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Abstract 27 

Background: Molecular subtyping of brain tissue provides insights into the heterogeneity of 28 

common neurodegenerative conditions, such as Alzheimer’s disease (AD). However, existing 29 

subtyping studies have mostly focused on single data modalities and only those individuals with 30 

severe cognitive impairment. To address these gaps, we applied Similarity Network Fusion (SNF), 31 

a method capable of integrating multiple high-dimensional multi-‘omic data modalities 32 

simultaneously, to an elderly sample spanning the full spectrum of cognitive aging trajectories. 33 

Methods: We analyzed human frontal cortex brain samples characterized by five ‘omic modalities: 34 

bulk RNA sequencing (18,629 genes), DNA methylation (53,932 cpg sites), histone H3K9 35 

acetylation (26,384 peaks), proteomics (7,737 proteins), and metabolomics (654 metabolites). 36 

SNF followed by spectral clustering was used for subtype detection, and subtype numbers were 37 

determined by eigen-gap and rotation cost statistics. Normalized Mutual Information (NMI) 38 

determined the relative contribution of each modality to the fused network. Subtypes were 39 

characterized by associations with 13 age-related neuropathologies and cognitive decline. 40 

Results: Fusion of all five data modalities (n=111) yielded two subtypes (nS1=53, nS2=58) which 41 

were nominally associated with diffuse amyloid plaques; however, this effect was not significant 42 

after correction for multiple testing. Histone acetylation (NMI=0.38), DNA methylation (NMI=0.18) 43 

and RNA abundance (NMI=0.15) contributed most strongly to this network. Secondary analysis 44 

integrating only these three modalities in a larger subsample (n=513) indicated support for both 45 

3- and 5-subtype solutions, which had significant overlap, but showed varying degrees of internal 46 

stability and external validity. One subtype showed marked cognitive decline, which remained 47 

significant even after correcting for tests across both 3- and 5-subtype solutions (pBonf=5.9x10-3). 48 

Comparison to single-modality subtypes demonstrated that the three-modal subtypes were able 49 
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to uniquely capture cognitive variability. Comprehensive sensitivity analyses explored influences 50 

of sample size and cluster number parameters. 51 

Conclusion: We identified highly integrative molecular subtypes of aging derived from multiple 52 

high dimensional, multi-‘omic data modalities simultaneously. Fusing RNA abundance, DNA 53 

methylation, and H3K9 acetylation measures generated subtypes that were associated with 54 

cognitive decline. This work highlights the potential value and challenges of multi-‘omic integration 55 

in unsupervised subtyping of postmortem brain. 56 

Keywords: multi-‘omic Integration, molecular subtyping, cognitive aging, Alzheimer’s disease, 57 

postmortem brain, clustering analysis 58 

 59 

Introduction 60 

Aging is often accompanied by progressive cognitive decline. The severity of this decline ranges 61 

from normal age-related changes to clinically important mild cognitive impairment (MCI) and 62 

ultimately dementia [1,2]. Alzheimer’s disease (AD) is the most common cause of late-life 63 

dementia, which is typically characterized by impairments in memory and loss of daily functioning 64 

[2]. This poses a major public health concern, as by 2050, the estimated number of individuals 65 

diagnosed with dementia globally is expected to reach 152.8 million [3]. As a neuropathological 66 

process, AD is defined by the abnormal accumulation of neurofibrillary tangles 67 

(hyperphosphorylated tau protein), the formation of extracellular dense core plaque deposits 68 

(beta-amyloid), and chronic neuroinflammation in the brain [4]. However, there is great inter-69 

individual heterogeneity in these pathological hallmarks, and the relationship between 70 

neuropathology and cognitive impairment is not deterministic [5]. As such, there likely remain 71 
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unobserved molecular signatures of age-related cognitive decline that could help explain the 72 

heterogeneity observed within populations and shed light on mechanisms of illness.  73 

Molecular subtyping most often refers to classifying individuals within a population into subgroups 74 

using molecular data types and unsupervised clustering methods [6,7]. The approach has seen 75 

success in fields with abundant and readily assayed tissue samples from diseased populations, 76 

such as in oncology, where biopsied tumors yield molecular information leading to precision 77 

interventions [7]. Similarly, the heterogeneity of cognitive aging may be partly explained by using 78 

high-dimensional molecular measures from postmortem brain tissue of elderly donors to group 79 

similar individuals. For example, molecular subtypes of AD derived from RNA sequencing 80 

(RNAseq) data have been associated with AD-relevant pathologies [8–11], including amyloid and 81 

tau neuropathological burden, and APOE genotype [8,9]. Subtypes derived from common genetic 82 

variation, specifically single nucleotide polymorphisms, identified multiple AD-related molecular 83 

mechanisms [12]. A major limitation of most existing subtyping studies in this field is that they rely 84 

on information from single data modalities, e.g. gene expression data, which greatly constrains 85 

the information used to parse biological systems and pathological processes [13,14].  86 

Importantly, it has been shown that several multi-‘omic data types, including histone acetylation 87 

[15], metabolomics [16–20] and proteomics [21], are not only associated with AD 88 

neuropathologies, but also contributed information to associations that is missed with RNAseq 89 

alone [8,21]. As such, integrating data modalities into subtyping pipelines has been an active area 90 

of research [22,23], and large-scale cohort studies of aging that include brain donation and multi-91 

‘omic characterization, such as those from the Accelerating Medicines Partnership for Alzheimer's 92 

