation of mouse strain mixture datasets to quantify background noise.
A) Experimental design. B) Strain composition in 5 different replicates, subjected to scRNA-seq
(rep1-3) or snRNA-seq (nuc2,nuc3). The replicates rep2 & nuc2 and rep3 & nuc3 were generated
from the same samples each. CAST: CAST/EiJ strain; BL6: C57BL/6J strain; SvImJ: 129S1/SvImJ.
C) Number of homozygous SNPs with a coverage of more than 100 UMIs that distinguish one
strain from the other two. D) Per cell coverage in M.m. castaneus cells of informative variants that
distinguish M.m.castaneus and M.m.domesticus E) Cell type composition per replicate and strain;
labels were obtained by reference-based classification using mouse kidney data from Denisenko et al.
[14] as reference. F) UMAP visualization of M.m.castaneus cells in single-cell replicate 2, colored
by assigned cell type. PT: proximal tubule; CD IC: intercalated cells of collecting duct; CD PC:
principal cells of collecting duct; CD Trans: transitional cells of collecting duct; CNT: connecting
tubule; DCT: distal convoluted tubule; Endo: endothelial; Fib: fibroblasts; aLOH: ascending loop of
Henle; dLOH: descending loop of Henle; MC: mesangial cells; Podo: podocytes
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strain C57BL/6J (BL6) and one from the strain 129S1/SvImJ (SvImJ) (Figure 1A). Based 77

on known homozygous SNPs that distinguish subspecies and strains, we assigned cells to 78

mice (Figure 1B). In total, we identified > 40, 000 informative SNPs of which the majority 79

(32,000) separates the subspecies and ∼ 10, 000 SNPs distinguish the two M.m. domesticus 80

strains (Figure 1C). On average, each cell had sufficient coverage for ∼ 1, 000 informative 81

SNPs (∼ 20% of total UMIs per cell) to provide us with unambiguous genotype calls for 82

those sites. The coverage for the nuc2 data was much lower with only ∼ 100 SNPs (Figure 83

1D). 84

Overall, each experiment yielded 5,000-20,000 good cells with 9-43% M.m. castaneus 85

(Figure 1B). Thus, the majority of background noise in any M.m. castaneus cell is expected 86

to be from M.m. domesticus and therefore we expect that genotype-based estimates of cell- 87

wise amounts of background noise for M.m. castaneus to be fairly accurate (Supplementary 88

figure S1). Hence from here on out we focus on M.m. castaneus cells for the analysis of 89

the origins of background noise and also as the ground truth for benchmarking background 90

removal methods. 91

This dataset has two advantages over the commonly used mouse-human mix [3]. Firstly, 92

the kidney data have a high cell type diversity. Using the data from Denisenko et al. [14] 93

as reference dataset for kidney cell types, we could identify 13 cell types. Encouragingly, 94

the cell type composition is very similar across mouse strains as well as replicates with 95

proximal tubule cells constituting 66-89% of the cells (Figure 1E,F, Supplementary Figure S2). 96

Secondly, due to the higher similarity of the mouse subspecies, we can identify contaminating 97

reads for the same features. ∼ 7, 000 genes carry at least one informative SNP about the 98

subspecies allowing us to quantify contaminating reads from the other mice. 99
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Background noise fractions differ between replicates and cells 100

Around 20% of the UMI counts are from molecules that contain a SNP that is informative 101

about the subspecies of origin. We quantify in each cell how often an endogenous M.m. 102

castaneus allele or a foreign M.m. domesticus allele was covered. Assuming that the count 103

fractions covering the SNPs are representative of the whole cell, we detect a median of 104

2%-27% counts from the foreign genotype over all cells per experiment (Supplementary 105

Figure S3A). This observed cross-genotype contamination fraction represents a lower bound 106

of the overall amounts of background noise. As suggested in Heaton et al. [15], we then 107

integrate over the foreign allele fractions of all informative SNPs to obtain a maximum 108

likelihood estimate of the background noise fraction (ρcell) of each cell that extrapolates to 109

also include contamination from the same genotype (see Methods, Supplementary figure S1). 110

Based on these estimates, we find that background noise levels vary considerably between 111

replicates and do not appear to depend on the overall success of the experiment measured as 112

the cell yield per lane (Figure 2). For example in scRNA-seq rep3 (3,900 cells), we detected 113

overall the fewest good cells, but most of those cells had less than 3% background noise, 114

while the much more successful rep2 (15,000 cells) we estimated the median background 115

noise level at around 11% (Figure 2A). This said, the snRNA-seq data generated from frozen 116
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Figure 2. The level of background noise is variable across replicates and single cells. A)
Estimated fraction of background noise per cell. The replicates on the x-axis are ordered by ascending
median background noise fraction. B) In M.m.castaneus cells both endogenous M.m.castaneus
specific alleles (x-axis) and M.m.domesticus specific alleles (y-axis) have coverage in each cell. The
detection of M.m.domesticus specific alleles can be seen as background noise originating from cells of
a different mouse.
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tissue have much higher background levels than the corresponding scRNA-seq replicates - 117

35% in nuc2 vs. 11% rep2 and 17% in nuc3 vs. 3% in rep3. The number of contaminating 118

RNA-molecules (UMIs) depends only weakly on the sequencing depth of the cell (Figure 2B). 119

Such a weak correlation could be explained by variation in the capture efficiency in each 120

droplet. An alternative, but not mutually exclusive explanation of such a correlation could 121

be that the source of some contaminating molecules is barcode swapping that can occur 122

during library amplification. Again the snRNA-seq replicates show a stronger correlation 123

between contaminating and endogenous counts, which can be explained by a stronger impact 124

of the variation in capture efficiency and/or higher levels of barcode swapping. 125

However, by and large the absolute amount of background noise is approximately constant 126

across cells and thus the contamination fraction mainly depends on the amount of endogenous 127

RNA: the larger the cell, the smaller the fraction of background noise, pointing towards 128

ambient RNA as the major source of the detected background (Figure 2B). 129

The background noise profile does not always reflect the cell 130

type composition 131

In order to better understand the effects of background noise, it is helpful to understand 132

its origins and composition. To this end, we constructed pseudobulk profiles representing 133

endogenous, contaminating and ambient expression profiles by using M. m. domesticus 134

allele counts in M. m. domesticus cells (endogenous), M. m. domesticus allele counts in M. 135

m. castaneus cells (contamination) and M. m. domesticus allele counts in empty droplets 136

(empty) (Figure 3A, Supplementary Figure S4). In case of the three scRNA-seq replicates, 137

we find that the contamination profiles correlate highly and similarly well with empty profiles 138

