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ABSTRACT 

Significant recent advances in structural biology, particularly in the field of cryo-electron 

microscopy, have dramatically expanded our ability to create structural models of proteins 

and protein complexes. However, many proteins remain refractory to these approaches 

because of their low abundance, low stability or – in the case of complexes – simply not 

having yet been analysed. Here, we demonstrate the power of combining cross-linking mass 

spectrometry (XL-MS) with artificial intelligence-based structure prediction to discover and 

experimentally substantiate models for protein and protein complex structures at proteome 

scale. We present the deepest XL-MS dataset to date, describing 28,910 unique residue 

pairs captured across 4,084 unique human proteins and 2,110 unique protein-protein 
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interactions. We show that integrative models of complexes driven by AlphaFold Multimer 

and inspired and corroborated by the XL-MS data offer new opportunities to deeply mine the 

structural proteome and interactome and reveal new mechanisms underlying protein 

structure and function. 
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INTRODUCTION 

Proteins are the primary effectors in biology. Their function is determined in large part by 

their three-dimensional structure and by the protein-protein interactions (PPIs) that they 

form. A system-wide understanding of protein structure and interactions has thus been a 

long-standing goal. 

To this end, the protein-protein interactome has been systemically catalogued using several 

approaches, including yeast two-hybrid (Y2H), affinity-purification mass spectrometry (AP-

MS) and by the Bio-ID proximity assay and variants (reviewed in (1)). These methods have 

been very successful in identifying both direct and indirect protein interactions and at least 

one interactor has been curated for almost 50% of the human proteome (2). However, these 

data do not provide structural or mechanistic information on interactions and do not 

necessarily analyse proteins interacting in their native state. These significant shortcomings 

call for additional strategies to better define the interactome. 

Despite intensive efforts in the fields of X-ray crystallography, nuclear magnetic resonance 

(NMR) and cryo-electron microscopy (cryo-EM), only 35% of human proteins have any 

representation in the Protein Data Bank (PDB) (3, 4). Many are only partially resolved: only 

17% of residues in human proteins are present in the PDB and experimental structures exist 

for only 6% of known human protein-protein interactions (5). Furthermore, the heterologous 

overexpression and purification of proteins are often necessary to produce enough material 

for these techniques, with only 5% of the human proteins in the PDB produced from native 

sources (3, 4). This situation raises possible concerns about the integrity of structures and 

complexes that are generated using such approaches. 

In lieu of experimental structures, machine learning-based structural modellers such as 

AlphaFold (6) have been shown to be highly accurate under controlled tests (7) and have 

greatly expanded the coverage of structural proteomes across a range of species (8, 9). 

However, because the training dataset (the PDB) has a very low representation of truly 
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native structures, the accuracy of these models and the question of how to assess them 

remain to be determined. 

Cross-linking mass spectrometry (XL-MS) provides a means to assay native protein 

structure and protein-protein interactions in a parallel fashion (reviewed in (10, 11)). 

Chemical cross-linkers containing at least two reactive groups are introduced into a protein 

sample to covalently link amino acids within spatially constrained reactions. The 

identification of cross-linked peptides via mass spectrometry enables the definition of the 

linked residues, providing conformational constraints for a protein chain or PPI interface. 

These constraints, despite having low effective resolution, can be used to validate 

experimental structures, help inform modelling of proteins with unknown structures, and 

guide docking studies of PPIs (reviewed in (10)). Taking into consideration the relatively low 

protein sample requirements, XL-MS can provide a first view of the structures and 

interactions of many poorly studied or less accessible proteins (12). 

Recent technical developments in XL-MS have established its use at scale and in native 

contexts such as in intact human cells (13, 14) and even mammalian tissues (15). However, 

the complexity and dynamic range of the proteome and interactome leads to under-

sampling. One means to achieve better proteome coverage whilst preserving in vivo or near-

in vivo proteoform states is to isolate and then cross-link intact organelles (16, 17). 

Furthermore, the use of diverse cross-linker reactivities can increase the density of structural 

constraints by sampling a larger protein sequence space (18, 19). 

To establish the utility of large-scale XL-MS for the characterisation of the structural 

proteome and interactome, we have generated a high-coverage and high-density cross-link 

dataset for a cultured human cell line. Fractionated organelles were cross-linked with three 

different chemistries (DHSO (20), DSSO (21), DMTMM (22)), and a multi-step analytical 

pipeline used to extensively fractionate and identify cross-linked peptides. We identified 

91,709 cross-link spectral matches (CSMs) representing 28,910 unique residue pairs across 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2022. ; https://doi.org/10.1101/2022.11.16.516813doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.16.516813


4,084 proteins and 2,110 protein-protein interactions. This resource is the largest reported to 

date for any species.  

Benchmarking against the protein structure and PPI literature demonstrates the integrity and 

utility of our dataset, which provides the first orthogonal validation for many high resolution 

(but in vitro) experimental structures. In parallel, our cross-links also identify new PPIs and 

confirm many PPIs that were previously only identified using systems-level approaches. 

Importantly, our data also provide new structural information for a broad range of proteins 

and PPIs, including proteins that lack any experimental characterisation. We demonstrate 

how cross-links can be utilised to evaluate, validate, and support structure modelling 

platforms such as AlphaFold. Overall, we conclude that XL-MS in combination with structural 

modelling pipelines can produce highly accurate models to extend our understanding of the 

structural proteome, including in the context of the interactome.  
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RESULTS  

Orthogonal cross-linkers, sample enrichment and improved database search 

strategies generate the deepest cross-linked proteome to date 

To provide deep coverage of the human structural proteome, we performed crude 

subcellular fractionation of HEK293 cells and cross-linked these fractions in two reactions 

with three orthogonal cross-linkers: DHSO (20), DSSO (21), DMTMM (22). Following protein 

digestion, we fractionated the resulting peptides using sequential offline size exclusion 

chromatography and high pH reversed-phase liquid chromatography (Figure 1A). 

From mass spectrometry, we identified 4,084 unique proteins linked by 28,910 unique cross-

linked residue pairs (which we define as ‘unique residue pairs’, or URPs) from 91,709 cross-

link spectral matches (CSMs) (Figure 1B, C; Supp Table 1). These URPs can be further 

classified into 3,785 and 25,125 inter-protein (including homo-oligomers) and intra-protein 

URPs, respectively. 

Our URP list was generated using stringent quality control measures (Methods, Supp 

Figure 1, (16)). These enabled the control of the false discovery rate (FDR) to ≤1% at the 

URP level for both intra-protein and inter-protein links, and 1.9% at the protein-protein 

interaction (PPI) level for inter-protein links. All three cross-linkers produced inter- to intra-

protein URP ratios in line with theoretical expectations for their maximum distance 

constraints (23), indicating an appropriately controlled FDR. 

To our knowledge this is the largest cross-linking mass spectrometry (XL-MS) dataset to 

date, containing more than twice the number of URPs of the next largest studies (14, 24, 

25). Protein abundance data from the PaxDB database (26) revealed that we sampled the 

proteome at a significantly deeper level than previous work. We identified 1.6-fold more 

proteins than the previous benchmark (14), and the median abundance of a cross-linked 

protein in our dataset was 1.8-fold lower (Supp Figure 2A). Furthermore, the density of 
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cross-links defining each protein-protein interaction and intra-linked protein was high (Supp 

Figure 2B). Overall, these demonstrate that the dataset is deep and of high quality. 

Most proteome-wide XLMS studies to date have relied on N-hydroxysuccinimide-based 

(NHS) cross-linkers, which primarily target the ε-amino side chain of lysine (K) residues (21). 

Although reactions with the hydroxyl side chains of serine (S), threonine (T) and tyrosine (Y) 

are also possible (27, 28), they are often not considered due to the significant (and in most 

cases, prohibitive) increase in computation time during peptide database searches. In 

contrast to most other comparable studies, we included possible cross-links to S/T/Y during 

in our analysis of DSSO spectra. This strategy yielded 1.3-fold more DSSO URPs compared 

to K-K cross-link searching alone (9,832 vs 7,829 URPs). Linkages involving S/T/Y residues 

made up 24% of all DSSO URPs (Supp Figure 3A), consistent with previous smaller scale 

studies (27, 28). Many S/T/Y linked residues were initially localised to a nearby K residue 

within the same peptide (Supp Figure 3B). For many of these peptides, their identification 

scores significantly improved when S/T/Y reactivity were considered (Supp Figure 3C), 

indicating an improved accuracy in the localisation of cross-linking sites. It also enabled us to 

identify ~20% more PPIs than a K-K-only search strategy (1,464 rather than 1,243 PPIs). 

Our data indicate that different cross-linker chemistries might be better suited to certain 

subcellular niches. The proportion of URPs arising from each cross-linker varied significantly 

between organellar fractions (nucleus, cytoplasm, mitochondria and Golgi). DSSO was the 

most effective at cross-linking the nuclear fraction, whereas DHSO was most effective for the 

mitochondrial and Golgi fractions (Supp Figure 4A). These differences might reflect 

variation in amino acid composition, local pH or even the solubility or permeability of a cross-

linker in a given compartment. We also noted that the nuclear fraction produced a 

significantly higher proportion of inter-protein URPs than any other fraction, suggesting 

denser protein packing or better preservation of protein complexes (Supp Figure 4B). 
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Benchmarking against experimental structures demonstrates the high quality of the 

dataset 

We next used structures from the PDB (4) to assess the quality of our data. Forty-three 

percent (9,152) of our 21,367 unambiguous URPs (i.e., URPs from cross-linked peptides for 

which each peptide sequence could be uniquely mapped to a single UniProt accession 

code) could be mapped onto 10,332 unique experimental structures (Supplementary Table 

2). Euclidean distances (Cα-Cα) were calculated using Xwalk (29) and URPs considered 

satisfied if their minimum mapped distance on any PDB entry was within the maximum 

theoretical distance of 30 Å for DHSO (20) and DSSO (21), and within 25 Å for DMTMM (22, 

30). 