Disease (AMP-AD) consortium, now offer opportunities for developing highly integrative models 93 

of cognitive decline [24]. Methods development in high-dimensional feature integration have also 94 

facilitated these analyses [25,26] , though not yet in pathological aging or AD. Similarity network 95 
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fusion (SNF) is a network-based method specifically developed to integrate several multi-‘omic 96 

data modalities simultaneously [27]. 97 

Here we performed a highly integrative analysis on up to five postmortem multi-‘omic data 98 

modalities simultaneously, measured in the same individuals, to identify molecular subtypes of 99 

aging using the SNF method. We then characterized these subtypes by associating subtype 100 

membership with 13 age-related neuropathologies, antemortem cognitive performance, and rates 101 

of longitudinal cognitive decline. The most important features contributing to the fully fused 102 

similarity network were identified and subsequent analyses focused on the most informative data 103 

modalities. Lastly, we performed comprehensive sensitivity testing to explore the effects of 104 

parameter selection in unsupervised multi-‘omic subtyping, which are often chosen arbitrarily. 105 

 106 

Methods 107 

Study participants 108 

Data were analyzed from two longitudinal cohort studies of aging and dementia: the Religious 109 

Orders Study and Rush Memory and Aging Project (ROS/MAP), with more than 3,500 110 

predominantly white elderly (mean = 78.44, sd = 7.79) participants of mostly European descent 111 

without known dementia at the time of enrollment [28]. Participants in ROS (1994-present) are 112 

older Catholic priests, nuns, and brothers across the United States, whereas MAP (1997-ongoing) 113 

recruits primarily from retirement communities and via social service agencies and Church groups 114 

throughout northeastern Illinois [28,29]. Combined data analysis for these two cohorts are 115 

enabled by harmonized protocols for participant recruitment, clinical assessment, and 116 
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neuropathological examination at autopsy (autopsy rate exceeding 86%) with a large common 117 

core of identical item level data. A Rush University Medical Center Institutional Review Board 118 

approved each study. All participants signed an Anatomic Gift Act as well as informed and 119 

repository consents. Annual visits include tests of cognition function and a broad range of other 120 

demographic, social, lifestyle, and clinical assessments with an averaged follow-up rate of 97% 121 

[29]. Further details about the ROS and MAP cohorts can be found in previous publications [30] 122 

and through the Rush Alzheimer’s Disease Center Research Resource Sharing Hub, where 123 

participant-level clinical and demographic data are available via restricted access 124 

(https://www.radc.rush.edu/home.htm). 125 

Multi-‘omic data used for subtyping 126 

We used five multi-‘omic data modalities to identify molecular subtypes: bulk RNAseq (18,629 127 

genes, nRNAseq=1,092), DNA methylation (53,932 cpg sites, nDNA=740), histone H3K9 acetylation 128 

(26,384 peaks, nhistone=669), metabolomics (654 metabolites, nmetabolomics=514), and tandem mass 129 

tag (TMT) proteomics (7,737 proteins, nproteomics=368). All data types were acquired from the same 130 

brain region postmortem: dorsolateral prefrontal cortex (DLPFC). All ‘omic datasets used in our 131 

analyses were generated by members of the Accelerating Medicines Partnership - Alzheimer’s 132 

disease (AMP-AD) consortium and are available via restricted access through the AMP-AD 133 

knowledge portal, on Synapse (https://adknowledgeportal.synapse.org/). Further details can be 134 

found in Acknowledgements. 135 

RNA sequencing (RNAseq) 136 

Full details on gene-level expression data from bulk DLPFC tissue have been published [31]. 137 

Approximately 100 mg of DLPFC tissue were dissected from autopsied brains. Samples were 138 

processed in batches of 12–24 samples for RNA extraction using the Qiagen MiRNeasy Mini (cat 139 
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no. 217004) protocol, including the optional DNAse digestion step. RNA Samples were submitted 140 

to the Broad Institute’s Genomics Platform for transcriptome library construction following 141 

sequencing in three batches using the Illumina HiSeq (batch #1: 50M 101bp paired end reads) 142 

and NovaSeq6000 (batch #2: 30M 100bp paired end; batch#3: 40-50M 150bp paired end 121 143 

reads) [32]. A cut-off point of 5 for RNA Integrity Number (RIN) score was used for constructing 144 

the cDNA library [33]. The average sequencing depth was 50 million paired reads per sample. To 145 

achieve higher quality of alignment results, a paralleled and automatic RNAseq pipeline was 146 

implemented based on several Picard metrics (http://broadinstitute.github.io/picard/). 18,629 147 

features - full-length gene transcripts - from 1,092 samples remained after data preprocessing 148 

and quality control (QC). 149 

DNA methylation 150 

Tissues were dissected similar to gene-expression data, full details on DNA methylation data 151 

have been published [33]. DNA was extracted by the Qiagen QIAamp mini protocol (Part number 152 

51306). Probes with p-value >0.01 were removed at probe level QC if predicted to cross-hybridize 153 

with sex chromosomes and having overlaps with known SNP with MAF ≥0.01 (±10 bp) based on 154 

the 1000 Genomes database. Subject level QC methods including principal component analysis 155 

and bisulfite conversion efficiency. β-values reported by the Illumina platform were used as the 156 

measurement of methylation level for each CpG probe tagged on the chip; where missing values 157 

were imputed by the k-nearest neighbor algorithm (k=100). The primary data analysis was 158 

adjusted by age, sex, and experiment batch [33]. Due to the large number of features present for 159 

this data type, and to limit computational time, we only included the top 53,932 methylation peaks 160 

showing the greatest variability (Supplementary Figure 1A). To verify that this selection process 161 

did not impact our subtyping efforts, we performed sensitivity analysis for 5-modal integration 162 
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using all CpG sites - resulting subtype memberships were nearly identical (Supplementary 163 

Figure 1B). 164 

Histone H3K9 acetylation 165 

For the acetylation of the ninth lysine of histone 3 (H3K9ac), which is a marker of open chromatin, 166 

the Millipore anti-H3K9ac mAb (catalog #06-942, lot: 31636) was identified as a robust 167 

monoclonal antibody for the chromatin immunoprecipitation experiment. Similar to RNAseq and 168 