(Spearman’s ρ = 0.73− 0.85) and endogenous profiles (Spearman’s ρ = 0.70− 0.87), while 139

for the two snRNA-seq replicates the contamination profiles are clearly more similar to the 140
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empty (Spearman’s ρ ∼ 0.85) than to the endogenous profiles (Spearman’s ρ ∼ 0.50) (Figure 141

3B). 142

Using deconvolution [16], we reconstructed the cell type composition of the pseudobulk 143

profiles, and, in agreement with the correlation analysis, we find that in the scRNA-seq data 144

the cell type compositions inferred for endogenous, contamination and empty counts are by 145

and large similar with a slight increase in the PT-profile in empty droplets, suggesting that 146

this cell type is more vulnerable to dissociation procedure than other cell types. In contrast, 147

deconvolution of the empty droplet and contamination fraction of our snRNA-seq data, that 148

in contrast to the scRNA-seq data were prepared from frozen samples, shows a clear shift in 149

cell type composition with a decreased PT fraction (Figure 3C, Supplementary Figure S5). 150

Moreover, for the snRNA-seq data we expect that cytosolic mRNA contributes more 151

to the contaminating profile than to the endogenous profile. Indeed, we find that in good 152

nuclei (endogenous molecules) more than 25% of the allele counts fall within introns, while 153

out of the molecules from empty droplets less than 18% fall within introns (Figure 3D). 154

The intron fraction of the contaminating molecules lies in-between the endogenous and the 155

empty droplet fraction, but is in all cases much closer to the empty intron fraction, thus 156

suggesting again that the majority of the background noise likely originates from ambient 157

RNA. However, the slight increase in the intron fraction of the contamination relative to 158

empty droplets suggests that at least a small part of the observed background noise is due 159

to barcode swapping. 160

The impact of contamination on marker gene analyses 161

The ability to distinguish hitherto unknown cell types and states is one of the greatest 162

achievements made possible by single cell transcriptome analyses. To this end, marker 163

genes are commonly used to annotate cell clusters for which available classifications appear 164

insufficient. An ideal marker gene would be expressed in all cells of one type but in none of 165

10

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.16.516780doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.16.516780
http://creativecommons.org/licenses/by-nc/4.0/


Figure 3. Characterization of ambient RNA in cells and empty droplets. A) Ordering
droplet barcodes by their total UMI count to distinguish cell-containing droplets with high UMI counts
from empty droplets that only contain cell-free ambient RNA and are identifiable as a plateau in the
UMI curve, shown here for replicate 2. UMI counts of reads covering M.m.domesticus specific alleles
were used to construct three profiles depending on whether they were associated with M.m.domesticus
cell barcodes (endogenous counts, endo), M.m.castaneus cell barcodes (contaminating counts, cont)
or empty droplet barcodes (empty). Counts from droplets that are not clearly assignable as cell-
containing or empty were excluded from further analysis (other). B) Spearman rank correlation
between pseudobulk profiles. C) Deconvolution of cell type contributions to each pseudobulk profile,
exemplified by replicates rep2 and nuc2. The stacked barplots depict the estimated fraction of each
cell type in the profile as inferred by SCDC using the annotated single cell data of each replicate as
reference. PT: proximal tubule; CD IC: intercalated cells of collecting duct; CD PC: principal cells
of collecting duct; CD Trans: transitional cells of collecting duct; CNT: connecting tubule; DCT:
distal convoluted tubule; Endo: endothelial; Fib: fibroblasts; aLOH: ascending loop of Henle; dLOH:
descending loop of Henle; MC: mesangial cells; Podo: podocytes. D) Fraction of reads covering
intronic variants in each of the three profiles.

11

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.16.516780doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.16.516780
http://creativecommons.org/licenses/by-nc/4.0/


the other present cell types. Thus, when comparing expression levels of one cell type versus 166

all others, we expect high log2-fold changes, the higher the change the more reliable the 167

marker. However, such a reliance on marker genes also makes this type of analysis vulnerable 168

to background noise. Our whole kidney data can illustrate this problem well, because with 169

the very frequent proximal tubular (PT) cells we have a dominant cell type for which rather 170

specific marker genes are known [17]. Slc34a1 encodes a phosphate transporter that is known 171

to be expressed exclusively in PT cells [18, 19]. As expected, it is expressed highly in PT 172

cells, but it is also present in a high fraction of other cells (Figure 4A,E, Supplementary 173

Figure S6). Moreover, the log2-fold changes of Slc34a1 are smaller in replicates with larger 174

background noise, indicating that the detection of Slc34a1 in non-PT cells is likely due 175

to contamination (Figure 4B-D). We observe the same pattern for other marker genes as 176

well: they are detected across all cell types (Figure 4E, Supplementary Figure S7) and 177

an increase of background noise levels goes along with decreasing log2-fold changes and 178

increasing detection rates in other cell types (Figure 4F,G). Thus, the power to accurately 179

detect marker genes decreases in the presence of background noise. 180

Benchmark of background noise estimation tools 181

Given that background noise will be present to varying degrees in almost all scRNA-seq and 182

snRNA-seq replicates, the question is whether background removal methods can alleviate 183

the problem without the information from genetic variants. SoupX [11], DecontX [16] and 184

CellBender [4], all provide an estimate of the background noise level per cell. Here, we use 185

our genotype-based background estimates as ground truth to compare it to the estimates of 186

the three background removal methods (Figure 5A, Supplementary Figure S8). All methods 187

have adjustable parameters, but also provide a set of defaults. For CellBender the user 188

can adjust the nominal false positive rate to put a cap on losing information from true 189

counts. For SoupX and DecontX the resolution of the clustering of cells that is later used to 190
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Figure 4. Background noise affects differential expression and specificity of cell type
specific marker genes. A) UMAP representation of replicate 2 colored by the expression of Slc34a1,
a marker gene for cells of the proximal tubule (PT). Besides high counts in a cluster of PT cells,
Slc34a1 is also detected in other cell type clusters. Differential expression analysis between PT and
all other cells shows a decrease of the detected log fold change of Slc34a1 (B) at higher background
noise levels, as well as an increase of the fraction of non PT cells in which UMI counts of Slc34a1 were
detected (C). D) Estimation of the background noise fraction of Slc34a1 expression indicates that the
majority of counts in non PT cells originates from background noise. Error bars indicate 90% profile
likelihood confidence intervals. E) Heatmap of marker gene expression for four cell types in replicate
2, downsampled to a maximum of 100 cells per cell type. F) Comparison across replicates of log2
fold changes of 10 PT marker genes calculated based on the mean expression in PT cells against
mean expression in all other cells. G) For the same set of genes as in E), the log ratio of fraction of
cells in which a gene was detected in others and PT cells shows how specific the gene is for PT cells.