Considering only intra-chain URPs, 7,860 URPs mapped onto 10,110 structures of 1,406 

proteins, of which 99% (DHSO), 97% (DSSO), and 89% (DMTMM) were satisfied (Figure 

2A, Supplementary Table 2). In contrast, randomly sampled residue pairs within each 

structure met the distance cut-offs in only ~40–60% of cases (Figure 2A). For inter-chain 

linkages (including homo-dimeric URPs from overlapped peptide sequences), 1,292 URPs 

describing 519 unique PPIs were mapped onto 2,274 distinct PDB entries. We observed 

slightly lower distance satisfaction rates of 90% for DSSO, 72% for DMTMM, and 96% for 

DHSO (consistent with previous work (31)), whereas randomly sampled inter-chain URPs 

had very low satisfaction rates (~7–12%). 

It is also notable that our cross-linking was carried out under significantly more native-like 

conditions than those typically used for the determination of protein structures. Structures 

are generally determined from heterologously expressed polypeptides that often comprise 

only a fraction of the full protein sequence and are determined in the absence of interactions 

with partners. The remarkably high overall satisfaction rates we observe therefore provide 

large-scale experimental corroboration of thousands of in vitro experimental structures.  
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Cross-links capture and confirm alternative structural conformers 

We noted many URPs that could map to more than one PDB structure for the same protein 

and therefore asked whether our data could provide insights into possible conformational 

plasticity of these proteins. We examined 4,857 URPs that could be mapped onto multiple 

PDB structures and compared the minimum and maximum Euclidean distances for these 

URPs across all of their PDB entries (Figure 2B, Supplementary Table 2). Most URPs 

(85.4%, ‘Always satisfied’ in Figure 2B top panel) were always mapped within the cross-

linker cut-off distances regardless of PDB structure.  

In contrast, although 529 URPs were not satisfied in any available structure, we observed 

178 URPs that were satisfied in some but not all structures (‘Never Satisfied’ or ‘Variably 

Satisfied’, respectively, Figure 2B). For example, the URP K1344-K1735 in the pre-mRNA 

splicing factor 8 (Uniprot: Q6P2Q9) differed dramatically in distance depending on which 

specific precursor subcomplex of the spliceosome it was mapped onto. The two residues 

show a distance of 71 Å in the structure of a spliceosome core variant that contains the 

U2/U6 catalytic RNA network (PDB: 6FF7 (32)), whereas the same residues are 14 Å apart 

in a structure lacking these RNAs (PDB: 7ABF, (33), Figure 2B inset). In another example, 

the URP E673-K890 in the DNA replication licensing factor MCM2 (UniProt: P49736) shows 

a distance of 10 Å when the complex that it is a part of – the CDC45-MCM-GINS helicase – 

is not engaged in the replisome (PDB: 6XTX (34)) and 39 Å when it is engaged in the 

replisome (PDB: 7PFO (35)) (Supp Figure 5). These observations suggest that URPs that 

are not satisfied in currently available protein structures might in some cases flag the 

existence of alternative conformations or architectures that are yet to be experimentally 

characterised. 

Alternative conformations can arise from the formation of distinct complexes, as above, or 

from changes in post-translational modifications (PTMs). We observe that the never satisfied 

URPs tended to fall in proteins that are more densely post-translationally modified according 
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to the PhosphoSitePlus database (36) compared to those satisfied in all PDB structures 

(Figure 2C; p < 2.2 × 10-16). This finding underscores the fact we are probing endogenous 

proteins in a near-cellular environment, and therefore probably capturing protein 

conformations and complex architectures that more closely reflect the in vivo state than do 

experimental high-resolution structures of isolated polypeptides expressed from 

heterologous systems (e.g. E. coli) that do not possess relevant human PTMs. 

As noted above, we were unable to map more than half (~53%) of our unambiguous URPs 

due to the absence of cognate experimental structures. Because intrinsically disordered 

regions (IDRs) are resistant to structure determination, we investigated whether our 

unmappable URPs resided in such regions. Surprisingly, more than half of the URPs without 

PDB resolution did not lie in a disordered region, as annotated by a consensus of predictions 

curated in MobiDB (37) (Figure 2D). These URPs therefore likely define experimental 

distance restraints for ordered regions within structures that are either difficult to resolve 

(because of conformational dynamics, recalcitrance to purification efforts or highly contextual 

conformations) or simply involve unstudied proteins.  

 

Cross-links enable the high-throughput experimental assessment of protein structure 

predictions 

Next-generation structural modelling programs such as AlphaFold2 (6) have generated 

enormous recent interest because of their performance in controlled environments such as 

CASP14 (7). However, the accuracy of such structural predictions for proteins in their native 

cellular context is less well-established. The near-native structural constraints provided by 

our cross-link resource provides a unique opportunity to address this question and we 

therefore asked how well our unambiguous intra-protein URPs map onto the recent 

AlphaFold2 (AF2) predictions of the human proteome (9). We only considered URPs that 

mapped to ‘high-confidence’ residues – defined by a value of ≥ 70 for the AlphaFold pLDDT 
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quality metric. Despite this restriction, the AF2 dataset significantly increased the number of 

unambiguous URPs that we could map, with 12,359 URPs able to be resolved across 2,467 

unique proteins (Figure 3A, Supplementary Table 3). This represents a 1.4-fold increase in 

resolved URPs compared to our PDB mapping above, and an increase of 1.8-fold in the 

number of proteins to which URPs could be mapped. 

The distance distribution and satisfaction rates of these high-confidence URPs on the AF2 

models (Figure 3B, Supp Figure 6A) were comparable to the values observed for intra-

protein URPs mapped to PDB structures (Figure 2A), spanning 82–97% satisfaction across 

cross-linkers, compared to ~33-45% for randomly sampled URPs. This observation confirms 

that the predictions made by AF2 are of very high quality. 

Given that AF2 is trained on the PDB, we next asked whether URP satisfaction rates on AF2 

models varied depending on whether or not an experimental structure also existed for that 

protein (Supplementary Table 3). We first stratified the high-confidence URPs into three 

categories based on their PDB status at both the URP level and the overall protein level 

(Figure 3C). URPs for which both residues could be observed in a PDB structure had an 

87% satisfaction rate on their corresponding AF2 model. Unexpectedly, URPs in proteins for 

which no experimental structure is currently available had even better satisfaction rates 

(92%). Furthermore, URPs from proteins for which a structure is available - but one that 

does not encompass the cross-linked residues – had a substantially lower satisfaction rate of 

74%. These URPs might capture protein regions that display significant conformational 

dynamics, highlighting the fact that each AF2 model captures only a single snapshot of a 

protein’s conformational landscape. 

Our data demonstrate the potential for integrated systems-wide approaches (such as the 

combination of AF2 and XL-MS) to address known biases of structural proteome coverage in 

the PDB – for example, towards well-behaved and highly ordered domains/proteins. 
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Cross-links experimentally corroborate hundreds of AlphaFold models of proteins 

with unknown structures 

As we mapped our URPs to the AF2 models, we noted that some models increased the 

structural coverage of a PDB-resolved protein. For example, the L9 subunit of the 

mitochondrial 39S ribosome (Uniprot: Q9BYD2) is partially resolved in several PDB entries; 

for example, in PDB: 3J7Y (38) residues 53–147 are observable, and we can map three 

URPs to this region, all of which are satisfied (Figure 3D, top). However, the AF2 model 

resolved an additional 116 ordered C-terminal residues compared to the experimental 

structure, all of which have pLDDT scores of ≥ 70. An additional six URPs mapped to this 

region (including three that bridge the PDB-resolved and AF2-only regions) and all were 

satisfied in the AF2 model (Figure 3D, bottom). This agreement provides strong 

corroboration for the predicted model and in this context, we reiterate that the cross-linking 

data were obtained in a native-like context, giving additional confidence that this is the 

relevant structure in the environment of an intact ribosome in vivo. 

Of the set of 737 proteins that were absent from the PDB but for which cross-links were 

observed, 624 had all of their high-confidence URPs satisfied in the corresponding AF2 

model (Supp Figure 6B, Supplementary Table 3). Our dataset provides experimental 

validation for these models in one of several ways. Firstly, there were 268 instances where 

the structure of the human protein is unknown, but a structure exists for a homologue. This 

included the alpha subunit of mitochondrial ATP synthase (Uniprot: P25705). The structure 

of the human protein has not been reported but the structure of the bovine protein (Uniprot: 

P19483) (97% sequence identity) is resolved in PDB: 2W6J (Figure 3E). Not surprisingly, 

the AF2 model for the human protein closely resembles the bovine structure, and our set of 

44 experimental URPs verifies the conserved fold.  

Secondly, there were 356 proteins for which we observed cross-links that were both absent 

from the PDB and also displayed a very low degree of structural precedent. For example, the 
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procollagen galactosyltransferase 1 enzyme (Uniprot: Q8NBJ5) has neither an existing PDB 

entry nor a PDB structure for a homologous protein (using protein BLAST against the PDB 

database (39)). AF2, however, produced a model with over 85% of residues having pLDDT ≥ 

70 (Figure 3F). Importantly, all five high-confidence URPs were satisfied within this model, 

compared to only 8% in the random URP control. Similarly, the very-long-chain 3-oxoacyl-

CoA reductase (Uniprot: Q53GQ0) had little structural precedent but AF2 produced a model 

with >95% of residues having pLDDT ≥ 70 and for which all nine URPs were satisfied (Supp 

Figure 6C).  

Thirdly, cross-links that do not corroborate AF2 models are also of interest as they indicate 

incongruence between experimental data and modelled structures. In total, there were 66 

proteins with structure predictions for which all cross-links were violated in the AF2 model. 

For example, despite > 90% of the sequence the nuclear protein localisation protein 4 

(NPL4; Uniprot: Q8TAT6) being well-modelled by AF2, neither of the two mappable URPs 

were satisfied on the model (Figure 3G). Examination of the model revealed that a ~20-

residue linker with low pLDDT scores separates an N-terminal domain from the bulk of the 

protein and that both cross-links bridge these two domains. Repositioning of the N-terminal 

domain to satisfy the cross-links would involve a straightforward rigid-body rearrangement. 

Proteome-wide XL-MS data thus provide a resource to aid interpretation of – and potentially 

improve upon – structural models, making use of either manual ‘structural sculpting’ (e.g., as 

implemented in XMAS (40)) or integrative modelling pipelines (reviewed in (41)) that can be 

driven by cross-linking restraints. 