DNA methylation, 50 milligrams of gray matter was dissected on ice from biopsies of the DLPFC 169 

of each participant of ROS/MAP. Chromatin labeled with the H3K9ac mark and bound to the 170 

antibody was purified with protein A Sepharose beads [15]. To quantify histone acetylation, single-171 

end reads were aligned to the GRCh37 reference genome by the BWA algorithm after sequencing. 172 

Picard tools were used to flag duplicate reads. A combination of five ChIP-seq quality measures 173 

were employed to detect low quality samples: samples that did not reach (i) ≥15×106 uniquely 174 

mapped unique reads, (ii) non-redundant fraction≥0.3, (iii) cross correlation≥0.03, (iv) fraction of 175 

reads in peaks≥0.05 and (v) ≥6000 peaks were removed [15]. Samples passing QC were used to 176 

define a common set of peaks termed H3K9ac domains. H3K9ac domains of less than 100bp 177 

width were removed resulting in a total of 26,384 H3K9ac domains with a median width of 178 

2,829 bp available for 669 subjects. Full details on H3K9ac data can be found on Synapse 179 

(https://www.synapse.org/#!Synapse:syn4896408). 180 

Metabolomics 181 

Metabolomics data were generated by the Alzheimer’s Disease Metabolomics Consortium 182 

(ADMC; ADMC members list https://sites.duke.edu/adnimetab/team/), led by Dr. Rima Kaddurah-183 

Daouk [18–20]. Metabolomic profiling of postmortem brain was conducted at Metabolon (Durham, 184 

NC) with the Discovery HD4 platform consisting of four independent ultra-high-performance liquid 185 
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chromatography–tandem mass spectrometry (UPLC–MS/MS) instruments [16,17]. For the 186 

purpose of QC and better understanding of the underlying biological mechanisms, missing rates 187 

less than 20% on known metabolites and 40% on individuals were imposed. As SNF cannot 188 

handle missing data, random forest imputation [34] was then applied, resulting in 654 metabolites 189 

and 514 individuals. Full details on metabolomic assays and data processing can be found here 190 

(https://www.synapse.org/#!Synapse:syn26007830). The full metabolomics dataset and 191 

metadata can be accessed via the AMP-AD Knowledge Portal. 192 

Proteomics 193 

Prior to TMT labeling, samples were randomized by co-variates (age, sex, postmortem interval 194 

(PMI), diagnosis, etc.), into 50 total batches (8 samples per batch) [35]. Peptides from each 195 

individual (n=400) and the GIS pooled standard (n=100) were labeled using the TMT 10-plex kit 196 

(ThermoFisher 90406). Peptide eluents were separated on a self-packed C18 (1.9 μm, Dr. Maisch) 197 

fused silica column (25 cm × 75 μM internal diameter) by a Dionex UltiMate 3000 RSLCnano liquid 198 

chromatography system (Thermo Fisher Scientific) [35,36]. Peptides were monitored on an 199 

Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific). The mass spectrometer was set 200 

to acquire data in positive ion mode using data-dependent acquisition. Dynamic exclusion was 201 

set to exclude previously sequenced peaks for 20 s within a 10-ppm isolation window [35,36]. In 202 

this study we only include peptides and participants with a missing rate less than 20% followed 203 

by random forest imputation [37], resulting in 7,737 proteins and 386 individuals. Full details on 204 

proteomics data acquisition and processing can be found on synapse 205 

(https://www.synapse.org/#!Synapse:syn17015098). 206 
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Uniform multi-‘omic feature post-processing 207 

Due to differences in data feature preprocessing among the five selected ‘omic data modalities, 208 

we performed additional post-processing QC to determine whether technical and demographic 209 

covariates may be influencing global patterns of variability for each modality. To achieve this, we 210 

tested associations between age of death, sex, PMI, and study cohort (ROS vs. MAP) with each 211 

of the top 20 components from PCA for each ‘omic modality separately, as in previous ‘omic work 212 

in this cohort [31]. The proportion of variance explained by each PC from each of the five data 213 

modalities, and the corresponding associations of each PC with potential covariates, are shown 214 

in Supplementary Figures 2-6. Based on this assessment, we determined that four out of five 215 

data modalities showed significant associations of all four covariates within the first 10 principal 216 

components (RNAseq data had been post-processed already and residualized for each of these 217 

covariates in addition to modality-specific confounders). We therefore proceeded by residualizing 218 

all features from each modality according to a linear model including all four covariates. This 219 

conservative approach ensured that contributions of each modality to latent subgroups were not 220 

unbalanced by different representations of covariate-specific effects. We also performed 221 

iterations of the analysis without correction, finding very similar but not identical subgroup 222 

memberships for 5-modal integration (Supplementary Figure 7). 223 

Neuropathological assessment 224 

All selected postmortem neuropathological variables analyzed in this study have been previously 225 

published in detail [29,38]. In addition to the outcome of NIA-Reagan neuropathological diagnosis 226 

of Alzheimer’s disease [5,39], we examined 13 other individual pathologies: brainwide amyloid-227 

beta, diffuse and neuritic plaque counts, paired helical filament tau, neurofibrillary tangle count, 228 

TDP-43 proteinopathy stage (4 levels), large vessel cerebral atherosclerosis rating (4 levels), 229 

arteriolosclerosis, semiquantitative summary of cerebral amyloid angiopathy pathology (CAA; 4 230 
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levels), pathologic stage of Lewy body disease (4 stages), gross chronic cerebral infarcts (coded 231 

as binary; presence/absence of infarcts), and cerebral microinfarcts (coded as binary; 232 

presence/absence of infarcts). 233 

Cognitive performance and residual cognition (resilience)  234 

Scores from five cognitive domains (episodic memory, semantic memory, working memory, 235 

perceptual speed and perceptual orientation) were recorded at last study visit and summarized 236 

by z-scoring for a composite measure of global cognition, as described [40]. In our study, we 237 

defined the last available global cognitive measure as cognitive performance proximal to death. 238 

