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Abstract

Modern proteins did not arise abruptly, as singular events, but rather over the
course of at least 3.5 billion years of evolution. Can machine learning teach us
how this occurred? The molecular evolutionary processes that yielded the intri-
cate three-dimensional (3D) structures of proteins involve duplication, recombina-
tion and mutation of genetic elements, corresponding to short peptide fragments.
Identifying and elucidating these ancestral fragments is crucial to deciphering
the interrelationships amongst proteins, as well as how evolution acts upon pro-
tein sequences, structures & functions. Traditionally, structural fragments have
been found using sequence-based and 3D structural alignment approaches, but
that becomes challenging when proteins have undergone extensive permutations—
allowing two proteins to share a common architecture, though their topologies
may drastically differ (a phenomenon termed the Urfold). We have designed a
new framework to identify compact, potentially-discontinuous peptide fragments
by combining (i) deep generative models of protein superfamilies with (ii) layer-
wise relevance propagation (LRP) to identify atoms of great relevance in creating
an embedding during an allsuperfamilies× alldomains analysis. Our approach reca-
pitulates known relationships amongst the evolutionarily ancient small β-barrels
(e.g. SH3 and OB folds) and amongst P-loop–containing proteins (e.g. Ross-
mann and P-loop NTPases), previously established via manual analysis. Because
of the generality of our deep model’s approach, we anticipate that it can enable
the discovery of new ancestral peptides. In a sense, our framework uses LRP as
an ‘explainable AI’ approach, in conjunction with a recent deep generative model
of protein structure (termed DeepUrfold), in order to leverage decades worth of
structural biology knowledge to decipher the underlying molecular bases for pro-
tein structural relationships—including those which are exceedingly remote, yet
discoverable via deep learning.

∗https://edraizen.github.io
†http://bournelab.org
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1 Introduction

Historically, protein structural evolution has been studied via painstaking visual inspection and
manual analyses of structures, including a heavy reliance on comparisons built upon 3D superposi-
tion/alignment of atomic coordinates. Indeed, visualizing protein structures and their 3D alignments
using graphical tools such as ‘ribbon diagrams’ enabled many landmark discoveries in biology and
medicine, largely because these diagrams simplify the inordinately complicated geometric struc-
tures of proteins into something that is comprehensible by the human brain [1]. However, simplified
cartoon representations ignore the high-dimensional, largely biophysical/physicochemical feature
space of all the atoms defining a protein, and an over-reliance on simplified, static representations
can limit us to seeing a structure of a particular protein as being the structure—i.e., we fall prey to
viewing as important only one particular geometric representation or structural conformation, ver-
sus the true statistical ensemble of thermally-accesible states that an actual protein structure samples
in reality. In short, conventional schemes for conceptualizing and analyzing protein structure re-
lationships are not without limitations, and can cause us to miss phylogenetically remote (deeply
ancestral) relationships. Some have referred to this pitfall as the ‘curse of the ribbon’ [1]. Mod-
ern deep learning–based methods enable fundamentally new representations of proteins and their
sequence/structure/function relationships—for example, as lower-dimensional embeddings that in-
corporate biophysical properties (e.g., electrostatics) alongside 3D-coordinate data (i.e., geometry),
sequence information and residue profiles, and so on. All of this, in turn, might finally lift the curse.

While many new sequence-based deep learning methods, based on large language models [2, 3, 4, 5],
can identify more remote similarities than can hidden Markov models (HMMs) or classic sequence-
comparison algorithms (e.g., BLAST), larger structural rearrangements and permutations, such as
occur on evolutionary timescales, are still difficult to detect. If one views the protein universe
through the lens of a hierarchical classification scheme such as CATH [6], most new homologous
sequences identified by these methods would be located within the same homologous superfamily
or topology strata—i.e., there are bounds on how remote a homology can be detected by existing
methods. Thus, sets of potentially distantly-related proteins, with similar architectures yet different
topologies, are generally missed [7]. Indeed, it was recently proposed that there might exist a new,
bona fide level of structural granularity, lying between the architecture and topology levels (the latter
of which is synonymous with a given protein’s fold); termed the ‘Urfold’, this provisional new level
would naturally allow for 3D fragments that are spatially compact yet potentially discontinuous in
sequence [7], such as may be the case with ancient, deeply ancestral fragments. An example of an
urfold can be seen in Fig 1, highlighting two widespread classes of phosphate-binding loop (PBL)–
containing proteins, namely the Rossmann fold-containing proteins and P-loop NTPases.