 

Cross-links reveal and corroborate thousands of protein-protein interactions 

Our cross-link resource identifies and provides insights into the interfaces of thousands of 

protein-protein interactions (PPIs). A total of 3,785 inter-protein URPs describe 2,110 PPIs, 

including 84 unambiguous homo-oligomers (Figure 4A).  
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Comparison of our dataset to the APID PPI meta-database (2) showed that 55% (1,158) of 

these PPIs had not been previously described (Supplementary Table 4). We therefore 

assessed the degree of orthogonal evidence available for each protein pair by sorting the 

PPIs according to their highest level of supporting evidence. Strikingly, 584 (more than 60%) 

of our 952 known interactions had only been described by indirect interaction mapping 

methods, such as affinity purification mass spectrometry and proximity ligation assays. 

Of the novel interactions, most could be explained by leveraging existing systems-level 

annotations (Figure 4A). Firstly, a small but significant number (94) appeared to be 

previously characterised interactions that had simply escaped annotation in APID (or by 

systematic interactome screens), based on the fact that the cross-linked proteins reside in 

the same CORUM-annotated complex (42) or even the same PDB entry. Secondly, 191 of 

the remaining novel PPIs were predicted with at least medium confidence by the STRING 

database (combined score of at least 0.4) (43), which integrates information across multiple 

lines of evidence including known interactions curated for homologous protein pairs, gene 

and protein co-expression, and literature text-mining. Thirdly, 676 of the remaining novel 

PPIs shared APID-annotated interaction partners and hence local interactomes (at one 

degree of separation). 

Lastly, using the resources above, 197 PPIs of the novel PPIs remain ‘unexplained’. Of 

these, ~16% (32) involved the heat-shock protein Hspa1b (Uniprot: P0DMV9, (44)). Because 

the function of this protein involves promiscuous binding to many protein substrates, our 

cross-links might well be capturing biologically relevant interactions. In contrast, the CCT 

complex sub-interactome, which is known to be a more specific chaperone system, had 

many previously undetected PPIs but none that were categorised in the above scheme as 

unexplained.  
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AlphaFold Multimer-v2 predicts structural interfaces for hundreds of cross-linked 

PPIs  

One advantage of XL-MS over other systematic interactome mapping approaches is its 

ability to localise interaction interfaces rather than simply identify interactions. Because AF2 

has recently been extended to predict the structures of protein complexes (AlphaFold 

Multimer) (45), we sought to use our data to inform and assess AF2-generated models of 

complexes. We chose the subset of 590 PPIs from our dataset that were captured by at 

least two URPs and subjected 530 of these (some interactions were too large to model by 

the software) to AlphaFold Multimer-v2 modelling (Supplementary Table 5). As a control, 

400 randomly sampled protein pairs from the pool of proteins identified in our study were 

also modelled. 

We assessed the overall quality of predicted structures of complexes by examining several 

structural measures. First, we examined the number of clashes within the models (identified 

by MolProbity (46)), which was reported to be unusually high (47) in the initial release of 

AlphaFold Multimer. However, most models had acceptably low levels of clashes 

(clashscore ≤ 100; i.e., less than 10% of atoms clashing) (Supp Figure 7A). We then used 

PISA (48) to identify structural interfaces in our models and defined ‘well-modelled’ 

interfaces as those that had an average pLDDT score of ≥ 70 for PISA-identified interface 

residues (Supp Figure 7B), a PISA-defined interface size of > 200 Å2 (Supp Figure 7C) and 

a clashscore ≤ 100. Using these criteria, AlphaFold Multimer-v2 generated at least one well-

modelled structure (from the five generated per run) for a total of 343 of 530 (69%) cross-

linked PPIs compared to 78 of the 400 (19%) random protein pairs (Supplementary Table 

5).  

Well-modelled AlphaFold Multimer-v2 models for PPIs defined by cross-links had 

significantly larger interaction surface areas than randomly sampled protein pairs (p < 2.2 × 

10-16), corroborating the novel interactions defined by our data. Interestingly, the size of 
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interaction interfaces also differed for PPIs that had previously been detected by different 

interactome mapping approaches. For example, PPIs described by binary interactome 

mapping approaches had, by comparing median values, 1.5-fold larger interface areas than 

those described only by indirect methods (AP-MS, BioID) (p = 0.003) (Figure 4B). Binary 

PPI interaction interfaces were also significantly larger than novel PPIs interfaces (>1.5-fold 

larger, p = 0.007). On the other hand, novel and known (but only) indirect PPIs did not 

significantly differ in interface size (p = 0.23). This observation perhaps flags differences in 

the nature of PPIs that can be detected by binary assays carried out in a heterologous 

system (e.g., Y2H) versus approaches (such as XL-MS or AP-MS) that retain native PTMs 

and additional complex partners. Hits in the former assays will be restricted to PPIs that are 

more robust and less dependent on biological context. 

We were also able to use the experimental structures in the PDB to assess the AlphaFold 

Multimer-v2 dimer predictions. Of the 343 well-modelled complexes defined above, 151 

comprised pairs of proteins that could be found in the same PDB entry. Furthermore, an 

additional 81 PPIs had PDB entries curated for homologous protein pairs (at least 40% 

sequence similarity). We superimposed the AlphaFold-derived structures onto their 

corresponding PDB structures for these 232 proteins and found that 154 pairs (66%) aligned 

well, with a median RMSD value of 1.6 Å (Supplementary Table 5). 

In our dataset, AlphaFold Multimer-v2 performed most poorly in situations where the two 

proteins are part of the same complex but do not make direct contacts in the experimental 

structure. For example the Arp2/3 complex, which is involved in the formation of branched 

actin networks (49), comprises seven subunits and has had its structure determined by cryo-

EM (PDB: 6UHC (50), Figure 4C). Based on the existence of cross-links, we predicted 

models for three subcomplexes: ARPC4-ARPC5 (Uniprot: P59998 and O15511), ARP2-

ARPC2 (Uniprot IDs: P61160 and O15144), and ARP2-ARPC3 (Uniprot: P61160 and 

O15145). The prediction for ARPC4-ARPC5, which featured an interface of 830 Å2, closely 

matched the experimental structure (RMSD = 0.9 Å) and is supported by five URPs (Figure 
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4C). In contrast, although the other two subunit pairs do not make direct contact in the 

experimental structure, AlphaFold Multimer-v2 predicted spurious complexes that had 

interfaces of 830 and 430 Å2, respectively. All three URPs (two for ARP2-ARPC3, one for 

ARP2-ARPC2) did not fit the AlphaFold Multimer-v2 models for ARP2-ARPC2 (Supp Figure 

8A) and ARP2-ARPC3 (Supp Figure 8B). In contrast, all three URPs were fulfilled in the 

experimental structure of the seven-subunit complex. 

Similarly, we observed cross-links between pairs of histones such as histone H2A and 

histone H4. Although these subunits do make contact in the native nucleosome structure, 

they form more intimate dimers with H2B and H3 (PDB: 1AOI), respectively. However, 

because all four of these core histones have the same fold, AF incorrectly predicts a 

structure for the H2A-H4 complex that reflects the H3-H4 (or H2A-H2B) complex instead 

(Supp Figure 8C). It is noteworthy that misaligned histones alone account for 32 out of the 

78 (41%) models that poorly match their experimental counterparts. 

In summary, we find that although AlphaFold Multimer-v2 is largely correct in its model 

predictions, we would caution its use as a ‘discovery’ tool to identify PPIs. Such models 

should be corroborated with additional orthogonal experimental data such as XL-MS data. 

 

Cross-links provide new insight into AlphaFold Multimer-v2 complex models 

We asked whether our URP distance restraints could experimentally corroborate the 343 

well-modelled dimer interfaces calculated above. These dimers each feature between two 

and 39 URPs; however, many URPs connect residues that were not confidently modelled by 

AlphaFold Multimer-v2. We therefore used only URPs involving high-confidence residues 

(i.e., pLDDT ≥ 70 for both cross-linked residues) for model assessment. As a result, 97 

models did not have any URPs that met this criterion, leaving 246 models that were 

described by 1–32 URPs (Supplementary Table 5). For comparison, we also simulated 

random URPs for each model. We found that the Euclidean distances measured for our 
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experimental inter-protein URPs were considerably shorter than the randomly sampled 

URPs, and also shorter than the randomly sampled URPs in the 400 randomly sampled 

protein pairs (Supp Figure 9, p < 2.2 × 10-16 for both comparisons). Thus, our experimental 

cross-links are enriched at the interface of the predicted models, consistent with AlphaFold 

Multimer-v2 generating predictions that reflect the true structures of these complexes. 

When assessing the overall degree of cross-link satisfaction in our well-modelled PPIs, we 

found that 167 out of 246 PPIs (68%) had a 100% URP satisfaction rate in at least one of the 

five AlphaFold Multimer-v2 models (Figure 4D), and 106 of those 167 had 100% URP 

satisfaction for all five models (Figure 4E). Interestingly, the distribution of cross-link 

satisfaction rates for dimer predictions was clearly bimodal, which we did not observe for 

monomeric predictions (Supp Figure 6A). This suggests that AlphaFold Multimer-v2 was 

either getting the models largely right or largely wrong. It is possible that ‘wrong’ models 

arise from AlphaFold Multimer-v2 not having all the necessary information (e.g. additional 

interaction partners, PTMs). In summary, it further highlights the need for experimental data, 

such as XL-MS, to validate AlphaFold Multimer-v2 generated models. 

Of the 246 PPIs with at least 1 high-confidence URP, 171 had either a pre-existing PDB 

structure or a PDB structure involving homologous protein pairs. As described above, 

superimposition of AlphaFold Multimer-v2 predictions and these experimental structures 

revealed that there were 129 PPI models that aligned well and 42 that did not align well. 