model the endogenous counts can be adjusted. In addition, SoupX can be provided with 191

an expected background level and for DecontX the user can provide a custom background 192

profile rather than using the default estimation strategy for the background profile. At 193

least with our reference dataset, CellBender does not seem to profit from changing the 194

defaults, while SoupX’s performance is boosted, if provided with realistic background levels 195

(Supplementary Figure S13). Because in a real case scenario, the true background level 196

is unknown, we decided to report the SoupX performance metrics under default settings. 197

DecontX defaults to estimating the putative background profile from averaging across intact 198

cells, but also gives the user the possibility to provide another profile, such as the profile 199

of empty droplets as used in CellBender and SoupX. To ensure comparability, we report 200

DecontX’s performance with empty droplets as background profile (DecontXbackground) in 201

addition to DecontX with default settings (DecontXdefault). 202

We find that CellBender and DecontX can estimate background noise levels similarly 203

well for the scRNA-seq replicates, while SoupX tends to underestimate background levels 204
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and also cannot capture the cell to cell variation as measured by the correlation with the 205

ground truth (Figure 5B). For the snRNA-seq data, SoupX performs better at estimating 206

global background levels, but as for the scRNA-seq still cannot capture cell to cell variation. 207

In contrast, both CellBender and DecontX perform worse with the snRNA-seq data than 208

with the scRNA-seq data. In the case of DecontX, the default setting provides much worse 209

estimates than the estimates using empty droplets as background profile. 210

All in all, CellBender shows the most robust performance across replicates with default 211

settings, while DecontX’ and SoupX’ performance seems to require parameter tuning. In the 212

case of DecontX the default works well for scRNA-seq data, but not for snRNA-seq data, 213

while for SoupX the opposite is true. 214

A drawback of CellBender is its runtime. While SoupX and DecontX take seconds 215

and minutes to process one 10x channel, CellBender takes ∼ 45 CPU hours. However, 216

parallelization is possible. 217

All methods struggle most with the nuc3 replicate that has the fewest M.m. castaneus 218

cells and the lowest cell type diversity among our five data sets (Figure 1B,E). This also 219

presents a problem for other downstream analyses and thus we do not consider nuc3 further. 220

Effect of background noise removal on marker gene detection 221

Above we have shown that computational methods can estimate background noise levels 222

per cell. Moreover, all three methods provide the user with a background corrected count 223

matrix for downstream analysis. Here, we compare the outcomes of marker gene detection, 224

clustering and classification when using corrected count matrices from SoupX, DecontX and 225

CellBender (Figure 6A, Supplementary Figure S9). To characterize the impact on marker 226

gene detection, we first check in how many cells an unexpected marker gene was detected; 227

for example, how often Slc34a1 was detected in cells other than PTs (Figure 6B). Without 228

correction we find Slc34a1 reads in ∼ 60% of non-PT cells of scRNA-seq rep2, SoupX reduces 229
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Figure 5. Accuracy of computational background noise estimation. A) Estimated
background noise levels per cell based on genetic variants (grey) and different computational tools.
B) Taking the genotype-based estimates as ground truth, Root Mean Squared Logarithmic Error
(RMSLE) and Kendall rank correlation serve as evaluation metrics for cell-wise background noise
estimates of different methods. Low RMSLE values indicate high similarity between estimated values
and the assumed ground truth. High values of Kendall’s τ correspond to good representation of cell
to cell variability in the estimated values.

this rate to 54%, CellBender to 7% and DecontXbackground to 9%. DecontXdefault manages 230

to remove most contaminating reads reducing the Slc34a1 detection rate outside PTs to 231

2%. While we find a similar ranking when averaging across several marker genes from 232

the PanglaoDB database [17] and scRNA-seq replicates (Figure 6C), the ranking changes 233

for nuc2: DecontXdefault fails: after correction, Slc34a1 is still found in 87% of non-PT 234

cells while DecontXbackground is better with a rate of 20%. Here, CellBender and SoupX 235

are clearly better with reducing the Slc34a1 detection rate to 4% and < 1%, respectively 236

(Supplementary Figure S10). 237

Even though the changes in the marker gene detection rates outside the designated cell 238

type seem dramatic, with moderate background levels as e.g. in rep2, the identification of 239

marker genes [20] is affected only a little. CellBender correction has the largest effect on 240

marker gene detection, yet 8 from the top 10 genes without correction remain marker genes 241

with CellBender correction (Spearman’s correlation for top 100 ρ = 0.84). In contrast, in 242

the nuc2 data with high background levels, the change in marker gene detection is dramatic. 243

Here, only one of the top 10 marker genes remains after correction (Spearman’s correlation 244
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for top 100 ρ = 0.04). The largest improvement is achieved with CellBender: After correction, 245

four out of the top 10 were known marker genes [17], while this overlap amounted to only one 246

in the raw data (Supplementary Figure S11B). Moreover, we find that background removal 247

also increases the detected log-fold-changes of known marker genes across all replicates and 248

methods, with CellBender providing the largest improvement (Figure 6D, Supplementary 249

Figure S11C). 250

Effect of background noise removal on classification and clus- 251

tering 252

One of the first and most important tasks in single cell analysis is the classification of cell 253

types. As described above, we could identify 13 cell types in our uncorrected data using 254

an external single cell reference dataset [14, 21]. Going through the same classification 255

procedure after correction for background noise, changes the classification of only very few 256

cells (Figure 6A, Supplementary Figure S9). For the scRNA-seq experiments < 1% and for 257

the snRNA-seq data up to 1.3% of cells change labels after background removal compared 258

to the classification using raw data. Before correction, these cells are mostly located in 259

clusters dominated by a different cell type (Figure 6A). Moreover, these cells tend to have 260

higher background levels as exemplified by the PT-marker gene Slc34a1 (Figure 6B). Finally, 261

background removal - irrespective of the method - improves the classification prediction 262

scores (Figure 6E, Supplementary Figure S12). Together, this indicates that background 263

removal improves cell classification. 264

Similarly, background removal also results in more distinct clusters. Here, we reason that 265

cells of the same cell type should cluster together and evaluate the impact of background 266

removal 1) on the silhouette scores for cell types and 2) on the cell type purity of each 267

cluster using unsupervised clustering (Figure 6E). For the scRNA-seq data DecontX results 268
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in the purest and most distinct clusters, while for the snRNA-seq data SoupX wins in these 269

categories. 270

All in all, it seems clear that all background removal methods sharpen the broad structure 271

of the data a little, but how about fine structure? To answer this question, we turn again 272

to the genotype cleaned data to obtain a ground truth for the k -nearest neighbors of a 273

cell and calculate how much higher the overlap of the background corrected data is with 274

this ground truth as compared to using the raw data (Figure 6E). For the scRNA-seq data, 275