The Urfold model of protein structure—and, thus, protein structural interrelationships—arose by
noticing the striking structural and functional similarities among deeply-divergent collections of do-
mains from the SH3 and OB superfamilies [8]. Those superfamilies all contain a small β-barrel
(SBB) domain, composed of five β-strands, but the topologies/connections between the strands have
been permuted such that these proteins often share less than 20% sequence identity between one
another (i.e., below the classic ‘twilight zone’ of inferring homology as above-random similarity
between two sequences). Despite having permuted strands, the architecturally-identical SBBs are
often involved in nucleic acid metabolic pathways, and many of them oligomerize via residue in-
teractions amongst similar edge-strands [8]. Recently, others have proposed that the SH3 and OB
share a common ancestor that diverged via a process called ‘Creative Destruction’ [9, 10]. Notably,
the SH3 and OB are two of the most ancient and widespread protein folds, and they permeate most
information-storage and information-processing pathways in cellular life, from DNA replication to
transcription of DNA→RNA and translation of RNA→protein [9, 11].

Another prominent example of an urfold can be seen in the phosphate-binding loop (PBL) contain-
ing proteins, which include the Rossmann and P-loop NTPases superfamilies [12]. Both of these
superfamilies contain a small protein fragment of three β-strands that contact a single α-helix, with
these structural elements linked by a phosphate-binding glycine-rich loop (Fig. 1). Most domains
from the PBL urfold are quite large, i.e. they feature many additional secondary structural elements
(SSEs) beyond the core, and they do not oligomerize; rather, they have a large central cavity for
ligand-binding. While Rossmann and PBL proteins are known to bind a diverse repertoire of ligands
and catalyze many different types of reactions, they predominately bind phosphorylated nucleotides
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Figure 1: Urfolds Represent Architectural Similarity Despite Topological Variability. A) CATH
hierarchically organizes the protein universe into strata including Class, Architecture, Topology,
and Homologous Superfamily. We hypothesize that an ‘Urfold’ strata between Architecture and
Topology. B) SH3 and OB share a small β-barrel urfold. C) The Rossmann and P-loop NTPases
both contain a common core theme of three β-strands connected to an α-helix by a glycine-rich loop;
the loop is of functional importance by virtue of binding phosphorylated ribonucleoside ligands, be
they substrates, cofactors, or otherwise. However, the Rossmann fold is permuted such that one
β-strand is no longer nearby in sequence and another β-strand has reversed direction. These gross
structural differences have led biologists to incorrectly classify these ancient folds as being unrelated.
We propose bridging these two folds via a new ‘PBL’ urfold [12, 7].

and similar compounds, with the ligand’s phosphate groups primarily interacting with the protein’s
phosphate-binding loop [13].

In addition to similarity at the full-domain level, the Urfold model allows for sub-domain–level
structural fragments that may be discontinuous in sequence. That is, the Urfold extends a CATH-
like hierarchical representational scheme of the protein universe by allowing for (conserved) spatial
constellations of short peptides, perhaps like the Ancestral Peptides [14] or Themes [15] that have
been thought to underlie the structural evolution into larger domains. Note that algorithms which
flexibly allow for discontinuous fragments are making a resurgence, e.g. as in the Geometricus
approach [16] for constructing and analyzing structural embeddings.