Cognitive slopes were also derived from the same set of z-scores over time to measure the 239 

longitudinal aspect of cognitive decline [41]. To assess the resilience component of an individual's 240 

cognitive capacity, we used the residual cognition approach [42,43]. Residual cognition was 241 

defined as the residuals of a linear model of global cognitive performance at last visit regressed 242 

on observed neuropathologies (beta-amyloid, neurofibrillary tangles, neuritic plaques, diffuse 243 

plaques, Lewy bodies, macroscopic infarcts, microscopic infarcts, atherosclerosis, 244 

arteriolosclerosis, TDP-43 and CAA).  245 

Statistical Analysis 246 

Subtype identification with Similarity Network Fusion (SNF) 247 

The Similarity Network Fusion (SNF) method was used to integrate multi-‘omic data modalities 248 

[27]. SNF first constructs sample-by-sample similarity matrices for each data modality separately 249 

and then iteratively updates and integrates these matrices via nonlinear combination until 250 

convergence is reached, generating a fused similarity network [44]. SNF does not require any 251 

prior feature selection, but fully imputed (non-missing) data is required. According to best 252 
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practices [35,37], random forest imputation was applied on both metabolomics and proteomics 253 

data to impute missing values. The ‘SNFtool’ R package (v2.2.0) was used for the network fusion 254 

pipeline, with recommended parameters K=40, alpha=0.5, and T=50 (where K is the number of 255 

neighbors used to construct the similarity matrices; alpha is a hyper-parameter used in the scaling 256 

of edge weights; T is the total number of algorithmic iterations). Spectral clustering, an 257 

unsupervised soft clustering method rooted in graph theory [27,45], is the default clustering 258 

method for ‘SNFtool’; it was applied to the full fused affinity matrix to cluster study participants 259 

into subtypes. Optimal cluster numbers were identified (2 to 8 clusters) by the rotation cost [46] 260 

and eigen-gap [45] methods. Data modalities contributing the most information to fused similarity 261 

matrices were computed by Normalized Mutual Information (NMI). NMI is a measure of relevance 262 

and redundancy among features [47], which helps to identify the data types that contribute most 263 

strongly to the fused network estimated by SNF [27].  264 

Assessment of internal subtype validity 265 

Due to the high dimensionality and heterogeneity of multi-‘omic data, assessments of cluster 266 

validity are critical to tackling potential biases of clustering algorithms toward particular cluster 267 

properties and to evaluate the probability that clusters do in fact exist [48,49]. Upon subtype 268 

identification, we conducted internal cluster stability analysis using the R package ‘clValid’, which 269 

measures cluster validity and stability through several metrics derived from resampling and cross-270 

validation. Metrics included in our studies are the average proportion of non-overlap (APN) and 271 

the average distance between means (ADM), which work especially well if the data are highly 272 

correlated, which is often the case in high-throughput genomic data [49–51]. For resampling, we 273 

pulled 80% of participants for a total of 300 random draws, in accordance with previously 274 

published work using the SNF pipeline [52] as well as other AD molecular subtyping efforts [8]. 275 

The adjusted Rand index (ARI) was used to measure the agreement between subtype 276 
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membership solutions (ranging from 0 to 1, where ARI = 1 indicating perfect agreement) [53]. Chi-277 

square statistics were also used to compare the independence between different subtyping 278 

solutions [54]. 279 

Identifying top individual features defining molecular subtypes 280 

In order to identify molecular features that differed most between subtypes after spectral 281 

clustering, we performed one-way ANOVA tests between each normalized feature from each 282 

multi-‘omic data modality and subtype groupings. P-values from F-tests were used as the 283 

measure of significance to rank features from each modality. Gene annotations for DNA 284 

methylation data were mapped using the UCSC genome browser [55], and histone acetylation 285 

peaks were annotated by Klein et al. [15].  286 

Association of subtypes with neuropathology, cognition, and residual 287 

cognition 288 

For each clustering solution, subtype membership was initially characterized by associations with 289 

13 neuropathologies and three cognitive measures described above using linear or logistic 290 

regression. Subtype membership for each participant was represented with dummy variables for 291 

inclusion in each model (nsubtypes-1). For models of neuropathology, co-variates included age at 292 

death, biological sex, educational attainment (years), PMI, study cohort, and APOE ε4 status. 293 

(A) Neuropathologies ~ Subtype + Age of death + Sex + Education + PMI + Study + APOE 294 

ε4 295 

When fitting regression models for cognitive outcomes, the model (B) was also adjusted for the 296 

measurement latency, which is equal to the time difference (in years) between the last study visit 297 

where cognitive performance was assessed and age of death.  298 
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(B) Cognitive Measurements ~ Subtype + Latency + Age of death + Sex + Education + PMI + 299 

Study + APOE ε4 300 

Omnibus F-tests of the hypothesis of equal outcome means (or probabilities for logistic models) 301 

across all subtypes were used to test the significance of subtype membership effects. P-values 302 

were Bonferroni adjusted for 16 tested outcomes, except where otherwise indicated. For subtypes 303 

with significant effects on global cognition (either at last visit or longitudinal slope), secondary 304 

analyses were performed (according to model B) for each subdomain of cognition separately.  305 

Sensitivity analyses for external validity across data modalities, sample sizes, 306 

and cluster numbers 307 

To better understand the added value of data integration in the context of molecular subtyping, 308 

we performed a set of sensitivity analyses to measure differences in neuropathological and 309 

cognitive relevance (external validity) of subtypes derived from different combinations of multi-310 