Strikingly, 83% (107 of 129) of the well-aligned models had 100% URP satisfaction rates, 

compared to just 60% (25 of 42) for the poorly aligned models. This difference between the 

two groups is increased further to 81% (well-aligned models) versus 46% (poorly aligned 

models) when histones were excluded (on the basis that histones are small proteins, 

meaning that cross-links are much more likely to be satisfied regardless of how the proteins 

were arranged relative to each other). This suggests that high confidence URPs could be 

used to discriminate between a correct well-modelled AlphaFold model and an incorrect 

well-modelled AlphaFold model. 
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Similar to the situation for monomeric AF2 models (Figure 3D, E), some dimer models 

confirmed and extended existing experimental structures of human PPIs. For example, 

although no PDB structure exists for the human beta-actin ACTB (Uniprot: G5E9R0) in 

complex with the adenyl cyclase-associated protein 1 CAP1 (Uniprot: Q01518), there are 

two PDB entries (6FM2 and 6RSW (51, 52)) comprising the close homologues alpha-actin 

ACTA from rabbit (Uniprot: P68135) and CAP1 from mouse (Uniprot: P40124). Our 

AlphaFold Multimer-v2 model was both able to confirm conservation of the overall structure 

in the human ACTB-CAP1 complex and extend coverage of the interface itself via two 

corroborating inter-protein URPs (Figure 5A). This previously unresolved and cross-link 

validated interface indicates that the interaction between ACTB and the CAP1 protein is 

more intimate than previously appreciated, featuring 30 hydrogen bonds, 20 salt bridges and 

an interface area of 3,590 Å2 in our AF model versus a combined 19 hydrogen bonds, 17 

salt bridges and an interface area 2,140 Å2 in the experimental X-ray crystal structures. 

From our analyses, we also identified 75 PPIs with well-modelled AlphaFold Multimer-v2 

interfaces that were structurally undefined (i.e., have no shared or homologous PDB entries 

available). Many of these PPIs had been previously characterised by binary and direct 

interaction mapping approaches. Of these 75 PPIs, 35 models had 100% URP satisfaction; 

these 35 models thus have a high likelihood of being correct. For example, the interaction of 

STX18 (Uniprot: Q9P2W9) and SCFD1 (Uniprot: Q8WVM8) was previously described by 

four studies (53-56). Our four inter-protein URPs were satisfied in all five models, and the top 

model featured an interface area of 3,688 Å2 with 21 hydrogen bonds and 15 salt bridges 

(Figure 5B). The formation of this PPI is implicated in the regulation of skeletal development 

(57) and, interestingly, there is evidence for an amyotrophic lateral sclerosis disease-causing 

missense mutation involving amino acid I70 in SCFD1 (I70T, ClinVar accession 

RCV001260556.1), a residue that is near cross-linked residues K63 and K61 at the 

interface. The combination of our data with AF thus provides precise and accurate structural 

context for biologically relevant PPIs. 
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Our data can also be used to both define new PPIs and experimentally corroborate their 

predicted interaction interface. For example, the top ranked model for the proposed 

interaction between UTP25 (Uniprot: Q68CQ4) and DDX47 (Uniprot: Q9H0S4) displays a 

1,030 Å2 interface area and features two satisfied URPs (one of high confidence) (Figure 

5C). The interface area and number of hydrogen bonds and salt bridges contributing to the 

interface (two for both categories) are significantly smaller than those seen in the previous 

two modelled PPIs described above. However, the two proteins were confidently predicted to 

interact in the STRING database (combined score of 0.98 out of a maximum of 1) and 

appear to have functional overlap. DDX47 is a DEAD-box RNA helicase known to associate 

with pre-RNAs (58) and UTP25 is implicated in pre-ribosomal rRNA processing (59, 60). 

Notably, both URPs defining this PPI were detected in the nuclear fraction, consistent with a 

shared role in ribosome biogenesis. It is possible that the presence of RNA cofactors or 

other protein complex partners could be required to stabilise this protein-protein interaction. 

This again highlights the ability of XL-MS to capture weaker interactions than some other 

interactome screening technologies and the value of the native context provided in our XL-

MS approach.  
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Cross-links define the binary interactions that underlie the assembly of larger protein 

complexes 

Because our URPs can also be derived from higher-order assemblies, we mapped our data 

onto the CORUM database of manually-curated protein complexes (42). Our URPs could be 

mapped onto 366 unique CORUM-documented complexes (Supplementary Table 6). Of 

these 366 complexes, 165 displayed XLs for at least two distinct pairs of subunits. We 

considered the most densely cross-linked CORUM complexes, where ≥ 70% of proteins 

annotated in the complex were involved in at least one cross-linked protein-protein 

interaction. In total, there were 51 such complexes. Some, such as the CCT complex 

(Supplementary Table 6), are found in the PDB, with all cross-linked PPIs sharing PDB 

entries and 88% of the mappable URPs satisfied. However, almost half (21) of the densely 

cross-linked complexes were missing structural information for at least one PPI for which we 

found cross-linking evidence. These complexes could benefit from integrative structural 

modelling approaches, such as the cross-link guided modelling pipelines used in Assembline 

(61) and IMProv (62).  

Additionally, we asked whether AlphaFold Multimer-v2 could be used to generate structures 

for higher order complexes and whether our cross-links could corroborate the models. The 

pentameric tRNA ligase complex comprising DDX1, FAM98B, RTRAF, RTCB and ASHWIN 

(Uniprot: Q92499, Q52LJ0, Q9Y224, Q9Y3I0 and Q9BVC5; CORUM #6301) plays an 

essential role in tRNA splicing (63). While there are structures (including homologous 

structures) of some individual subunits and domains (PDB: 7P3B (64); PDB: 7P3A (64); 

PDB: 4XW3 (65); PDB: 6O5F (66)), no structures of subcomplexes or the complete complex 

are available. Although AlphaFold Multimer-v2 failed to produce a model of the full complex, 

it successfully predicted a model for a core four-membered complex, based on existing 

biochemical data that showed that only DDX1, FAM98B, RTRAF and RTCB are essential for 

complex formation (64) (Figure 6A).  
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All five AF Multimer models featured a central helical bundle comprising the C-terminal 

helices of DDX1, FAM98B and RTRAF; this bundle packs against the RTCB ligase. In 

addition, the N-terminal domains of FAM98B and RTRAF formed an intimate heterodimer. 

Importantly, both observations are supported by available biochemical data (64). While the 

helical core of the complex was conserved in all models (superimposed RMSDs < 0.5 Å), the 

orientations of the SPRY-RecA domains of DDX1 and the FAM98B-RTRAF heterodimer 

showed considerable variability relative to the core (Figure 6B). Of the 12 URPs we 

measured, eight were fulfilled in all models (Figure 6C). Of the remaining four cross-links, 

two were to the disordered C-terminal tail of RTRAF and two were to the ‘mobile’ SPRY-

RecA domains of DDX1. We had URPs between all members of the complex except to 

ASHWIN. In summary, our cross-links support the overall arrangement of the core of the 

complex that AF Multimer has predicted.  

 

The MIC60-MIC25-MIC19 hetero-tetramer has a 2:1:1 stoichiometry 

Finally, we examined the seven-membered MICOS complex, for which we observed 12 

URPs between five of the subunits. MICOS comprises MIC60, MIC13, MIC27, MIC25, 

MIC10, MIC26 and MIC19 (Uniprot: Q16891, Q5XKP0, Q6UXV4, Q9BRQ6, Q5TGZ0, 

Q9BUR5 and Q9NX63; CORUM #6255) and is essential for the proper formation and 

maintenance of crista junctions in the mitochondrial inner membrane (67). Despite its 

importance, the only existing structures are of distant fungal homologues of the coiled-coil 

domain of MIC60 (PDB: 7PUZ (64)) and of a complex between the C-terminal mitofilin 

domain of MIC60 and the CHCH domain of MIC19 (PDB: 7PV1 and 7PV0 (64)). 

AlphaFold Multimer-v2 models of the full heptameric complex predicted that most of the 

sequences did not form ‘traditional’ globular folds (Supp Figure 10). Nevertheless, these 

models shared a core architecture that place MIC60, MIC25 and MIC19 in the same general 

spatial arrangement (Supp Figure 10), in agreement with published biochemical data (67). 
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The interaction between the mitofilin domain of MIC60 and the CHCH domain of MIC19 was 

also recapitulated in two out of the five calculated models. The other four subunits (MIC10, 

MIC13, MIC26 and MIC27) did not form substantial interactions with this core. MIC26 and 

MIC27 are apolipoproteins and is it possible that their presence in the complex is lipid-

dependent. 

Given that (a) MIC60 has been reported to form homo-oligomers (64), (b) a crystal structure 

corroborates the predicted MIC60-MIC19 interaction (64), and (c) the predicted structures of 

MIC19 and MIC25 were highly similar, we also used AlphaFold Multimer-v2 to explore the 

possibility that these proteins form a higher order assembly. Of the many permutations that 

we tested, the most striking – and the one predicted with highest confidence – was a 2:1:1 

MIC60-MIC19-MIC25 complex (Figure 7). This complex displayed uniformly high pLDDT 

scores across all subunits (average pLDDT = 77) (which were higher than those observed 

for other assemblies tested; average pLDDT ≤ 70) and comprised a MIC60 homodimer 

bound symmetrically to MIC19 and MIC25 subunits via the MIC60 mitofilin domains and 

MIC19/MIC25 CHCH domains. The MIC60-MIC19 and MIC60-MIC25 interfaces closely 

resemble the MIC60-MIC19 crystal structure (PDB: 7PV0; RMSDs < 0.7 Å). Furthermore, all 

six inter-protein URPs and 12 (of 13) intra-protein URPs involving high-confidence residues 

are satisfied in this architecture (Figure 7), underscoring the orthogonal power provided by 

XL-MS data. 

In summary, we show that the combination of XL-MS data, AF Multimer-v2 and pre-existing 

biochemical data creates a powerful strategy for integrative modelling of higher order native 

protein complexes without the requirement for recombinant expression and purification.  
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DISCUSSION  

We have generated a deep cross-link resource reporting on more than 4,000 human 

proteins in near-native states with native sequences, abundances and contexts (e.g., the 

presence of native PTMs, relevant partner proteins as well as other macromolecules, co-

factors and metabolites), which is a significant advantage over many other methods used to 

map protein structure and interactions. We have demonstrated that our cross-links are both 

of high quality and utility, and that they significantly extend and annotate the human 

structural proteome and interactome with very high throughput and biological relevance. 