DecontX has the largest improvement on the broad structure, but at same time in particular 276

DecontXbackground lowers the overlap in k -NN with our assumed ground truth, suggesting 277

that this change in structure is a distortion rather than an improvement. SoupX leaves the 278

fine structure by and large unchanged in the scRNA-seq data, while both CellBender and 279

DecontX make the fine structure slightly worse. In contrast, for the high background levels 280

of the nuc2, all background removal methods achieve an improvement, with SoupX and 281

CellBender performing best. 282

Discussion 283

Here we provide a dataset for the characterization of background noise in 10x Genomics 284

data that is ideal to benchmark background removal methods. The mixture of cell types 285

in our kidney data provides us with realistic cell type diversity and the mixture of mouse 286

subspecies enables us to identify foreign alleles in a cell, thus resulting in a dataset that 287

allows us to quantify background noise across diverse cell types and features. Moreover, the 288

replicates have very different contamination levels, making it possible to assess the impact 289

of low, intermediate and high background levels. As expected, marker gene identification is 290

affected and markers appear less specific, as they are detected in cell types where they are 291

not expressed. The severity of the issue directly depends on background noise levels (Figure 292

4). This particular problem has been observed previously and has been used as a premise to 293
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Figure 6. Effect of Background removal on downstream analysis. A) UMAP representation
of replicate 2 single-cell data before and after background noise correction, colored by cell type
labels obtained from reference based classification. Individual cells that received a new label after
correction are highlighted. PT: proximal tubule; CD IC: intercalated cells of collecting duct; CD PC:
principal cells of collecting duct; CD Trans: transitional cells of collecting duct; CNT: connecting
tubule; DCT: distal convoluted tubule; Endo: endothelial; Fib: fibroblasts; aLOH: ascending loop of
Henle; dLOH: descending loop of Henle; MC: mesangial cells; Podo: podocytes B) Expression of the
PT cell marker Slc34a1 before and after background noise correction in replicate 2. Cells that were
classified as PT cells in the uncorrected data, but got reassigned after correction, are highlighted.
C),D) Differential expression analysis of 10 PT markers, evaluating the expression fraction in non-PT
cells (C) and the log2 fold change between PT and all other cells (D). E) Evaluation metrics for the
effect of background noise correction on classification and clustering. For each metric the change
relative to the uncorrected data is depicted. The values were scaled by the possible range of each
metric. Prediction score: cell-wise score ”delta” of reference based classification with SingleR [21].
Average silhouette: Mean of silhouette widths per cell type. Purity: Cluster purity calculated on cell
type labels as ground truth and Louvain clusters as test labels. k -NN overlap: overlap of the k=50
nearest neighbors per cell compared to genotype-cleaned reference k -NN graph.
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develop background correction methods [22, 4, 11]. 294

The novelty of this analysis is that - thanks to the mix of mouse subspecies - we are able 295

to obtain expression profiles that describe the source of contamination in each sample and 296

also have a ground truth for a more realistic dataset. We started to characterize background 297

noise by comparing the contamination profile with the profile of empty droplets and that 298

of endogenous counts of good cells. In agreement with the idea that ambient RNA is 299

due to leakage of cytosol, we find that empty droplets show less evidence for unspliced 300

mRNA molecules and that the unspliced fraction in the contamination profiles is similar to 301

that of empty droplets, suggesting that the majority of the detected background noise is 302

due to ambient RNA. Only in the snRNA-seq dataset nuc2 the unspliced fraction of the 303

contamination profile is clearly higher than for empty droplets, providing evidence for at 304

least some barcode swapping (Figure 3C). Hence, the observed correlation between cell size 305

and the absolute amounts of background noise per cell in most of the replicates is likely due 306

to variation in dropout rates [4] (Figure 2B). 307

Another important insight from comparing contamination, empty and endogenous profiles 308

is that we can deduce the origin of the contamination. While for the scRNA-seq data all 309

three profiles are highly correlated and are the result of very similar cell type mixtures, for 310

the snRNA-seq data the empty and the contamination profiles are distinct from the expected 311

endogenous mixture profile. Encouragingly the endogenous profile of the snRNA-seq data 312

agrees well with the cell type proportions from our scRNA-seq data as well as the literature 313

[14, 23], suggesting that neither library preparation method introduces a strong cell type 314

bias. Moreover, the higher similarity between the empty and the contamination profiles 315

strongly supports again that the majority of background noise is ambient RNA and hence 316

using the empty rather than the endogenous profile as a reference to model background noise 317

is a good choice. Indeed, the performance of DecontX for nuc2 is improved by providing the 318

empty droplet profile as compared to the endogenous profile which is the default (Figure 319
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5A). We also observed that SoupX performs much better for the snRNA-seq data than the 320

scRNA-seq data. We speculate that the marker gene identification that is the basis for 321

estimating the experiment-wide average contamination is hampered by the fact that our 322

dataset has one very dominant cell type that has the same prevalence in the empty droplets, 323

thus masking all background. However, even if SoupX gets the overall background levels 324

right, it by design grossly underestimates the variance among cells and cannot capture the 325

cell to cell variation (Figure 5B,C). Overall CellBender provides the most accurate estimates 326

of the background noise levels and also captures the cell to cell variation rather well. 327

In line with this, marker gene detection is most improved by CellBender, which is the only 328

method that removes marker gene molecules from other cell types and increases the log-fold- 329

change consistently well. The effect of background removal on other downstream analyses is 330

much more subtle. For starters, classification using an external reference is rather robust. 331

Even with high levels of background noise, background removal improves classification only 332

for a handful of cells and we cannot say that one method outperforms the others (Figure 333

6E, Supplementary Figure S12). Similarly, the broad structure of the data improves only 334

minimally and this minimal improvement comes at the cost of disrupting fine structure 335

(Figure 6E). Here, again CellBender strikes the best balance between removing variation 336

but preserving the fine structure, while DecontX tends to remove too much within-cluster 337

variability, as the k -NN overlap with the genotype-based ground truth for DecontX is even 338

lower than for the raw data. All in all, CellBender shows the best performance in removing 339

background noise. 340

Conclusion 341

Levels of background noise can be highly variable within and between replicates and 342

the contamination profiles do not always reflect the cell type proportions of the sample. 343