‘omic data modalities. Given that each iteration of these integrative analyses was limited to the 311 

sample size in which all data types were non-missing, we also assessed the effects of performing 312 

clustering in artificially limited sample subsets (i.e., where included non-missing data modalities 313 

permit a larger sample size). To achieve this, we defined a full search space of analytical pipeline 314 

configuration and parameter combinations for exhaustive modeling: 1) data modalities included 315 

(d; 31 possible combinations), 2) sample size (n; ranging from 111 to 1,092 participants, including 316 

31 possible sample sizes each corresponding to a different data modality combination), and 3) 317 

cluster number (c; ranging from 2-5, the extremes of values observed in our subtyping analyses). 318 

This resulted in a total of 844 unique combinations of d, n, and c. To evaluate external validity, 319 

we performed omnibus tests of the association of subtype membership for each analytical 320 

iteration with the set of neuropathologies and cognitive measures, as previously. To provide some 321 

generalized insight into the effects of manipulating design parameters on our association 322 
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strengths, second-level analyses were performed by relating each pipeline parameter to observed 323 

omnibus model significance for each neuropathology and cognitive outcome (j). For these 324 

analyses, the effects of c (and cf, the same parameter but treated as a categorical variable), n, 325 

and a new parameter, m, representing the number of data modalities being fused, were tested 326 

independently, according to the following formulae: 327 

(C) -log(pj) ~ m , -log(pj) ~ n, -log(pj) ~ c 328 

 329 

Results  330 

We analyzed data from a total of 1,314 unique participants from the Religious Orders Study and 331 

Memory and Aging Project (ROS/MAP) with at least one available multi-‘omic data modality and 332 

non-missing clinical and neuropathological data. Sample demographics are summarized in Table 333 

1. The number of participants with different degrees of overlapping multi-‘omic characteristics 334 

ranged from n=111 (all five data types) to 1,092 (RNAseq only); all overlaps are shown in Figure 335 

1A. 336 

Fully integrated five-modal network identifies two molecular subtypes 337 

nominally associated with neuritic plaque burden 338 

First, we aimed to determine whether molecular subtypes derived from all five multi-‘omic data 339 

modalities were informative of postmortem neuropathology and antemortem cognitive decline. 340 

SNF yielded an optimal solution of two molecular subtypes (Figure 1B) in 111 individuals with all 341 

five ‘omic modalities (nS1=53, nS2=58). Both the rotation cost and eigen-gap methods elected two 342 

as the optimal number of clusters. These subtypes were weakly associated with neuritic (praw= 343 
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0.09) and diffuse plaque counts (praw=0.03), though these associations did not survive correction 344 

for multiple testing. In addition, no significant associations were observed for cognitive 345 

performance at last visit, rate of cognitive decline, or residual cognition (Figure 1C). 346 

Despite the lack of significant associations of molecular subtypes with pathology and cognition, 347 

the fully fused network demonstrated substantial internal stability (APN=8.7%, ADM=0.02; 348 

Supplementary Figure 8). We therefore proceeded to identify the data modalities contributing 349 

most to the fused network by normalized mutual information (NMI) (Supplementary Table 1). 350 

We found that histone acetylation (NMI=0.38), DNA methylation (NMI=0.18) and RNAseq 351 

(NMI=0.15) were the top contributors to the fused network (to a substantially greater degree than 352 

proteomic (NMI=0.04) and metabolomic modalities (NMI=0.05)). The top 10 individual features 353 

contributing to the fused network from the top contributors are summarized in Supplementary 354 

Table 2. Based on the importance of the top three data modalities, secondary analysis was 355 

conducted integrating only histone acetylation, DNA methylation, and RNAseq, which permitted 356 

subtyping of a much larger sample size with non-missing overlapping data (n=513). 357 

Subtypes derived from three-modal integration are associated with 358 

cognitive performance proximal to death and longitudinal cognitive 359 

decline 360 

In secondary analyses with three data modalities, the eigen-gap method elected three molecular 361 

subtypes as the optimal clustering solution, while rotation cost elected five. We therefore 362 

evaluated both solutions by comparing membership overlap, differences in internal validity metrics, 363 

and associations with neuropathology and cognition. A strong overlap was identified between 364 

subtype memberships in the 3- and 5-subtype solutions (chi-square p=2.2x10-16, ARI=0.76; 365 

Figure 2A, D), whereby the large subtype 3 (n=377) from the 3-subtype solution contained 81.2% 366 
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of the participants assigned to subtypes 3, 4, and 5 from the 5-subtype solution. Internal cluster 367 

stability was compared between 3-subtype and 5-subtype solutions (Figure 2B, C); both APN 368 

and ADM measures were better for the 3-subtype solution (APN=9.6%, ADM=0.01), though the 369 

5-subtype solution also demonstrated cluster stability well above random chance (APN=23.1%, 370 

ADM=0.02) (Figure 2E, F). 371 

In tests of external validity, and tests of association with neuropathological and cognitive 372 

measures, subtype membership was significantly associated with global cognition at last visit 373 

(pBonf=0.022) and rate of cognitive decline (pBonf=4.2x10-4) for the 5-subtype solution after multiple 374 

testing correction (Figure 2G). In contrast, the 3-subtype solution was preferred by internal cluster 375 

stability metrics, and significant associations with neuropathology or cognition were not observed 376 