 

Moving beyond the lysine cross-linked proteome 

Our study highlights the value of moving beyond the lysine (K) to lysine (K) cross-linked 

proteome. Alternative cross-linker chemistries, such as bismaleimide (BMSO) (68) 

(homobifunctional, cysteines), can provide further, orthogonal information but have yet to be 

used routinely in proteome-wide studies. Photoreactive diazirine-based cross-linkers such as 

sulfosuccinimidyl 4,4'-azipentanoate (sulfo-SDA) (69), which allow cross-linking at any 

residue to be explored, represent a further extension. Although the greatest limitation for 

non-MS-cleavable cross-linkers of this type is the computing time required during peptide 

identification, the recent development of the MS-cleavable succinimidyl diazirine sulfoxide 

(SDASO) cross-linker (70) may aid in the feasibility and scale of such endeavours. 

A recent community-wide, multi-lab study recommended that the search space for NHS-

ester based cross-linking should be expanded to include S/T/Y residues (27). However, due 

to its prohibitive computational cost, searches including S/T/Y linkages are not routinely 

performed, especially in large-scale cross-linking studies. In our dataset and in line with 

previous conclusions (27, 28), a significant portion (~24%) of DSSO URPs involved S/T/Y 

residues. However, we note that only ~1% had S/T/Y to S/T/Y linkages, with most being K to 

S/T/Y linkages. This highlights that future studies should define NHS-ester reactivity as K to 
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K/S/T/Y to balance computation time with localisation improvements and cross-link gains. 

This hybrid search strategy is currently configurable in several cross-link search engines 

such as pLink 2 (71) and MeroX (72). With a small compromise (reducing the size of the 

sequence database), we demonstrate that including S/T/Y linkages is possible on a large-

scale basis. 

Finally, although we have employed a diversified strategy to improve on the coverage of the 

cross-linked proteome using several cross-linkers combined with enrichment and 

fractionation strategies, many further possible enhancements exist. For example, the use of 

alternative proteases is relatively easy to implement but has seen limited use thus far (73, 

74). Promising enzymes that will provide orthogonal information, include pepsin (cuts at 

Y/F/W), AspN (cuts at D) and the new ProAlanase enzyme (cuts at P/A) (75). 

 

A deep cross-linked proteome resource that complements AI-based structure 

predictions 

We have demonstrated how our dataset can be leveraged to gain a deeper understanding of 

the biochemistry and biology of a higher eukaryote. Our structurally near-native cross-links 

corroborate experimentally determined protein structures – and with the advantage of being 

relatively fast, having modest sample requirements and providing data for proteins that are 

otherwise difficult to handle in isolation. We also identified regions of potential 

conformational variability and provide some evidence that PTMs might contribute to these 

variabilities. Furthermore, we show that XL-MS data can provide powerful corroboration of 

AI-based structure predictors like AlphaFold, which have democratised access to protein 

structure modelling for non-specialist groups and provide access to experimentally 

intractable proteins. With the recent release of more than 200 million predicted structures by 

AlphaFold (76) and 600 million in the ESM Metagenomic Atlas (77), it is now more important 

than ever to have orthogonal data to corroborate these models. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2022. ; https://doi.org/10.1101/2022.11.16.516813doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.16.516813


Perhaps most importantly, our data define 2,110 protein-protein interactions, a considerable 

extension in the coverage and diversity of the structural interactome. The URPs that define 

these PPIs can be used in combination with AI-based tools to generate and assess models 

of protein complexes, and such models can be subjected to experimental verification using 

biochemical and cellular approaches. Furthermore, regardless of AlphaFold modelling 

status, all 2,110 PPIs defined here contain cross-linking constraints that can help localise 

their interfaces at the sequence level without any reference to structure. Many interactions 

are known to occur exclusively in disordered regions, mediated by sequence motifs and 

domains (reviewed in (78)). Our cross-linking resource can therefore also be used to assist 

the annotation of domain-domain interactions and linear interaction motifs (as, for example, 

in Pfam (79)) – efforts that help to infer function for the thousands of understudied human 

proteins (12). 

The wide accessibility of different cross-linkers, alongside critical efforts to standardise XL-

MS search engines and analyses (80, 81), will enable high-volume and high-confidence 

cross-link constraints to be generated for proteins from diverse conditions and organisms. 

One could envisage a (near) future in which archived XL-MS data is harvested automatically 

by AlphaFold or similar systems and optionally displayed on predicted structures. Likewise, 

inter-protein cross-links could be displayed to alert the user that they could benefit from 

incorporating additional proteins into their prediction.  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2022. ; https://doi.org/10.1101/2022.11.16.516813doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.16.516813


METHODS 

Subcellular fractionation 

The general procedure for subcellular fractionation were similar as described in (82, 83). For 

each biological replicate, 2 × 108 freshly-harvested suspension HEK Expi293FTM 

(ThermoFisher Scientific) cells were used. Subcellular fractions were prepared by incubating 

the cell pellet with 5× the packed cell volume in swelling medium (15 mM KCl, 1.5 mM 

MgOAc, 10 mM HEPES-KOH, pH 7.5) for 10 min at 4°C. The cells were then centrifuged 

(300 × g, 2 min, 4°C) and the supernatant was discarded. The pellet was then homogenised 

by vortexing for 10 s, followed by repeatedly flushing the cells through a G-25 syringe. To 

this homogenate, 0.2 volumes of osmotic balancer buffer (375 mM KCl, 22.5 mM MgOAc, 

1.25 M sucrose, 50 mM HEPES-KOH, pH 7.5) was added. The homogenate was then 

centrifuged (750 × g, 10 min, 4°C). This pellet consisted of the crude nuclei and was further 

treated as described below. The supernatant was transferred to a fresh tube and centrifuged 

at 3000 × g, 10 min, 4°C. This crude mitochondrial pellet was further treated as described 

below. The supernatant was again transferred to a fresh tube and centrifuged at 20,000 × g, 

20 min, 4°C. The subsequent pellet, enriched with lysosomes, peroxisomes and Golgi 

membranes (henceforth described as the Golgi pellet for brevity), was further treated as 

described below. The supernatant should comprise of cytosolic and microsomal proteins. 

The crude nuclear pellet was washed in resuspension buffer 1 (10 mM HEPES-NaOH, 0.25 

M sucrose, 25 mM KCl, 5 mM MgCl2, pH 7.4) + 0.5% (v/v) IGEPAL CA-630 and re-

centrifuged (750 × g, 10 min, 4°C), twice. The final pellet was resuspended in resuspension 

buffer 1 (without IGEPAL CA-630). The crude mitochondrial pellet was washed in 

resuspension buffer 2 (10 mM HEPES-NaOH, 0.2 mM EDTA, 0.25 M sucrose, pH 7.4) and 

re-centrifuged (3000 × g, 10 min, 4°C), twice. The final pellet was resuspended in 

resuspension buffer 2. The Golgi pellet was washed in resuspension buffer 2 (10 mM 

HEPES-NaOH, 0.2 mM EDTA, 0.25 M sucrose, pH 7.4) and re-centrifuged (3000 × g, 10 

min, 4°C) once. The final pellet was resuspended in resuspension buffer 2. Protein content 
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of each subcellular fraction was quantified using a BCA protein assay kit (Pierce) and 

adjusted to 2 mg/mL prior to cross-linking. 

 

Protein cross-linking 

For each cross-linking experiment, 2–6 mg of protein from each organellar fraction was 

used. The concentration of each cross-linker used for cross-linking experiments were pre-

determined empirically, as in (84). Disuccinimidyl sulfoxide (DSSO; 100 mM stock solution in 

anhydrous DMSO) was added to a final concentration of 5 mM for all subcellular fractions 

except for the cytoplasmic fraction (1 mM instead) and allowed to react for 1 h. Dihydrazide 

sulfoxide (DHSO (22); 100 mM stock solution in Milli-Q water) in combination with 4-(4,6-

dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM; 200 mM stock 

solution in Milli-Q water) were added to final concentrations of 8 mM and 16 mM, 

respectively, and allowed to react for 1.5 h. Note: DMTMM is required for DHSO cross-

linking, activating carboxyl groups in acidic residues to enable coupling with the hydrazide 

reactive groups in DHSO. DMTMM is itself also capable of directly catalysing carboxyl to 

primary amine coupling in amino acids residues to produce zero-length, but non-cleavable 

K-D/E cross-links. All reactions were incubated at 37°C. 

Post-cross-linking, DSSO reactions were quenched with a final concentration of 100 mM 

NH4HCO3 at 37°C for 15 min, snap-frozen in liquid nitrogen and freeze-dried. As excess 

DHSO/DMTMM cannot be quenched, DHSO samples were chilled on ice, briefly sonicated 

to rupture organellar membranes, and 1 volume of ice-cold acetone was added. This mixture 

was then vortexed, and proteins were allowed to precipitate at -20°C for 2 h. Precipitated 

proteins were centrifuged at 20,000 × g, 15 min, 4°C. The supernatant was discarded, and 

the pellet was allowed to air-dry.  
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Protein digestion and peptide fractionation 

Cross-linked sample trypsinisation and peptide size exclusion chromatography were 

performed essentially as described previously (85). Briefly, dried, cross-linked samples were 

resuspended in 8 M urea to give a final concentration of 5 mg/mL of protein. Sonication was 

employed to help re-solubilise the protein pellets. Samples were then reduced (10 mM DTT, 

37°C, 30 min) and alkylated (15 mM iodoacetamide, 20 min, room temperature in the dark). 

The samples were then diluted to 4 M urea with 50 mM Tris-HCl pH 8 and Trypsin/Lys-C mix 

(Promega) was added to an enzyme:substrate ratio of 1:250 (w/w) and incubated at 37°C, 4 

h. Following this, the samples were further diluted to 0.8 M urea with 50 mM Tris-HCl pH 8, 

additional Trypsin (Promega) was added at an enzyme:substrate ratio of 1:200 (w/w), and 

the sample was further incubated at 37oC overnight (16 h minimum). After the overnight 

digestion, the samples were acidified with formic acid to 2% (v/v) and centrifuged at 16,000 

× g for 10 min. The supernatant was then desalted using either 500-mg or 1-g Sep-Pak tC18 

cartridges (Waters), and eluted in 60:40:0.1 acetonitrile:water:formic acid (v/v/v), snap-frozen 

in liquid nitrogen and freeze-dried. 