Marker gene detection is affected most by this issue, in that known cell type specific 344
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marker genes can be detected in cell clusters where they do not belong. Existing methods 345

for background removal are good at removing such stray marker gene molecule counts. 346

In contrast, classification and clustering of cells is rather robust even at high levels of 347

background noise. Consequently, background removal improves the classification of only 348

few cells. Moreover, it seems that for low and moderate background levels the tightening of 349

existing broad structures may go at the cost of fine structure. In summary, for marker gene 350

analysis, we would always recommend background removal, but for classification, clustering 351

and pseudotime analyses, we would only recommend background removal when background 352

noise levels are high. 353

Methods 354

Mice 355

Three mouse strains were ordered from Jackson Laboratory at 6-8 weeks of age: C57BL/6J 356

(000664), CAST/EiJ (000928), and 129S1/SvlmJ (002448). All animals were subjected to 357

intracardiac perfusion of PBS to remove blood. Kidneys were dissected, divided into 1/4s, 358

and subjected to the tissue dissociation protocol, stored in RNAlater, or snap-frozen in 359

liquid nitrogen. 360

Tissue dissociation for single cell isolation 361

The single cell suspensions were prepared following an established protocol [24] with minor 362

modifications. In detail, one of each kidney sagittal quarter from three perfused mice of 363

different strains C57BL/6, CAST/EiJ and 129S1/SvImJ were harvested into cold RPMI 364

(Thermo Fisher Scientific, 11875093) with 2% heat-inactivated Fetal Bovine Serum (Gibco, 365

Thermo Fisher Scientific, 16140-071; FBS) and 1% penicillin/streptomycin (Gibco, Thermo 366

Fisher Scientific, 15140122). Each piece of the tissue was then minced for 2 minutes with a 367

razor blade in 0.5 ml 1x liberase TH dissociation medium (10x concentrated solution from 368
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Millipore Sigma, 05401135001, reconstituted in DMEM/F12(Gibco, Thermo Fisher Scientific, 369

11320-033 in a petri dish on ice. The chopped tissue pieces were then pooled into one 1.5 ml 370

Eppendorf tube and incubated in a thermomixer at 37°C for 1 hour at 600rpm with gentle 371

pipetting for trituration every 10 minutes. The digestion mix was then transferred to a 15 372

ml conical tube and mixed with 10 ml 10% FBS RPMI. After centrifugation in a swinging 373

bucket rotor at 500g for 5 min at 4°C and supernatant removal, the pellet was resuspended 374

in 1ml red blood cell lysing buffer (Sigma Aldrich, R7757). The suspension was spun down 375

at 500g for 5 min at 4°C followed by supernatant removal. The pellet cleared of the red 376

blood cell ring was then resuspended in 250 µl Accumax (Stemcell Technologies, 7921) and 377

incubated at 37°C for 3 mins. The reaction was stopped by mixing with 5 ml 10% FBS 378

RPMI and spinning down at 500g for 5 min at 4°C followed by supernatant removal. The 379

cell pellet was then resuspended in PBS with 0.4% BSA (Sigma, B8667) and passed through 380

a 30 µm filter (Sysmex, 04-004-2326). The cell suspension was then assessed for viability 381

and concentration using the K2 Cellometer (Nexcelom Bioscience) with the AOPIcell stain 382

(Nexcelom Bioscience, CS2-0106-5ML). 383

Nuclei isolation from RNAlater preserved frozen tissue 384

The single nuclei suspensions were prepared following an established protocol [25] with minor 385

modifications. In detail, the RNALater reserved frozen tissue of 3 mice kidney quarters were 386

thawed and transferred to one petri dish preloaded with 1 ml TST buffer containing 10 mM 387

Tris, 146 mM NaCl, 1 mM CaCl2, 21 mM MgCl2, 0.03% Tween-20 (Roche, 11332465001) 388

and 0.01% BSA (Sigma, B8667). It was minced with a razor blade for 10 minutes on ice. 389

The homogenized tissue was then passed through a 40 µm cell strainer (VWR, 21008-949) 390

into a 50 ml conical tube. One ml TST buffer was used to rinse the petri dish and collect the 391

remaining tissue into the same tube. It was then mixed with 3 ml of ST buffer containing 10 392

mM Tris, 146 mM NaCl, 1 mM CaCl2 and 21 mM MgCl2 and spun down at 500g for 5 min 393
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at 4°C followed by supernatant removal. In the second experiment this washing step was 394

repeated 2 more times. The pellet was resuspended in 100 µl ST buffer and passed through 395

a 35 µm filter. The nuclei concentration was measured using the K2 Cellometer (Nexcelom 396

Bioscience) with the AO nuclei stain (Nexcelom Bioscience, CS1-0108-5ML). 397

Single-cell and single-nucleus RNA-seq 398

The cells or nuclei were loaded onto a 10x Chromium Next GEM G chip (10x Genomics, 399

1000120) aiming for recovery of 10,000 cells or nuclei. The RNA-seq libraries were prepared 400

using the Chromium Next GEM Single Cell 3’ Reagent kit v3.1 (10x Genomics, 1000121) 401

following vendor protocols. The libraries were pooled and sequenced on NovaSeq S1 100c 402

flow cells (Illumina) with 28 bases for read1, 55 bases for read2 and 8 bases for index1 and 403

aiming for 20,000 reads per cell. 404

Processing and annotation of scRNA-seq and snRNA-seq data 405

The scRNA-seq and snRNA-seq data were processed using Cell Ranger 3.0.2 using as 406

reference genome and annotation mm10 version 2020A for the scRNA-seq data and and 407

a pre-mRNA version of mm10 2.1.0 as reference for snRNA-seq. In order to identify cell 408

containing droplets we processed the raw UMI matrices with the DropletUtils package [5]. 409

The function barcodeRanks was used to identify the inflection point on the total UMI curve 410

and the union of barcodes with a total UMI count above the inflection point and Cell Ranger 411

cell call were defined as cells. 412

For cell type assignment we used 3 scRNA-seq and 4 snRNA-seq experiments from 413

Denisenko et al. [14] as a reference. Cells labeled as ”Unknown” (n=46), ”Neut” (n=17) 414

and ”Tub” (n=1) were removed. The reference was log-normalized and split into seven 415

count matrices based on chemistry, preservation and dissociation protocol. Subsequently, a 416

multi-reference classifier was trained using the function trainSingleR with default parameters 417
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of the R package SingleR version 1.8.1 [21]. After this processing, we could use the data 418

to classify our log-normalized data using the classifySingleR function without fine-tuning 419