(Figure 2G). We therefore probed further into the 5-subtype solution. 377 

Cross-tabulation of three-modal and five-modal subtype memberships was carried out for only 378 

the 111 individuals included in the full five-modal analysis above, finding substantial overlap (chi-379 

square p=8.1x10-9, ARI=0.60; Figure 3A). This demonstrated that the SNF procedure was 380 

consistent across sample size in terms of defining core cluster memberships when the most 381 

influential data types were combined.  382 

In assessments of the mean differences in global cognition and the ratio of cognitive decline 383 

across 5 subtypes identified, subtype 5 had the worst global cognitive performance at last visit 384 

and the fastest rate of cognitive decline (Figure 3B). This difference was significant in post hoc 385 

pairwise tests against all other subtypes, except for subtype 2 (Figure 3C). Subtype 4 exhibited 386 

the best average cognitive performance and slowest decline (Figure 3B, C). Notably, the 387 

association observed with cognitive decline (pBonf=5.9x10-3) was strong enough to survive 388 

correction for multiple testing across combined 5-subtype and 3-subtype association test sets (32 389 

tests) (Figure 2G). Given the significant association of subtypes with global cognition at last visit 390 
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and rate of global cognitive decline, we performed follow-up analysis on five cognitive subdomains. 391 

For rate of cognitive decline, subtypes were most strongly associated with perceptual orientation 392 

(pBonf=8.0x10-5), perceptual speed (pBonf=0.004), and semantic memory (pBonf=0.007) 393 

(Supplementary Figure 9A). Specifically, the best and worst cognitive performance values were 394 

observed on average in subtypes 4 and 5, respectively (Supplementary Figure 9B-F). A similar 395 

pattern was also identified from cognition measured at last visit (Supplementary Figure 9G-L).  396 

Molecular features defining three-modal subtypes 397 

To describe the molecular signals most strongly associated with our observed subtypes, we first 398 

identified the top features contributing to the fused network from each data modality by ANOVA 399 

(Supplementary Table 3). The top 5 histone acetylation features exhibited the strongest within-400 

subtype homogeneity and between-subtype variability (consistent with the observation that 401 

histone acetylation had the largest NMI of each modality Supplementary Table 1). The most 402 

extreme values for acetylation were observed in subtypes 1 (lowest levels) and 2 (highest levels) 403 

at peaks annotated to ZNF219, TMEM153, LSM14A, PSMD11, CDK5R1, MYD1D, ALDH3A2, 404 

APBB2, and others (Figure 3D). Subtype 5, which was characterized by the fastest rate of 405 

cognitive decline, had intermediate acetylation of these peaks (along with subtype 4, which are 406 

largely represented by subtype 3 in the 3-subtype solution). For DNA methylation, CpG sites 407 

showed differential methylation at sites annotated to RB1, LPAR6, and RP11-83B20.10, as well 408 

as intergenic regions on chromosome 5 and 7, though no consistent pattern related to the 409 

cognition-associated subtype 5 was observed (Figure 3F). In contrast, the top subtype-410 

associated RNAseq features revealed lower levels of PCYOX1L and NECTIN1, as well as higher 411 

levels of SLC5A3, PPP4R2, and PPP1CC in subtype 5 specifically compared to all other subtypes 412 

(Figure 3E). 413 
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Comparison with single modality subtypes and sensitivity analysis 414 

Finally, we compared clinical and neuropathological associations of these three-modal subtypes 415 

with those for subtypes derived from each of the modalities analyzed individually. We found that 416 

these integrated subtypes had unique associations with cognitive performance and decline. For 417 

example, subtypes derived from RNAseq alone (n=1,092) were significantly associated with 418 

amyloid-beta (pBonf=0.018) and neuritic plaque burden (pBonf =2.3x10-3), but not with global 419 

cognition at last visit (pBonf=0.28) or rate of cognitive decline (pBonf=1.0). In fact, none of the 420 

unimodal subtypes showed more significant associations than three-modal, 5-cluster subtypes on 421 

global cognitive performance (Figure 3G). 422 

In sensitivity analyses, substantial variability in external validity was observed across different 423 

selections of sample size, data modalities, and cluster number. Supplementary Figure 10 424 

illustrates the full set of results for selected amyloid and cognitive outcomes, which were the 425 

outcomes demonstrating the most significant associations with subtype membership in our 426 

analyses above (full summary statistics from these analyses are available in Supplementary 427 

Table 4). Supplementary Figure 11A shows the meta-regression results for the influence of 428 

sample size (n), number of data modalities (m), and cluster number (c) on statistical associations 429 

with all 16 tested phenotypes. Generally, less significant associations were captured as more data 430 

modalities were integrated and sample size decreased (see example of beta-amyloid in 431 

Supplementary Figure 11B), though exceptions were noted, such as for Lewy bodies (where 432 

additional modalities on average increased external validity; meta praw=2.5x10-7; Supplementary 433 

Figure 11C). Comparatively, cluster number selection had less of an impact overall on external 434 

validity. 435 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.16.516806doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.16.516806
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

20 

 436 

Discussion 437 

We used up to five ‘omic data modalities acquired from the human postmortem prefrontal cortex 438 

simultaneously to detect molecular subtypes of aging using a high-dimensional, unsupervised 439 

approach. We identified several subtypes that were significantly associated with individuals' rates 440 

of cognitive decline and levels of beta-amyloid neuropathology. In particular, molecular subtypes 441 

derived from a three-modal integrated network combining gene expression (RNAseq), H3K9ac, 442 

and DNA methylation peaks yielded subtypes of participants with significantly faster decline in 443 

global cognition, specifically in domains of perceptual orientation, perceptual speed, and semantic 444 

memory. To the best of our knowledge, associations between multi-‘omic subtypes and cognitive 445 

performance have not previously been identified, and most subtyping studies have focused only 446 

on individuals with confirmed, late-stage AD [56]. Our findings also empirically quantify the relative 447 

information provided by different ‘omic modalities to participant similarity networks. 448 