In a recent study that developed a deep generative approach to protein structural relationships,
using the Urfold model of protein structure in a framework called DeepUrfold, 20 superfamily-
specific, sparse 3D-CNN variational autoencoders (VAEs) were trained for 20 different, highly-
populated CATH superfamilies [17]. These DeepUrfold-trained models were shown to be agnostic
to topology, as architecturally-similar SH3/OB proteins with artificially-constructed loop permu-
tations yielded similar evidence lower bound–based (ELBO) scores; most significantly, applying
community-detection methods (as stochastic block models) to the patterns of ELBO similarities led
to the SH3 and OB domains clustering into similar groupings (with some intermixing). All of those
findings were consistent with the prediction that the SH3 and OB comprise a distinct urfold (in this
case, the SBB).

This paper explores—and seeks to begin explaining—the models from [17] in more depth, by ap-
plying an approach known as layer-wise relevance propagation (LRP). In principle, explainable AI
techniques such as LRP can be used to understand which atoms in the input structure are ‘important’,
based on their spatial locations and biophysical properties (and, really, any other sorts of features
that one encodes in the model). In our allsuperfamilies× alldomains analysis, we consider the ELBO
likelihood of a domain x under under DeepUrfold VAE models Mi and Mj , for superfamilies i and j
respectively. Functionally conserved regions shared between Mi and Mj would be expected to posi-
tively affect the likelihood under both models and therefore should have relatively high LRP scores.
Focusing on the two specific urfolds described above—i.e., the SBB domain and the PBL-containing
proteins—here we show how LRP can be used to identify cross-model functionally important atoms;
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achieving that task, in turn, offers a foundation for identifying and characterizing new discontinuous
fragments or ancestral peptides.

2 Results

2.1 The small β-barrel (SBB) domain

We first investigated the SH3-specific (CATH 2.30.30.100), DeepUrfold-derived VAE model. This
model was trained using all energy-minimized domain structures from the SH3 superfamily, along
with hand-crafted biophysical features, as described in [17]. We first attempted to subject represen-
tative SH3 domains through the SH3 model and calculated relevance scores during backpropagation.
Promisingly, all of the residues that were previously identified (manually) as being important in the
SBB’s "conserved hydrophobic core" [8] were labelled as relevant according to our LRP calcula-
tion (Fig. 2B). Next, we found that a specific, highly-conserved glycine in the second β-strand,
known from years of manual analysis as being conformationally important in allowing the strand
to severely bend [18], was deemed to be ‘relevant’ (Fig. 2C). Finally, we show that many contacts
between strands β4 and β5, such as comprise the subunit interface in the ‘Sm’ variety of SH3-based
oligomeric rings, are also labelled as important (Fig. 2D). From these initially promising results, we
suspect that LRP can identify functionally important atoms, such as are learned as part of the latent
space in the DeepUrfold-based superfamily models.

Figure 2: LRP Identifies Conserved and Structurally Important Regions in SH3 Domains.
A) SH3 domains, and specifically those of the Sm/Sm-like proteins, tend to self-assemble into
oligomeric rings of n= 5, 6, or 7 SH3 subunits [18]. B) All SH3 domains, as well as other do-
mains of the SBB urfold, have a conserved hydrophobic core [8]. LRP identifies residues in the core
as being 80th percentile or greater, displayed here using a spectrum from blue→white→red, for the
range of 50th to 80th percentile, and for all of the 1kq1H00 relevance scores. C) The phylogeneti-
cally conserved, structurally critical β2 glycine [18] is detected by LRP. The color scale is shown for
1kq1A00 (with a cyan→white→magenta spectrum), mapped across the range 50th to 80th percentile
for all of the 1kq1A00 relevance scores. D) By manual/visual inspection of the 1kq1H00:1kq1A00
dimer interface, we can see that important atoms from both 1kq1H00 roughly align with important
atoms in 1kq1A00 (yellow dashed lines). Note that 1kq1H00 is shown on the same color scale as in
(B), and 1kq1A00 is shown with the same color scale as in (C).