For size exclusion chromatography fractionation (SEC), the dried desalted peptides were 

resuspended at 2 mg of peptide per 250 μL of SEC mobile phase 

(acetonitrile:water:trifluoroacetic acid, 30:70:0.1 (v/v/v)) and separated on a Superdex 

Peptide HR 10/30 column. A maximum of 2 mg of peptide was injected onto the column per 

SEC run. A flow rate of 0.5 mL/min was used and the separation was monitored by UV 

absorption at 215, 254 and 280 nm. Fractions were collected as 0.5‑mL fractions. Based on 

the UV absorption traces, fractions of interest (retention volumes ~9–13 mL) were pooled, 

snap-frozen and freeze-dried. 

Following SEC, peptides were further fractionated using high-pH reverse phase liquid 

chromatography (bRPLC). Dried peptides from the SEC step were resuspended at 2 mg per 

4.5 mL of bRPLC buffer A (3% (v/v) acetonitrile, 5 mM ammonium formate, pH 8.5), filtered 
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through 0.45 µm nylon filters and loaded onto a XBridge Peptide BEH C18 column (4.6 mm 

× 250 mm, 300 Å, 5 µm; Waters) using high pressure liquid chromatography (GBC LC1150) 

system. A maximum of 2 mg peptide was injected per run. Peptides were separated at a flow 

rate of 1 mL/min using a linear gradient of 3–40% bRPLC buffer B (80% (v/v) acetonitrile, 5 

mM ammonium formate, pH 8.5) over 84 min, followed by a linear increase to 75% buffer B 

over 12 min. Peptides were monitored via UV (GBC LC1210) absorption at 215 and 280 nm. 

Ninety-six 1 mL fractions were collected across the whole bRPLC run. The collected 

fractions were then concatenated into 12 fractions by combining 8 fractions that are 12 

fractions apart (e.g., the first pooled fraction comprised of original fractions 1, 13, 25, 37, 49, 

61, 73 and 85) (86). The pooled fractions were then snap-frozen and freeze-dried. 

 

Mass spectrometry 

Dried peptides were resuspended in 4% (v/v) acetonitrile, 0.1% (v/v) formic acid and loaded 

onto a 30 cm × 75 µm inner diameter column packed in-house with 1.9 µm C18AQ particles 

(Dr Maisch GmbH HPLC) using a Dionex UltiMate 3000 UHPLC (ThermoFisher Scientific). 

Peptides were separated using a linear gradient of 10–50% buffer B either over 81 min or 

107 min at 300 nL/min at 55°C (buffer A consisted of 0.1% (v/v) formic acid, while buffer B 

was 80% (v/v) acetonitrile and 0.1% (v/v) formic acid). 

Mass analyses were performed using either an Orbitrap Fusion tribrid or a Q-Exactive HF-X 

mass spectrometer (ThermoFisher Scientific). On the Orbitrap Fusion tribrid mass 

spectrometer, the 81-min gradient above was employed and the CID-EThcD-MS2-HCD-MS3 

protocol (24) was used. Specifically, following each full-scan MS1 at 60,000 resolution at 200 

m/z (350 – 1400 m/z; 50 ms injection time), precursor ions were selected for sequential CID-

EThcD-MS2 acquisitions in a data-dependent manner (CID-MS2: R = 30,000, 18 NCE; 

EThcD-MS2: R = 30,000, calibrated charged dependent ETD parameters enabled, 

supplemental HCD at 30 NCE, 54 ms injection time; both: 1.6 m/z isolation window, 5 × 104 
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intensity threshold, minimum charge state of +4, dynamic exclusion of 20 s). Subsequently, 

mass-difference-dependent HCD-MS3 acquisitions were triggered if a mass difference of (Δ 

= 31.9721 Da) was observed in the CID-MS2 spectrum (HCD, 30 NCE, 2 m/z isolation 

window; 5 × 103 intensity threshold; charge state of +2–4; ion trap scan rate = rapid). Total 

duty cycle time = 1 s. Additionally, to maximise the detection of DMTMM-mediated cross-

linked peptides, DHSO/DMTMM samples were also re-analysed on the Q-Exactive HF-X. 

For these analyses, the 107-min gradient above was employed and the following MS 

protocol was used: Following each full-scan MS1 at 60,000 resolution at 200 m/z (350 – 

1400 m/z, AGC = 3 × 106, 100 ms max injection time), up to 12 most abundant precursor 

ions were selected MS2 in a data-dependent manner (HCD, R = 15,000, AGC = 2 × 105, 

stepped NCE = (25, 30, 35), 25 ms max injection time, 1.4 m/z isolation window, minimum 

charge state of +4; dynamic exclusion of 20 s). 

 

Identification of cross-linked peptides 

DSSO and DHSO cross-linked peptides were identified using the XlinkX 2.0 (24) nodes as 

implemented in Proteome Discover v2.3 (ThermoFisher Scientific). The following key 

parameters were used: peptide mass between 300–10,000 Da, minimum peptide length of 5 

residues, precursor mass tolerance ±10 ppm, product-ion mass tolerance of ±20 ppm for 

Orbitrap data and ±0.5 Da for ion trap data, allowable variable modification = oxidation (M), 

allowable static modification = carbamidomethyl (C), enzyme specificity of Trypsin with up to 

two missed cleavages (excluding the site of cross-linking), and FDR control of CSMs at 1%. 

The search database used was the UniProt human reference proteome (UP000005640; May 

2020; 20,286 entries). For DSSO cross-links, the settings were as follows: allowable cross-

linking sites were Lys, Ser, Tyr and Thr (or Lys-Lys only in pilot searches), cross-link mass-

shift 158.0038 Da, cross-link fragment mass on cleavage = 54.0106 Da (alkene) and 

85.9826 Da (thiol). For DHSO cross-links, the settings were as follows: allowable 

crosslinking sites were Asp and Glu, crosslink mass-shift 186.0575 Da, crosslink fragment 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2022. ; https://doi.org/10.1101/2022.11.16.516813doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.16.516813


mass on cleavage = 68.0375 Da (alkene) and 100.0095 Da (thiol). XlinkX score titrations 

were performed using the method described in (16) considering Lys-Lys linkages only, and 

analysing spectra from a smaller pilot experiment of DSSO cross-links (one biological 

replicate, four organellar fractions, 56 HPLC fractions – a total of 5,916 CSMs identified at 

default XlinkX settings). Three score combinations were assessed, where D = delta XlinkX 

score and S = XlinkX score: D4S40 (default), D10S60 (from (16)) and D20S80. Note that 

XlinkX FDR is approximated using the equation DD/(TT + DD) as XlinkX 2.3 does not report 

hybrid TD matches, where D = decoy database match and T = target database match. This 

can lead to inappropriate FDR control. The XlinkX score titration revealed that default score 

cut-offs (XlinkX score = 40, delta = 4; abbreviated as D4S40) produced inter-links with an 

inflated FDR even at the CSM level at which they are controlled, while D20S80 could 

produce CSMs of equivalent quality for known and novel protein-protein interactions, and 

control the false discovery rate to <1% at all levels of redundancy (Supplementary Figure 

1A and 1B). The D20S80 search setting was used for DSSO and DHSO spectra in the final 

dataset. Due to computational constraints, searches were done in batches of organelles and 

biological replicates. For DSSO, only Lys-Lys linkages were allowed in a first pass search 

against the whole human reference proteome (as described above), whilst in a second pass, 

all linkages (Lys, Ser, Tyr and Thr) were permitted using a reduced search database 

consisting of only the proteins identified in the first pass. The identifications resulting from 

these DSSO searches (D20S80, with Lys, Ser, Tyr and Thr specificity) were used for the 

final dataset. 

DMTMM crosslinked peptides were identified using pLINK2 v2.3.9 (71). Key pLink 2 search 

parameters were as follows: Peptide mass between 600–10,000 Da and peptide length 

between 6–100 were considered, precursor mass tolerance ± 15 ppm, product-ion mass 

tolerance ± 20 ppm, variable modification = oxidation (M), fixed modification = 

carbamidomethyl (C), enzyme specificity of trypsin with up to two missed cleavages 

(excluding the site of crosslinking) per chain, and a 1% FDR. DMTMM cross-linker settings: 
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cross-linking sites used in the final dataset were Asp, Glu and protein C-terminus to Lys and 

protein N-terminus, crosslink mass-shift –18.0106 Da. The search database used was the 

UniProt human reference proteome (UP000005640; May 2020; 20,286 entries). Decoy hits 

for decoy analysis were extracted from the unfiltered identification list table (the .csv output 

table with no suffix) by filtering for rows with the following attributes: Q.value <= 0.01, 

Peptide_Type = 3, Target_Decoy != 2 and isFilterIn = 1. We also considered the possibility 

of misidentified cross-linked peptides as co-eluted linear peptides (87) but did not find 

significant evidence of this occurring. 

 

Cross-link post-hoc filtering and consolidation 

The R programming language (v4.1.3) was used to filter and consolidate DSSO, DHSO and 

DMTMM cross-link spectral matches (CSMs) across replicates and software outputs (XlinkX 

and pLink 2), and collapse redundant identifications to the levels of unique residue pairs 

(URPs) and protein-protein interactions (PPIs). For post-hoc filtering steps, decoy hits from 

XlinkX identifications of DSSO and DHSO data were removed. For pLink 2 identifications of 

DMTMM data, CSMs with a pLink score ≤ 0.34 were also filtered out to ensure appropriate 

FDR control at higher levels of redundancy (URP and PPI levels) (Supplementary Figure 

1C). 