In fully integrated analyses, combining all five available modalities, we identified two molecular 449 

subtypes which exhibited non-significant external validity with respect to neuropathology and 450 

cognition. We did not explore this result much further for three reasons: 1) both internal cluster 451 

validity metrics (eigen gap and rotation cost) elected the same 2-subtype solution, 2) the sample 452 

size for full five-modal integration analysis was small (n=111), and 3) NMI calculations showed 453 

substantial heterogeneity in the amount of information contained within each modality when 454 

considering patient similarity networks in this sample subset. The small sample size was likely a 455 

key limitation; this was confirmed by sensitivity analyses showing that even for single data 456 

modalities, when the sample was restricted to the n=111 group, there were virtually no observed 457 

associations with any cognitive or neuropathological measures. 458 
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By comparing both integrated molecular subtypes and unimodal subtypes from spectral clustering, 459 

we found that subtypes from RNAseq alone were significantly associated with neurofibrillary 460 

tangles and amyloid-beta. Such associations align with  findings from previous subtyping work in 461 

only individuals suffering from dementia [8], and demonstrate the reliability of the method we used 462 

for subtyping. Our analysis also emphasizes the importance of integrating epigenetic data with 463 

gene expression studies seeking to identify key molecular drivers of AD [57]. Variability in gene 464 

expression alone cannot determine the current status of diseases [58,59]; even so, genetic and 465 

epigenetic studies still tend to be conducted separately [57]. This study serves as evidence that 466 

integrating multiple epigenetic data types with gene expression data can lead to the discovery of 467 

novel molecular subtypes associated with cognition. 468 

In describing the top molecular features that distinguish our subtypes from one another, we 469 

identified epigenetic marks and RNA transcripts which map to genomic loci previously associated 470 

with AD and cognitive aging. Of particular interest were those loci that differentiated cognition-471 

associated subtype 5 from all other subtypes. In this subtype, we found lower levels of 472 

Prenylcysteine Oxidase 1 Like (PCYOX1L), a gene which has been previously associated with 473 

AD [60–63], and has been identified as an AD target gene by the Agora platform 474 

(https://agora.adknowledgeportal.org/) with strong evidence for RNA down-regulation across 8 475 

brain regions and proteomic down-regulation across four regions. Nectin cell adhesion molecule 476 

1 (NECTIN1) [64] was similarly downregulated in subtype 5, and also showed RNA and protein-477 

level dysregulation in the Agora database, confirming that the multi-modal SNF pipeline was 478 

capable of extracting some known signals with neuropathological significance.  479 

Among the top genes with higher average levels in subtype 5 were SLC5A3 [65], PPP4R2, and 480 

PPP1CC. PPP4R2 and PPP1CC code for enzymes in the serine/threonine-protein phosphatase 481 

family and are well-known contributors to canonical AD pathological cascades [66]. Interestingly, 482 

PPP4R2 has also been identified as a top hypomethylated gene of interest in a methylome-wide 483 
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association study of Parkinson’s disease [67], an illness which is also often accompanied by 484 

cognitive decline [68]. Other top contributors to the three-modal subtypes, such as PSMD11 [69], 485 

APBB2 [70], and TMEM253 [71] are also known to be involved in the development of AD 486 

pathology. TMEM253 is also linked with mild cognitive impairment (MCI) via predicted gene 487 

expression based on genetic variation (TWAS) [71]. However, some top genes (e.g. ZNF219, a 488 

Kruppel-like zinc finger gene, has been associated with a-synucleinopathy [72] and has binding 489 

sites in the MAPT gene [73]). In contrast, these genes have not yet been associated with AD or 490 

cognitive aging, and our method provides a full resource of ranked importance for all ‘omic 491 

features studied, which provides novel targets for future study. 492 

There are several limitations to consider when interpreting our results. First, a common challenge 493 

in unsupervised clustering endeavors, we did not achieve consensus on optimal clustering 494 

solutions in our three-modal subtyping analysis. In our case, we not only examined the optimal 495 

cluster number from two established methods especially suited to the SNF pipeline, but also 496 

tested cluster validity by multiple resampling measures, as there is no ground truth to compare to, 497 

and important information may be missed by heuristic methods alone [74],[75]. In our analysis, 498 

the disagreement between optimal cluster number as elected by internal stability measures vs. 499 

external cognitive and neuropathological information also demonstrates the importance of 500 

transparency in the presentation of clustering analyses; in our case, both the 3- and 5-subtype 501 

solutions had significant overlaps in identity, though only the fifth cluster revealed a significant 502 

cognitive deficit. We again emphasize that these effects on cognition would survive correction for 503 

multiple testing in a full pool of tests combining both 3- and 5-subtype solutions. 504 

Second, differences in data preprocessing methods for our five ‘omic data modalities may have 505 

impacted downstream clustering, despite our efforts to control for technical and biological 506 

confounders at both the individual feature level and at the overall sample level in models testing 507 

external validity. Third, ROS/MAP is intrinsically limited by its inclusion of predominantly 508 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.16.516806doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.16.516806
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

23 

individuals of European-Caucasian ancestry, with an overrepresentation of biologically female 509 

participants [28–30]. Finally, ROS/MAP is known to be a resilient cohort of elderly individuals 510 

including some members of the religious communities of Illinois. Even though we modeled study 511 

as a covariate in all analyses to mitigate variability due to large lifestyle differences, results derived 512 

from such a study population might not be applicable to the entire population. Future studies will 513 

be required using populations with increased diversity with respect to ancestry and socio-514 

demographics. This will be the means to achieve a better understanding of the degree to which 515 

our findings can be applied more broadly beyond European-Caucasians. 516 

 517 

List of Abbreviations 518 

AD  late-onset Alzheimer’s disease 519 

ADM  average distance between means 520 

AMP-AD Accelerating Medicines Partnership for Alzheimer's Disease 521 

APN   average proportion of non-overlap 522 

ARI  adjusted Rand index 523 

CAA  cerebral amyloid angiopathy 524 

DLPFC dorsolateral prefrontal cortex 525 

H3K9ac acetylation at the 9th lysine residue of the histone H3 protein 526 

MAP  Rush Memory and Aging Project 527 

MCI  mild cognitive impairment 528 

NMI  Normalized Mutual Information 529 

PCA  Principal component analysis 530 

PMI  Post mortem interval 531 

RNAseq RNA sequencing 532 
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ROS  Religious Orders Study 533 