(fine.tune = F). Hereby, each cell is compared to all seven references and the label from 420

the highest-scoring reference is assigned. Some cell type labels were merged into broader 421

categories after classification: cells annotated as ”CD IC”, ”CD IC A” or ”CD IC B” were 422

relabeled as ”CD IC”, cells annotated as ”T”, ”NK”, ”B” or ”MPH” were relabeled as 423

”Immune”. Cells that were unassigned after pruning of assignments based on classification 424

scores were removed for subsequent analyses. 425

Demultiplexing of mouse strains 426

A list of genetic variants between mouse strains was downloaded in VCF format from 427

the Mouse Genomes Project [13], accessed on 21 October 2020. This reference VCF file 428

was filtered for samples CAST EiJ, C57BL 6NJ and 129S1 SvImJ and chromosomes 1-19. 429

Genotyping of single barcodes was performed with cellsnp-lite [26], filtering for positions in 430

the reference VCF with a coverage of at least 20 UMIs and a minor allele frequency of at 431

least 0.1 in the data (–minCOUNT 20, –minMAF 0.1). Vireo [22] was used to demultiplex 432

and label cells based on their genotypes. Only cells that could unambigously assigned to 433

CAST EiJ (CAST), C57BL 6NJ (BL6) or 129S1 SvImJ (SvImJ) were kept, cells labeled as 434

doublet or unassigned were removed. 435

Genotype-based estimation of background noise 436

Based on the coverage filtered VCF-file (see above), we identified homozygous SNPs that 437

distinguish the three strains and removed SNPs that had predominantly coverage in only 438

one of the strains (1st percentile of allele frequency). 439

In most parts of the analysis, we focused on the comparison between the mouse subspecies, 440

M.m.domesticus and M.m.castaneus. To this end, we subseted reads (UMI-counts) that 441
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overlap with SNPs that distinguish the two mouse subspecies. 442

To estimate background noise levels based on allele counts of genetic variants, an approach 443

described in Heaton et al.[15] was adapted to estimate the total amount of background 444

noise for each cells. First, the abundance of endogenous and foreign allele counts (i.e. cross- 445

genotype background noise) was quantified per cell. Because of the filter for homozygous 446

variants, there are two possible genotypes for each locus, denoted as 0 for the endogenous 447

allele, i.e. the expected allele based on the strain assignment of the cell, and 1 for the foreign 448

allele. The probability for observable background noise at each locus l in cell c is given by 449

p = ρc ∗
Al,1

Al,0 +Al,1
(1)

where ρc is the total background noise fraction in a cell and the experiment wide (over cells 450

and empty droplets) foreign allele fraction is calculated from the foreign allele counts Al,1 451

and the endogenous allele counts Al,0. The foreign allele fraction is then used to account for 452

intra-genotype background noise (contamination within endogenous allele counts). 453

The observed allele counts Ac per cell are modeled as draws from a binomial distribution 454

with the likelihood function: 455

P (Ac|ρc) =
∏
l∈L

(
Al,c,0 +Al,c,1

Al,c,1

)
pAl,1(1− p)Al,0 (2)

A maximum likelihood estimate of ρc was obtained using one dimensional optimization in 456

the interval [0,1]. 457

The 95% confidence interval of each ρc estimate was calculated as the profile likelihood 458

using the function uniroot of the R package stats [27]. 459
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Comparison of endogenous, contamination and empty droplet profiles 460

Empty droplets were defined based on the UMI curve of the barcodes ranked by UMI counts, 461

thus selecting barcodes from a plateau with ∼ 500 − 1000 UMIs (Supplementary Figure 462

S4). For the following analysis, the presence of M.m.domesticus alleles in M.m.domesticus 463

cells (i.e., endogenous), in M.m.castaneus cells (i.e., contamination) and empty droplets was 464

compared. After this filtering, we summarized counts per gene and across barcodes of the 465

same category to generate pseudobulk profiles. 466

In order to estimate cell type composition in the empty and contamination profiles, we 467

used the deconvolution method implemented in SCDC[16], the endogenous single cell allele 468

counts from the respective replicate were used as reference (qcthreshold=0.6 ). In addition, 469

cell type filtering (frequency>0.75%) was applied. Endogenous, contamination and empty 470

pseudobulk profiles from each replicate were deconvoluted using their respective single cell / 471

single nucleus reference. 472

To compare the correlation between the different profiles, pseudobulk counts were downsam- 473

pled to the same total size. 474

Evaluation of marker gene expression 475

A list of marker genes for Proximal tubule cells (PT), Principal cells (CD PC), Intercalated 476

cells (CD IC) and Endothelial cells (Endo) was downloaded from the public database 477

PanglaoDB [17], accessed on 13 May 2022. Log2 fold changes contrasting PT cells against all 478

other cells were calculated with Seurat using the function FindMarkers after normalization 479

with NormalizeData. The expression fraction e of PT markers was calculated as the fraction of 480

cells for which at least 1 count of that gene was detected. To contrast expression fraction in PT 481

cells against non-PT, the negative log-ratio was calculated as −log((ePT +1)/(enon−PT +1)). 482
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Computational background noise estimation and correction methods 483

CellBender [4] makes use of a deep generative model to include various potential sources 484

of background noise. Cell states are encoded in a lower-dimensional space and an integer 485

matrix of noise counts is inferred, which is subsequently subtracted from the input count 486

matrix to generate a corrected matrix. 487

The remove-background module of CellBender v0.2.0 was run on the raw feature barcode 488

matrix as input, with a default fpr value of 0.01. For the comparison of different parameter 489

settings, fpr values of 0.05 and 0.1 were also included in the analysis. For the parameter 490

expected-cells the number of cells after cell calling and filtering in each replicate was provided. 491

The parameter total-droplets-included was set to 25000. 492

493

SoupX[11] estimates the experiment-wide amount of background noise based on the 494

expression of strong marker genes that are expected to be expressed exclusively in one cell 495

type. These genes can either be provided by the user or identified from the data. A profile 496

of background noise is inferred from empty droplets. This profile is subsequently removed 497

from each cell after aggregation into clusters to generate a corrected count matrix. 498

Cluster labels for SoupX were generated by Louvain clustering on 30 principal components 499

and a resolution of 1 as implemented by FindClusters in Seurat after normalization and 500

feature selection of 5000 genes. Providing the CellRanger output and cluster labels as input, 501

data were imported into SoupX version 1.6.1 and the background noise profile was inferred 502

with load10X. The contamination fraction was estimated using autoEstCont and background 503

noise was removed using adjustCounts with default parameters. 504

For the comparison of parameter settings, different resolution values (0.5,1,2) for Lou- 505

vain clustering were tested, alongside with manually specifying the contamination fraction 506