To consolidate filtered cross-links across software suites and replicates, the identity of each 

linked peptide’s sequence, the (peptide-based) site of cross-linker modification, and the 

linked amino acid type was parsed for each CSM from each software output. This enabled 

removing variability introduced across multiple pLink 2 and XlinkX search engine runs, 

where the assignment of master protein accessions (for peptide sequences redundantly 

mapped to the protein sequence database) can sometimes differ. Specifically, for each 

peptide sequence within the cross-link, the first protein accession (alphabetically) which 

mapped to the peptide was reassigned as the master protein for that sequence. This 
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therefore standardised the protein(s) described by the CSM. The protein-level position of the 

cross-link modification in each peptide were then recalculated for use in the URP. If the two 

peptides could be mapped to the same protein sequence (an intra-protein cross-link), the 

first shared mapped protein accession was chosen to describe both proteins in the pair, with 

the protein-level positions recalculated accordingly for use in the URP. Homodimer URPs 

were defined when the sequences in an intra-protein cross-linked peptide overlapped.  

 

Biological annotations of proteins and protein-protein interactions 

To annotate protein subcellular localisations, data was extracted from annotations of the 

human proteome hosted on the UniProt database (88). "Residents” of the isolated organellar 

fractions were those with relevant annotations for the “Subcellular Location” field or the 

cellular component Gene Ontology (89) term field were assessed for the presence of the 

following case-insensitive substrings; for the nuclear fraction (post-750 g pellet) – “nuclear”, 

“nucleus”, “histone”, “chromatin”, “nucleolus”, “nucleolar”, “nucleoplasm”; for the 

mitochondrial fraction (post-3,000 g pellet) – “mitochondria”, “mitochondrial”, 

“mitochondrion”, “mitoribosome”; for the Golgi (lysosome, perioxosome) fraction (post-

20,000 g pellet) – ribosome”, “golgi”, “endoplasmic”, “reticulum”, “lysosome”, “peroxisome”; 

for the cytosol (microsome) fraction (supernatant post-20,000 g) – “cytosol”, “cytoplasm”, 

“microsome”.  

To investigate protein abundances in the cross-linked proteome, the PaxDB protein 

abundance database (26) was used (downloaded August 2021). To annotate protein 

disorder, the MobiDB protein disorder database (37) (downloaded April 2022) was used. The 

aggregated majority consensus stringency was used (“prediction-disorder-th_50”) to 

determine whether the residues fell in disordered regions, which means at least 50% of the 

tested disorder predictor programs agreed on the annotation of the region as disordered.  
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To annotate the presence and density of PTMs within the sequences of cross-linked 

proteins, the PhosphoSitePlus database (36) (downloaded April 2022) of experimentally 

detected protein post-translational modifications (PTMs) was used.  

The Agile Protein Interactomes DataServer (APID) database (2) (version 9606_noISI_Q3) of 

experimentally-derived protein-protein interactions (PPIs) was used to annotate the novelty 

and types of existing experimental evidence for cross-linked PPIs. The distinction of 

experimental interaction mapping techniques as either “binary” or “indirect” is used 

throughout this study and is based on the previous manual curations of experimental 

evidence codes defined by the original APID study and therefore annotated in their database 

(2). The resource was also used to determine the number of common interactors between 

two given proteins. The STRING-db resource (43) (v11.5) was used to determine the degree 

of predicted functional association between two proteins for random and cross-linked PPIs. 

Protein pairs without an association in the database were assigned a “combined score” of 0. 

Only those with a “combined score” of at least 0.4 were considered functionally predicted. To 

simulate a random population of protein pairs, 300 protein pairs were randomly sampled 

from the cross-linked proteome. The CORUM database of protein complexes (42) (2018 

release) was used to determine shared membership of a cross-linked PPI in a known protein 

complex. Only the first CORUM entry was considered in cases where the exact same group 

of proteins (including those that were not cross-linked) were annotated together in multiple 

complex entries. 

 

Protein structures 

The Structure Integration with Function, Taxonomy and Sequence (SIFTS) database (3) 

(downloaded April 2022) was used to annotate experimental coverage of protein structures 

curated in the RCSB Protein Data Bank (4). This resource was also used to identify co-

crystallised protein-protein interactions (two UniProt accession IDs present in the same PDB 
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entry), and to determine the relevant PDB entries to download for cross-link mapping 

exercises. Structure files of interest (.pdb, asymmetric units) were downloaded in batch from 

the PDB database (4) website. For some large entries, the structures were only available as 

.cif files (due to the limit in number of atomic coordinates capable of being stored in the .pdb 

format). For these entries, the two linked chains of interest were extracted from the .cif files 

and then converted into .pdb format using the functions within the Bio3D R-package (v2.4-3) 

(90).  

All AlphaFold predictions of monomeric protein structures used in this study were 

precomputed previously (9), and downloaded from the EBI AlphaFold Protein Structure 

Database (AlphaFold DB) (91) (v1 release). Only proteins which had models where their 

entire sequence length was considered in a single modelling run were analysed further 

(proteins < 2,700 amino acids).  

Cross-linked PPI dimers (with at least 2 URPs) and random PPIs (sampled from the cross-

linked proteome) were subjected to AlphaFold Multimer v2 modelling analyses. All modelled 

PPIs had a combined amino acid length of less than 2,000 residues. This was achieved by 

supplying canonical protein sequences for each complex member as the input for Colabfold 

(v1.2.0) (92), which uses MMSeqs2 (93) instead of JackHMMER (94) for accelerated MSA 

creation and implements AlphaFold-Multimer 2 (v2.2.0) (45). Colabfold was executed locally 

with the options --model-type AlphaFold2-multimer-v2 --recompile-all-models. The modelling 

with Colabfold was run on Nvidia Tesla Volta V100-SXM2-32GB GPUs on the Gadi 

supercomputer (National Computational Infrastructure, Australia).  

For complexes with more than two members, the Google Collaboratory notebook version of 

ColabFold (v1.3.0) was used. The complexes were the pentameric tRNA ligase complex 

comprising DDX1, FAM98B, RTRAF, RTCB and ASHWIN (Uniprot: Q92499, Q52LJ0, 

Q9Y224, Q9Y3I0 and Q9BVC5) and the heptameric MICOS complex comprising MIC60, 

MIC13, MIC27, MIC25, MIC10, MIC26 and MIC19 (Uniprot: Q16891, Q5XKP0, Q6UXV4, 
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Q9BRQ6, Q5TGZ0, Q9BUR5 and Q9NX63). For the tRNA ligase complex, two runs 

separate runs were performed comprising: (i) one copy each of all five full-length proteins; 

(ii) one copy each of full-length proteins of DDX1, FAM98B, RTRAF and RTCB. For the 

MICOS complex, four runs were performed comprising: (i) one copy each of all seven full-

length proteins; (ii) four copies of MIC60 residues (181–758); (iii) two copies of MIC60 

residues (181–758), one copy of MIC19 residues (65–227) and one copy of MIC25 residues 

(110–235); (iv) two copies each of MIC60 residues (181–758), MIC19 residues (65–227) and 

MIC25 residues (110–235). 

The command-line implementation of the Protein Interfaces, Surfaces and Assemblies 

(PISA) tool (v2.1.2) (48), as implemented in the CCP4 software suite (v4-7.1) (95), was used 

to calculate features of the structural interfaces predicted by the AlphaFold2 modelling. 

These included the number of detected inter-chain interfaces, the types and strength of 

chemical bonds, and the size and residues involved in the interface area. 

To calculate the degree of atomic clashes in AlphaFold2 structural prediction models, the 

clashscore was calculated using MolProbity (46) as implemented in Phenix (v1.20.1-4487) 

(96), using the options o_flips=TRUE, coot=FALSE, probe_dots=FALSE. This was 

performed using the high-performance computing cluster hosted by the University of New 

South Wales (Katana). The pLDDT scores of individual residues in AlphaFold monomer 

models, and additionally the interface residues in dimer models identified by PISA, was 

accessed by extracting the b-factor variable in the .pdb file format using the Bio3d R-

package (v2.4-3) (90). All protein structures were visualised using the PyMOL software 

(v2.5.2).  

 

Cross-link structure mapping 

The Xwalk command line executable program (v0.6) (29) was used (with the -dist, -bb, -f and 

-euc flag options) to determine the Euclidean distances (alpha-carbon to alpha-carbon) 
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between cross-linked residues on experimental or predicted protein structures previously 

downloaded (or converted into) .pdb files. For experimental structures, random URPs were 

generated for each PDB entry by sampling fifteen random but theoretically valid residue 

pairs (5 per cross-linker; KSTY-KSTY, K-DE, DE-DE) from the protein sequences present in 

the given PDB. For predicted monomeric structures, these were sampled from the modelled 

protein sequence. For predicted dimer structures, three random URPs (one for each cross-

linker reactivity pair) were sampled where one residue was sampled from the first protein 

sequence and the other from the second. Xwalk input files were then generated for each 

structure containing both the experimental and random URPs. For experimental PDB files, 

this involved accounting for any PDB entry-specific differences in the residue index from that 

reported in the canonical protein sequences used for cross-link identification. This was 

achieved by applying a numeric adjustment to the cross-linked residue number by reference 

to the annotations in the SIFTS resource (3). In the case of chain ambiguity within multimer 

PDB structures, URPs were redundantly described so that each theoretically possible 

combination of chain pairs could be considered. For analyses where the span of distances 

across multiple PDB entries was calculated, only structures with unique chain mappings (no 

multimeric chains of the same protein) were used. 

Cross-links were visualised on structures in Pymol (version 2.5.2), using either the 

automated .pml scripts generated by the Xwalk command line tool (version 0.6, using the 

flags -dist, -bb, -f, -euc, and -pymol) (29) or at a smaller scale, using the PyXlinkViewer 

PyMOL plugin (97). 

 

Homology search and structural alignments to PDB structures containing 

homologous proteins 

To identify experimental structures existing for protein sequences homologous to cross-

linked proteins, protein sequences were subjected to BLAST analysis (39) to search for 
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homologous sequences. The protein sequences were downloaded in FASTA format by 

batch retrieval of UniProtKB IDs from the UniProt website. Either the webserver, or a 

command-line implementation of the NCBI BLAST+ blastp program constructed using the 

functions within the biopython Python-package (v1.79), was used to query these sequences 

against a locally downloaded ‘pdbaa’ database (retrieved from the NCBI FTP server). 

Protein homologues were defined to be any matches from this BLAST search pertaining to 

an e-value < 1 × 10-50. A set of all PDB structure identifiers containing a homologue was 

obtained for each protein. For protein pairs, the intersection between the individual sets of 

homologue-containing structures were taken for further analysis. 