SNF  Similarity Network Fusion 534 

TMT  tandem mass tag 535 
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Tables 785 

Table 1. Table summarizing demographic data and the availability of multi-‘omic data modalities 786 

stratified by NIA-Reagan diagnosis criteria in ROS/MAP 787 

Total n = 1,314 individuals with post-mortem measurement 

 
Non-AD (n=475) AD (n=838) Total 

Age at Baseline 79.62 (7.25) 81.46 (6.62) 80.81 (6.91) 

Age of Death 87.55 (7.12) 90.27 (6.11) 89.28 (6.62) 

Biological Sex (0: female, 1: 

male) 

38.95% 29.24% 32.75% 

Post Mortem Interval 8.32 (6.31) 8.32 (5.92) 8.32 (6.06) 

APOE E4 (0: without E4, 1: 

with E4) 

13.05% 32.36% 25.74% 

Year of Education 16.34 (3.55) 16.10 (3.55) 16.19 (3.55) 

Proportion of participants with non-missing data for each data type 

RNA-Seq 84.84% 84.22% 83.17% 

DNA Methylation 61.26% 53.46% 56.28% 

Histone Acetylation 53.68% 49.28% 50.88% 

Metabolomics 36.00% 40.93% 39.15% 

Proteomics 31.79% 25.89% 28.03% 

All participants in the sample space have at least one ‘omic data modality and phenotype data available, 788 

mean and standard deviation is recorded. 789 
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Figures 790 

 791 

Figure 1. Molecular subtypes derived from 5 multi-‘omic data modalities via SNF. A) Overlapping 792 

sample sizes across all combinations between five data modalities were examined using upset plot. B) 793 

Unimodal subtypes were identified from affinity matrices using spectral clustering accordingly from 111 794 

overlapping samples (RNAseq: three subtypes, DNA methylation: two subtypes, histone acetylation: two 795 

subtypes, proteomics: two subtypes, metabolomics: three subtypes). Fully integrated subtypes were 796 

illustrated in the affinity matrix as well. C) Associations of fully integrated subtype memberships and 16 age-797 
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related neuropathologies and cognitive measurements were examined by omnibus F-tests for linear 798 

regression models. Y-axis shows significance of association (-log10 transformed raw p-values). The black 799 

horizontal line illustrates an unadjusted p-value threshold at 0.05, whereas the purple horizontal line 800 

demonstrates Bonferroni-adjusted p-value thresholds for 16 tests (praw=3.1x10-3).  801 
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 802 

Figure 2. Two subtyping solutions derived from histone acetylation, DNA methylation and RNAseq 803 

were tested against each other both internally and externally. A) 3-subtype solution and 5-subtype 804 

solution derived from 3-modal integrated networks were associated with each other. B-D) Subtypes were 805 

identified from affinity matrices using spectral clustering, and overlapped with each other E) Histograms for 806 

the distribution of ADM generated from 300 random sub-samples for both 3-subtype and 5-subtype 807 

solutions. F) Histograms for the distribution of APN generated from 300 random sub-samples for both 3-808 

subtype and 5-subtype solutions. G) Associations of 3-modal integrated memberships and 16 age-related 809 

neurobiological traits were examined by omnibus F-tests for linear regression models. Y-axis shows 810 
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significance of association (-log10 transformed raw p-values). The black horizontal line illustrates an 811 

unadjusted p-value threshold at 0.05, whereas the red and blue horizontal lines demonstrate Bonferroni-812 

adjusted p-value thresholds for 16 and 32 tests (praw=3.1x10-3 and praw=1.6x10-3), respectively. Two 813 

subtyping solutions for molecular subtyping were differentiated by color.  814 
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 815 

Figure 3. Molecular subtypes derived from histone acetylation, DNA methylation and RNAseq were 816 

tested against age-related neuropathologies and cognitive measurements. A) Subtypes derived from 817 
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three-modal integrated networks were associated with the fully integrated subtypes. B) Consensus 818 

associations of three-modal integrated subtypes and rate of cognitive decline. Y-axis shows standardized 819 

beta coefficients estimated from linear regression, where subtype 1 was used as the baseline category 820 

(error bars show standard deviation from standardized linear regression models). C) Difference in mean 821 

value of rate of cognitive decline between subtypes by Tukey’s HSD. D-F) Boxplots showing the z-822 

normalized values of the top 5 features contributing to the three-modal fused network from each input data 823 

modality. G) Associations of 3-modal integrated and unimodal subtype memberships with 824 

neuropathological and cognitive traits were examined by omnibus F-tests for linear regression models. Y-825 

axis shows significance of association (-log10 transformed raw p-values). The black horizontal line illustrates 826 

an unadjusted p-value threshold at 0.05, whereas the red and blue horizontal lines demonstrate Bonferroni-827 

adjusted p-value thresholds for 16 and 32 tests (praw=3.1x10-3 and praw=1.6x10-3), respectively. Data 828 

modalities used for molecular subtyping were differentiated by color. 829 
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Fully Integrated Subtypes

A   Sample Overlaps by Data Modality

C

B   SNF on Five Data Modalities, 2 Cluster Solution
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