2.2 Phosphate-binding Loop (PBL)–Containing Proteins

We next tested the outcome of an allsuperfamily × alldomain approach for the PBL urfold.
That is, we trained two separate DeepUrfold VAE models, one for the canonical Rossmann
Fold (3.40.50.720) and another for P-loop NTPases (3.40.50.300), and then we subjected
representative domains from both superfamilies through both VAEs. Given the biochemical
importance of phosphate binding, we examined residues that are known to specifically bind
phosphates: namely, the glycine-rich loop and the Walker B motif’s aspartic acid on one of
the edge strands of the PBL theme [12]. For all four combinations of domain × model—i.e.,
(i) Rossmann domain→Rosmann model, (ii) Rossmann domain→P-Loop NTPase model,
(iii) P-Loop NTPase domain→Rossmann model, and (iv) P-Loop NTPase domain →
P-Loop NTPase model—we find that LRP correctly identifies the glycine-rich loop and Walker
B Asp with relevance scores >=75th percentile, shown in Fig 3. Because the important atoms are
correctly predicted regardless of the DeepUrfold model, even for a model that is trained on domains
annotated from a different CATH superfamily, we expect that these important residues, shared by
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Figure 3: Important Atoms in the Phosphate
Binding Loop Urfold Identified via LRP. We
subjected representative domains from the Ross-
mann (3tjrA00) and P-Loop NTPase (1ko7A02)
superfamilies through each VAE model trained on
all members of Rossmann and P-Loop NTPases
respectively. Relevance scores are displayed on
a spectrum from blue→white→red, using a range
of 50th to 80th percentile of a given structure. Key
atoms from residues that have been previously
shown to be important in bridging these folds,
namely the Walker B Asp motif and the glycine-
rich loop [12], are selected by LRP having an rel-
evance score >=75th percentile. Included ligands
highlight phosphate-binding regions.

both the Rossmann and PBL families, can be used to identify common fragments that comprise a
joint Rossmann/PBL urfold. LRP-flagged atoms can be viewed, in a very real sense, as identifying
the ‘defining’ regions for a particular urfold.

3 Methods

3.1 DeepUrfold-Explain and VAE Model

In a recent paper that introduced a DeepUrfold framework, the authors developed: (i) a pre-
processed dataset, based on CATH superfamilies, that includes biophysical properties for each atom
along with energy-minimized domain structures; and (ii) superfamily-specific sparse 3D-CNN VAEs
[17]. Energy-minimized domain structures from a single superfamily were voxelized using a kD-
tree to map atoms into 1Å3 voxels in an overall 2643Å3 discretized volume; 3D structural models
were rotated randomly by sampling the SO(3) group to train a VAE model, modified from [19, 20],
yielding superfamily-specific models. Each voxel is annotated with the biophysical properties of
atoms that intersect it (see the features listed in Fig. 4). Each VAE was trained using CATH’s 30%
sequence identity clusters, as defined by CATH for each superfamily, to create train (≈80%), test
(≈10%), and validation (≈10%) splits. Hyperparameters used to construct and refine the VAE were
tuned using Weights & Biases [17].

Figure 4: DeepUrfold-Explain Identifies Important Atoms in Input Structures, via LRP of
Superfamily-specific VAEs. Relevant atoms are predicted for a given protein domain by: 1) ob-
taining an energy-minimized, featurized domain structure from a pre-calculated dataset and vox-
elized; 2) running the inference stage of pre-trained superfamily-specific VAE for the given domain;
and finally, 3) running LRP during a backwards pass of only the encoder module, starting with the
embedding of a given domain.
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3.2 Layer-wise Relevance Propagation (LRP)

The LRP algorithm defines a Relevance Score as Rj =
∑

k
aj ·ρ(ωjk)

ϵ+
∑

0,j aj ·ρ(ωjk)
Rk, where j denotes a

neuron in the current layer, aj are the activations from the current layer, ρ is the LRP propagation
‘rule’, and ωjk are the weights from the previous layer. LRP starts with the embedding of a given
domain in a backwards pass. For layer j, a forward pass is run with the same data that was used as
input to the layer j (the denominator) which is compared to the Relevance value from the previous
layer, Rk. A backwards pass is then run using the data from the relevance-weighted forward pass.
Finally, the value from the backwards pass is compared to the output of the original input of the
current layer [21].