Structural alignment was performed for each protein pair that had homologue-containing 

PDB structures. For each pair, the structure with the greatest homology, as determined by 

the smallest e-values from the BLAST search, was obtained in .cif file format using functions 

from the biopython Python-package (v1.79) to access the wwPDB API. The relevant chains 

in the PDB entry, as specified in the BLAST homology search, were chosen and aligned to 

the AF Multimer structure using functions from the pymol Python-package (v2.5.4). 

Structural alignments were stored in .pdb format and RMSD values from the alignment were 

saved. 

 

Statistical Analyses 

Data manipulation and statistical analyses were performed within R (v4.1.3) using RStudio, 

using the inbuilt statistical functions such as the Wilcoxon signed rank test with continuity 

correction “wilcox.test”.  
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ADDITIONAL INFORMATION 

Data Availability 

All mass spectrometry data and XLMS search results have been deposited to the 

ProteomeXchange Consortium via the PRIDE partner repository (98) with the dataset 

identifier PXD035844. The dimeric models are available in ModelArchive (modelarchive.org) 

with the accession codes ma-low-csi.  

  

Code Availability 

Key data processing scripts (including for the filtering and consolidation of cross-linked 

spectral matches across software suites) have been uploaded to FigShare. 
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Figure 1. Generation of a deep human cross-linking mass spectrometry dataset. (A) 

Experimental overview. (B) Breakdown and summary statistics of the cross-linked unique 
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residue pairs (URP) and the underlying captured unique protein-protein interactions or 

internally-linked proteins. Inter-protein refers to cross-linking between peptides mapping to 

two distinct UniProt accessions, intra-protein to the same accession, and homo-oligomer to 

same accession but with overlapping peptide sequences (and hence must derive from two 

separate molecules). (C) The size and breakdown of annotated subcellular localisations 

detected in the cross-linked proteome. Note that redundancies are caused by proteins with 

multiple annotated subcellular assignments. 
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Figure 2. Cross-link distance constraints are validated by, and uniquely contextualise 

the variability within, in vitro experimental structures curated in the Protein Data 

Bank. (A) The distribution of minimum Euclidean distances (Å, Cα-Cα) imposed by unique 

residue pairs (URPs) across redundant possible chain-pairs and/or Protein Data Bank (PDB) 

entries. Only ‘unambiguous’ URPs are considered in these analyses, which are those with 

underlying cross-linked peptide sequences that were uniquely mapped to a single protein 

sequence in the canonical human proteome. Random residue pairs with appropriate 

sidechain reactivities were simulated for each individual PDB structure. The percentage of 

URPs falling within the cross-linker specific distance cut-offs (dotted lines, 25 Å for DMTMM 

or 30 Å for DHSO/DSSO) are also indicated. (B) The range of Euclidean distances imposed 

by URPs mapped across multiple unique PDB entries, considering only PDB entries with 

one possible chain-pair configuration for the URP. The minimum and maximum distances 
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observed for each URP are plotted in-line as circles joined by a grey line. Green fill denotes 

a structure for which the distance in question is falls within the relevant cut-off, and red fill 

denotes a structure in which the distance violates the cut-off. The top panel shows the range 

distribution for all unambiguous URPs, stratified by their global satisfaction rate and ordered 

by increasing difference in distances within these categories. The distribution of the URP 

subset with variable satisfaction across PDB entries (*), is shown on the lower left. Inset 

structures to the right show an example of a variably satisfied URP from the pre-mRNA-

processing-splicing factor 8 protein (Q6P2Q9), indicated by the dashed line. (C) The density 

of PhosphoSitePlus-annotated post-translational modifications (number of distinct annotated 

modification sites/length of protein) of cross-linked protein(s) (with the maximum value for 

the two proteins used for inter-protein links) for each URP mapping stratification type (by 

variability of URP satisfaction as described above). **** is p = 2.2 x 10-16, from a one-tailed 

Wilcoxon rank sum tests with continuity corrections. (D) The distribution of unambiguous 

URPs involving residues from regions predicted to be disordered, stratified by whether the 

URPs are resolved in PDB structures.   

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2022. ; https://doi.org/10.1101/2022.11.16.516813doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.16.516813


 

 

Figure 3. The high-throughput experimental assessment of AlphaFold monomeric 

protein structure predictions using cross-link distance constraints. (A) Statistics for the 
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mapping of unique URPs onto AlphaFold 2 (AF2) monomer models. Only high-confdence 

URPs (both residues within pLDDT ≥ 70) were used for further analyses. (B) Fulfillment of 

URPs on AF2 models. For each AF2 monomer model, five random URPs were generated 

for each crosslinker with appropriate side-chain reactivities. The distribution of Euclidean 

distances (Å, Cα -Cα) determined for experimental and random URPs is shown, stratified by 

crosslinker. Annotations show the percentage of URPs fulfilled for each subset. The cut-off 

for each crosslinker is indicated by a dotted line (25 Å for DMTMM or 30 Å for 

DHSO/DSSO). (C) Overall URP satisfaction rate across URPs with different degrees of PDB 

resolution. (D-G) Examples of the use of URPs for model validation and evaluation. Protein 

names are official UniProt entry names. The range of residues shown are indicated to the 

left of each structure. Green URPs are satisfied, red URPs are overlength. (D) The model for 

Q9BYD2 shows an example of a PDB-resolved human protein that has benefitted from 

increased structural coverage (orange) and is now corroborated by nine experimental URPs. 

Grey regions within structures represent those derived from experimental PDB structures. 

(E–F) show proteins without any PDB entry for the human proteins (orange). Grey regions 

within structures represent those derived from experimental PDB structures. (E) The AF2 

model of the mitochondrial ATP synthase subunit alpha with a known bovine structural 

homologue, 44 URPs support this model. (F) The AF2 model of the procollagen 

galactosyltransferase (Q8NBJ5) that does not have any PDB entries for itself or of 

homologous proteins. Five URPs support this model. (G) An example where the two 

identified cross-links do not fit the AF2 model. However, while the cross-linked residues are 

within well-modelled domains, the two domains are separated by a low-confidence, 

disordered loop (coloured in blue and highlighted with a blue arrow). 
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Figure 4. Discovery and AF Multimer-v2 modelling of protein-protein interactions. (A) 

Stratification of protein-protein interactions by their best existing curated evidence. 

Categories for ‘known’ PPIs include those annotated with a binary, or if not, an indirect 

interaction mapping technique in the APID database. Categories for ‘novel’ PPIs include 

proteins co-curated in the same CORUM complex, or PDB entry, or those predicted by 

STRING (combined scores at least 0.4), or those that share local interactome partners. (B) 

The largest interface surface area per PPI calculated by PISA for well-modelled AlphaFold 

Multimer-v2 models (clashscores ≤ 100, average interface residue pLDDT ≥ 70, interface 

areas > 200 Å2) generated for interactions with at least 2 URPs (stratified by best evidence – 

Binary, Indirect or Novel) and for random protein pairs. (C) The predicted AF Multimer-v2 

model of the ARPC4-ARPC5 overlays very well (RMSD = 0.9 Å) with the known PDB: 6UHC 
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structure of the full 7-subunit Arp2/3 complex. (D and E) Only high-confidence URPs (both 

cross-linked residues with pLDDT ≥ 70) were used for assessment. (D) The distribution of 

maximum percentage satisfaction rates of high-confidence URPs per well-modelled PPI. (E) 

The number of well-modelled AF Multimer-v2 models with fully-satisfied URPs per PPI.  
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Figure 5. Cross-links enable assessment of computational predictions of structural 

interfaces mediating protein-protein interactions. (A) AF Mulitmer-v2 model of human 

beta actin ACTB in complex with the adenyl cyclase-associated protein 1 CAP1 (middle) 

versus the PDB structures 6FM2 (left) and 6RSW (right) of homologous proteins alpha actin 

ACTA from rabbit in complex with the mouse CAP1 protein. The AF multimer model largely 

recapitulates the regions resolved in the PDB structures and extends the interaction surface 

further (orange). (B and C) Examples of AF Multimer-v2 models of structurally undefined 

PPIs that have satisfied all URPs. Green lines denote satisfied URPs. (B) The model of the 

interaction between STX18 (Q9P2W9; orange) and SCFD1 (Q8WVM8; magenta). Four 

inter-protein URPs support this model. (C) The model of the interaction between UTP25 

(Q68CQ4; cyan) and DDX47 (Q9H0S4; pink). Two inter-protein URPs support this model. 
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Figure 6. Cross-links support the AF Multimer model of the tRNA ligase core complex. 

DDX1 (Q92499) is in cyan, RTCB (Q9Y3I0) is in magenta, RTRAF (Q9Y224) is in orange and 

FAM98B (Q52LJ0) is in blue. (A) Rank 1 AF Multimer-v2 model of the tRNA ligase core 

complex. (B) All five AF Multimer-v2 models superimposed onto the Rank 1 model using the 

coiled-coiled core as the reference point. The coiled-coil core comprising of the C-terminal 

helices of DDX1, RTRAF and FAM98B together with RTCB is consistent across all five models 

(red dashed box). (C) Twelve URPs mapped onto the Rank 1 model of the tRNA ligase core 

complex. Eight URPs are fulfilled (green lines) The remaining four overlength URPs (not 

shown) were cross-linked to mobile regions of the DDX1 SPRY-RecA domains and the 

disordered C-terminal tail of RTRAF.  
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Figure 7. MIC60-MIC25-MIC19 is predicted to have a 2:1:1 stoichiometry. The 

representative rank 1 AF Multimer model of the 2:1:1 MIC60-MIC25-MIC19 subcomplex is 

shown. This complex displays uniformly high pLDDT score (average ~77) and comprises a 

MIC60 homodimer with its mitofilin domains bound symmetrically to the CHCH domains of 

MIC19 and MIC25. This MIC60-MIC19/MIC25 interaction overlays well (RMSDs < 0.7 Å) 

with the distant fungal MIC60-MIC19 structure (PDB: 7PV0; biege). MIC60 is in cyan and 

orange, MIC25 is in blue, MIC19 is in magenta. 
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