(0.1,0.2). 507

508
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DecontX[8] is a Bayesian method that estimates and removes background noise by 509

modeling the expression in each cell as a mixture of multinomial distributions, one native 510

distribution cell’s population and one contamination distribution from all other cell popu- 511

lations. The main inputs are a filtered count matrix only containing barcodes that were 512

called as cells and a vector of cluster labels. The contamination distribution is inferred as 513

a weighted combination of multiple cell populations. Alternatively, it is also possible to 514

obtain an empirical estimation of the contamination distribution from empty droplets in 515

cases where the background noise is expected to differ from the profile of filtered cells. 516

The function decontX from the R package celda version 1.12.0 was run on the fil- 517

tered, unnormalized count matrix and clusters were inferred with the implemented default 518

method based on UMAP dimensionality reduction and dbscan [28] clustering. For the 519

”DecontX default” results the parameter ’background’ was set to NULL, i.e. estimating 520

background noise based on cell populations in the filtered data only. ”DecontX background” 521

results were obtained by providing an unfiltered count matrix including all detected barcodes 522

as ’background’ to empirically estimate the contamination distribution. Besides the default 523

clustering method implemented in DecontX, cluster labels obtained from Lovain clustering 524

(resolution 0.5,1 and 2) were also provided to test different parameter settings. 525

Evaluation metrics 526

Estimation accuracy 527

The genotype-based estimates ρc for M.m.castaneus cells served as ground truth to evaluate 528

the estimation accuracy of different methods. For each method cell-wise background noise 529

fractions ac were calculated from the corrected count matrix X and the uncorrected (”raw”) 530

count matrix R as 531

ac = 1−
∑

g xc,g∑
g rc,g

(3)
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for cells c and genes g. 532

533

RMSLE The Root Mean Squared Logarithmic Error (RMSLE) is a lower bound metric 534

that we use to quantify the difference between estimated background noise fractions per cell 535

ac from different computational background correction methods and the genotype-based 536

estimates ρc, obtained from genotype based estimation. It is calculated as: 537

RMSLE =

√√√√ 1

n

n∑
c=1

(log(ac + 1)− log(ρc + 1))2 (4)

538

539

Kendall’s τ To evaluate how well cell-to-cell variation of the background noise fraction 540

is captured by the estimated values ac, the Kendall rank correlation coefficient τ to the 541

genotype-based estimates ρc was computed using the implementation in the R package stats 542

[27] as τ = cor(ac, ρc,method = ”kendall”). 543

Marker gene detection 544

The same set of 10 PT marker genes from PanglaoDB as in section Evaluation of marker 545

gene expression was used to evaluate the improvement on marker gene detection on corrected 546

count matrices. 547

548

Log2 fold change for each gene between the average expression in PT cells and average 549

expression in other cells were obtained using the NormalizeData and FindMarkers functions 550

in Seurat version 4.1.1. 551

552

Expression fraction Entries in each corrected count matrix were first rounded to the 553

nearest integer. The expression fraction of each gene in a cell population was calculated as 554

29

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.16.516780doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.16.516780
http://creativecommons.org/licenses/by-nc/4.0/


the fraction of cells for which at least 1 count of that gene was detected. For evaluation of 555

PT marker genes, unspecific detection is defined as the expression fraction in non-PT cells. 556

557

Cell type identification 558

Prediction score Each corrected count matrix was log-normalized and reference-based 559

classification in SingleR [21] was performed with a pre-trained model (see section Processing 560

and annotation of scRNA-seq and snRNA-seq data) on data from Denisenko et al. [14]. 561

SingleR provides delta values as a measure for classification confidence, which depicts the 562

difference of the assignment score for the assigned label and the median score across all 563

labels. The delta values for each cell were retrieved using the function getDeltaFromMedian 564

relative to the cells highest-scoring reference. A prediction score per cell type was calculated 565

by averaging delta values across individual cells and a global prediction score per replicate 566

was calculated by averaging across cell type prediction scores. 567

568

Average silhouette The silhouette width is an internal cluster evaluation metric to 569

contrast similarity within a cluster with similarity to the nearest cluster. The cell type 570

annotations from reference-based classification were used as cluster labels here. Count 571

matrices were filtered to select for M.m.castaneus cells and cell types with more than 10 572

cells. Distance matrices were computed on the first 30 principal components using euclidean 573

distance as distance measure. Using the cell type labels and distance matrix as input, the 574

average silhouette width per cell type was computed with the R package cluster version 575

2.1.4. An Average silhouette per replicate was calculated as the mean of cell type silhouette 576

widths. 577

578

Purity is an external cluster evaluation metric to evaluate how well a clustering recovers 579
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known classes. Here, Purity was used to assess to what extent unsupervised cluster labels 580

correspond to cell types. Count matrices were filtered to select for M.m.castaneus cells and 581

cell types with more than 10 cells and louvain clustering as implemented in FindClusters of 582

Seurat version 4.1.1 on the first 30 principal components and with a resolution parameter of 583

1 was used get a cluster label for each cell. Providing cell type annotations as true labels 584

alongside the cluster labels, Purity was computed with the R package ClusterR version 1.2.6 585

[29]. 586

587

k-NN overlap To evaluate the lower-dimensional structure in the data beyond clusters 588

and cell-types k -NN overlap was used as described in Ahlmann-Eltze and Huber [30]. A 589

ground truth reference k -NN graph was constructed on a ’genotype-cleaned’ count matrix, 590

only counting molecules that carry a subspecies-endogenous allele. Raw and corrected count 591

matrices were filtered to contain the same genes as in the reference and a query k -NN graph 592

was computed on the first 30 principal components. The k -NN overlap summarizes the 593

overlap of the 50 nearest neighbors of each cell in the query with the reference k -NN graph. 594