We follow [22] and use rules LRP-0 for the lowest 60% of layers, LRP-ϵ (ϵ=0.25) for the middle
20%-60% of layers, and LRP-γ (γ=0.25) for the top 20% of layers. LRP-0 is the base rule, where
ρ(x) = x and ϵ = 0, which finds the contributions of each neuron to the final activation. LRP-ϵ is
the base rule where ρ(x) = x, but ϵ > 0, which helps remove noise and sparsify the explanations in
terms of the input. LRP-γ sets ρ(x) = x + γx+, where x+ only includes positive relevance scores
(all others set to 0) and ϵ = 0, which is used to remove negative contributions.

Finally, we create a total relevance score by aggregating all relevance scores in a voxel; this was
done by summing the relevance scores for every feature in that voxel. We then map voxels ↔ atoms
by taking the average total relevance score from all of the voxels that intersect a given atom based
on a kD-tree, the radius of which is set to the size of the particular atoms (in terms of van der Waals
radius).

We adapted PyTorchLRP from [23] to add MinkowskiEngine layers [19] and regularization [24].

3.3 Cross-Model Fragment Identification

We subjected 2,674 representative domains from 20 different CATH superfamilies to 20 superfamily-
specific VAEs, saving all LRP results. For a given structure, residues containing any atom lying
in the ≥ 75th percentile were extracted to create a set of 53,480 (dis-)continuous fragments. For
each community identified with Stochastic Block Modelling of the bipartite graph formed from
the allsuperfamilies× alldomains approach [17], we used the foldseek code [25] to cluster all LRP
structures from domains present in each community that were processed through all superfamilies
represented by the community (using TM-Align for global alignment). We select the LRP structure
cluster representative from the most populated cluster in each community, resulting in a final list of
top-20 "potential urfolds".

4 Conclusion

Machine learning for proteins is extremely difficult, partly due to the fact that all proteins are related
via evolution [26]. As one can imagine, it is critical to know if a given model accurately represents
reality or is giving spurious results. Explainable AI techniques, such as LRP, help alleviate these
problems by allowing us to compare known biophysical properties of a given protein to a model’s
prediction—that is, we can bring the expertise from a scientific domain to bear in assessing the
performance of the ML method. Here, we have shown that LRP correctly identifies structurally
important and conserved atoms in SH3 domains, implying that the model is learning superfamily-
specific features. Because the models are intentionally topology-agnostic, we were also able to show
that LRP can find important atoms from structures that exhibit the Urfold principle of "architectural
similarity despite topological variability"—specifically, in this work the phosphate binding loops in
Rossmann-fold proteins and P-Loop NTPases. In the future, we plan to identify and verify more
common fragments and ancestral peptides by aligning and clustering ‘important’ regions from the
cross-model fragments identified by LRP, while comparing them to known databases of potentially
discontinuous fragment libraries (e.g., from shapemers [27], Fuzzle2.0 [28], ancestral peptides [14],
themes [15], or TERMs [29]).
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5 Appendix

5.1 Variational Autoencoders (VAEs)

Each VAE model learns a normal distribution for each superfamily using the ‘reparameterization
trick’ to allow for backpropagation through random variables. This makes only the mean (µ) and
variance (σ) differentiable, while sampling from the normally distributed random variable (N (0, I)).
That is, the latent variable posterior z is given by z = µ + σ

⊙
N (0, I), where

⊙
denotes the

Hadamard (element-wise) matrix product and N is the ‘auxiliary noise’ term [30]. See [17] for a
discussion of this topic in the context of DeepUrfold.
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