Abbreviations 595

CAST Mus musculus castaneus

k -NN k nearest neighbor

snRNA-seq single nucleus RNA-sequencing

PT proximal tubular cells/markers

scRNA-seq single cell RNA-sequencing

SNP single nucleotide polymorphism

UMI unique molecular identifier

UMAP Uniform Manifold Approximation and Projection

VCF Variant Call Format

596
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Supplementary Figure S1. Estimation of background noise levels. A) Estimates of
background noise (ρcell) per cell. Cells were ordered by ascending ρcell in each replicate. Colored
bars indicate 95% confidence intervals calculated by profile likelihood. B) Summary of ρcell estimates
per strain. C) Width of confidence intervals for ρcell.
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Supplementary Figure S2. UMAP visualization showing the composition per replicate
of A) all cells, colored by strain assignment, B) all cells, colored by cell type assignment and C) M.
m. castaneus cells only, colored by cell type assignment.
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Supplementary Figure S3. Detection of cross-genotype contamination A) M.m. castaneus
allele frequency per cell in cells from different subspecies and mixed-subspecies doublets. In all
replicates varying amounts of M.m. castaneus alleles are detected in M.m. domesticus cells and vice
versa, pointing towards background noise originating from cross-genotype contamination. B) Allele
frequency proportions across all cells in a replicate.
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Supplementary Figure S4. Definition of endogenous, empty droplet and contamination
profiles across replicates. Droplet barcodes were ordered by their total UMI counts and empty
droplets were defined from this UMI curve as barcodes in the low UMI count plateau area (upper
panel). UMI counts of reads covering M. m. domesticus specific alleles were used to construct three
different profiles (lower panel). M. m. domesticus allele counts in M. m. domesticus cells were
defined as endogenous counts (endo), M. m. domesticus allele counts in M. m. castaneus cells as
contaminating counts (cont) and M. m. domesticus allele counts associated with barcodes of the
empty droplet plateau as empty droplet counts (empty).
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Supplementary Figure S5. Dissection of cell type contributions by deconvolution of
pseudobulk profiles. The stacked bar plots of ’reference’ depict the proportions of cell types in
a single cell reference used for deconvolution with SCDC [16]. The ’endo’, ’empty’ and ’cont’ bar
plots show the estimated fraction of cell types after deconvolution of pseudobulk profiles that were
aggregated for each category.

3

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.16.516780doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.16.516780
http://creativecommons.org/licenses/by-nc/4.0/


UMAP 1

U
M

A
P

 2

Slc34a1 expression (rep1)

UMAP 1

U
M

A
P

 2

Slc34a1 expression (rep2)

UMAP 1

U
M

A
P

 2

Slc34a1 expression (rep3)

UMAP 1

U
M

A
P

 2

Slc34a1 expression (nuc2)

UMAP 1

U
M

A
P

 2

Slc34a1 expression (nuc3)

0

2

4

6

log2(count+1)

Supplementary Figure S6. Slc34a1 expression across replicates. UMAP representation M.
m. castaneus cells coloured by Slc34a1 expression. Spurious detection of Slc34a1 in all cell clusters
is observed in all replicates. In the replicates with the lowest background noise levels (rep1,rep3),
Slc34a1 expression is most concentrated in PT cells.
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Supplementary Figure S7. Expression of cell type marker genes. Heatmaps show the
normalized expression of known marker genes for four selected cell types across replicates. Marker
genes were obtained from the PanlaoDB database [17] and filtered to select for genes that are detected
in at least 50% of the cells of the cell type in which they are expected to be expressed. The replicate
nuc3 was excluded from this figure due to an insufficient number of collecting duct and endothelial
cells. PT: proximal tubule; CD IC: intercalated cells of collecting duct; CD PC: principal cells of
collecting duct; Endo: endothelial
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Supplementary Figure S8. Estimated background noise levels across cell types. Genotype
estimates are inferred based on genetic variants. Cellbender, SoupX and DecontX estimates are
calculated for each cell based on a corrected count matrix. PT: proximal tubule; aLOH: ascending
loop of Henle; DCT: distal convoluted tubule; Endo: endothelial; CD PC: principal cells of collecting
duct; CD IC: intercalated cells of collecting duct.
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Supplementary Figure S9. UMAP representations of all replicates before and after
background noise correction. Cells are colored by cell type labels obtained from reference based
classification. Individual cells that received a new label after correction are highlighted. In case of
the uncorrected data, all cells that received a new label after correction with any of the methods are
highlighted. PT: proximal tubule; CD IC: intercalated cells of collecting duct; CD PC: principal cells
of collecting duct; CD Trans: transitional cells of collecting duct; CNT: connecting tubule; DCT:
distal convoluted tubule; Endo: endothelial; Fib: fibroblasts; aLOH: ascending loop of Henle; dLOH:
descending loop of Henle; MC: mesangial cells; Podo: podocytes
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Supplementary Figure S10. Detected expression levels of Slc34a1 before and after
background noise correction. Cells that were classified as PT cells in the uncorrected data, but
got reassigned after correction, are highlighted.
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Supplementary Figure S11. Effect of background noise correction on marker gene
detection. A) Heatmaps depicting the expression of 10 PT marker genes in 100 randomly sampled
PT cells and 100 cells from other cell types. The first row of heatmaps is based on the uncorrected
count matrix, rows 2-5 on the denoised count matrix output by different methods. B) Overlap of
identified and known marker genes. Genes were ranked by log2 fold change between PT an other
cells and the overlap of the top 10 genes in this ranking with known marker genes for Proximal
Tubule cells from PanglaoDB [17] is shown. C) Log2 fold changes of PangloaDB PT cell marker
genes after background noise correction compared to the uncorrected data.
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Supplementary Figure S12. Evaluation metrics for cell type identification. Prediction
score: cell-wise score ”delta” of reference based classification with SingleR [21]. Average silhouette:
Mean of silhouette widths per cell type. Purity: Cluster purity calculated on cell type lables as ground
truth and Louvain clusters as test labels. k -NN overlap: overlap of the k=50 nearest neighbors per
cell compared to genotype-cleaned reference k -NN graph.
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Supplementary Figure S13. Evaluation of different parameter settings. Combinations of
the most impactful parameter/workflow choices of each method are evaluated. Default parameter
settings are highlighted with red font color. For each metric, an average z-score across the replicates
rep1, rep2, rep3 and nuc2 is shown, for which higher values indicate better performance. The following
parameters were tuned: CellBender: fpr (0.01,0.05,0.1); DecontX: cluster lables z (resDefault: NULL,
res0.5/1/2: vector of cluster labels from Louvain clustering with resolution 0.5/1/2), background
(emptyFalse: NULL, emptyTrue: provide raw matrix containing empty droplets); SoupX: contamina-
tion fraction (contAuto: automatic estimation using autoEstcont, cont0.1/0.2: manually set using
setContaminationFraction (0.1/0.2)), cluster labels (res0.5/1/2: vector of cluster labels from Louvain
clustering with resolution 0.5/1/2)

9

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.16.516780doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.16.516780
http://creativecommons.org/licenses/by-nc/4.0/

	Declarations

