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Abstract12

In silico models of biological systems are usually very complex and rely on several parameters13

describing physical and biological properties that require validation. As such, parameter space14

exploration is an essential component of computational model development to fully characterize15

and validate simulation results. Experimental data may also be used to constrain parameter space16

(or enablemodel calibration) to enhance the biological relevance ofmodel parameters. Onewidely17

used computational platform in the mathematical biology community is PhysiCell which provides18

a standardized approach to agent-based models of biological phenomena at different time and19

spatial scales. Nonetheless, one limitation of PhysiCell is that there has not been a generalized ap-20

proach for parameter space exploration and calibration that can be run without high-performance21

computing access. Taking this into account, we present PhysiCOOL, an open-source Python library22

tailored to create standardized calibration and optimization routines of PhysiCellmodels.23
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25

Introduction26

Mathematical biology is a field of study that aims to represent biological systems through the lan-27

guage of mathematics as a set of mathematical rules which can be used to test hypotheses and28

make predictions (Clermont and Zenker, 2015). Several types of mathematical models can be em-29

ployed to simulate biological systems at varying complexity levels. Agent-based models are one of30

the most popular implementations to develop models that consider the cellular and sub-cellular31

scales. Currently, multiple computational frameworks are available to facilitate the creation of32

agent-based models based on previously built templates, making mathematical biology more ac-33

cessible to researchers from different backgrounds (Metzcar et al., 2019). Among these platforms,34

PhysiCell (Ghaffarizadeh et al., 2018) is an open-source hybrid framework that is able to simulate35

cells as discrete agents and model the reaction-diffusion dynamics of the substances present in36

the surroundingmicroenvironment through a continuous approach. Furthermore, recent add-ons37

have been developed to introduce new biological processes into the PhysiCell ecosystem (Letort et38

al., 2018; Bergman et al., 2022; Gonçalves and Garcia-Aznar, 2021).39

Despite the recent advances in the development of additional PhysiCell plugins, the new mod-40

ules are mostly centred around model extensions. Nevertheless, model exploration can be as41

important as model development to validate results and evaluate whether the model predictions42

about the underlying biological mechanisms are plausible (Hasenauer et al., 2015). Furthermore,43

experimental data could be used to provide biological and/or physical constraints onmodel param-44

eters to validate whether the model captures the range of expected biological behaviours (Kaze-45

rouni et al., 2020), and optimization routines could be employed to understand which model pa-46

rameters maximize the similarity between the model results and a target data set. Subsequently,47

model developers may consider these optimal solutions to identify which biological mechanisms48

captured by the computational model may explain the experimental data.49

We highlight that previous works have developed parameter exploration routines with Physi-50

Cell, namely DAPT and PhysiCell-EMEWS (Duggan, Metzcar, and Macklin, 2021; Ozik et al., 2018),51

but these were specifically designed for high-performance computing (HPC) and distributed sys-52

tems. Hence, currently, general PhysiCell users without access to such resources, or whose needs53

do not require them, must develop their own scripts to process simulation results and perform54

model exploration studies. As well as introducing a barrier to scientific progress depending on55

the researchers’ programming knowledge level and computing resources, HPC workflows, in gen-56

eral, lack standardization that may enable widespread use in themathematical biology community57

(Banga, 2008). In addition, DAPT and PhysiCell-EMEWS focus on parameter exploration and not op-58

timization, and they require some level of expertise in both Python and PhysiCell.59

Taking into account that there is still a need in the PhysiCell community for a standardized tool60

that implements calibration and optimization routines, we present PhysiCOOL, a generalized frame-61

work for model calibration and optimization of modelling projects written in PhysiCell. PhysiCOOL62

aims to bemodel agnostic. In other words, models are treated as a black box that can be executed63

through Python, making this approach suitable for several kinds of biological problems. Moreover,64

our library includes a built-in multilevel optimization routine for parameter estimation that is con-65

strained by target output (experimental or otherwise). We also provide two practical examples of66

how PhysiCOOL can be used, showcasing PhysiCOOL’s optimization routine at two distinct complex-67

ity levels. Furthermore, we show how PhysiCOOL black-box models can be used to couple PhysiCell68

with other publicly-available Python libraries for model optimization.69

Implementation70

PhysiCOOL is a Python library that requires Python version 3.8 or higher. This package was created71

to work specifically with PhysiCellmodels, and it fully supports PhysiCell v1.10.4 or lower (the most72
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recent version at the time of publication). Furthermore, PhysiCOOL has been tested extensively and73

includes unit tests to assure that its modules are working as expected and that it can be used on74

different platforms.75

Configuration file parser76

As with many several computational modelling frameworks, PhysiCell models are initialized with77

values stored in a text-based configuration file, namely an Extensible Markup Language (XML) file78

(Ghaffarizadeh et al., 2018). Thus, in parameter sweeps and sensitivity analysis studies, it is neces-79

sary to open these files andmodify the parameter values to be studied every time a new simulation80

is run. This process can be done manually, either by editing the XML file directly or using GUI tools81

such as xml2jupyter (Heiland et al., 2019). However, it becomes unfeasible to repeat this action82

several times in large-scale studies. Henceforth, it is crucial to automate this process to run opti-83

mization and calibration workflows. Although it is possible to create Python scripts that will edit84

these files automatically with a standard module such as ElementTree (Xml.etree.ElementTree - the85

elementtree XML API n.d.), doing so requires users to identify the values to be updated with long86

strings that reflect the structure of the XML file, as shown in the code snippet below.87

from xml.etree import ElementTree

# Read cell data
file_path = "config/PhysiCell_settings.xml"
tree = ElementTree.parse(file_path)

# Define where to find the motility parameters
stem = "cell_definitions/cell_definition[@name='default']/phenotype/motility"
# Define the name and value of the parameter to be updated
key = "migration_bias"
value = 0.9
# Update the migration_bias value (no validation)
tree.find(f"{stem}/{key}").text = str(value)
tree.write(file_path)

Here, we aimed to develop a Python class that enables users to read the data from these configu-88

ration files in a more efficient manner, making this process less prone to errors. We implemented89

a ConfigurationFileParser class that reads the data from the configuration file into custom Python90

objects that follow the expected structure and data requirements defined in the XML file. Vari-91

able types and numerical constraints are validated when new instances of these data classes are92

created and when their values are updated. To achieve this, we implemented our classes using93

Pydantic, (Colvin, n.d.) which improves data validation in Python. The task described in the code94

snippet presented previously can be implemented in a more user-friendly way with PhysiCOOL, as95

shown below:96

from physicool.config import ConfigFileParser

# Read cell data into custom Python objects
file_path = "config/PhysiCell_settings.xml"
parser = ConfigFileParser(file_path)
cell_data = parser.read_cell_data(name="default")

# Update the migration_bias value (values will be validated before writing)
cell_data.motility.migration_bias = 0.9
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parser.write_cell_params(cell_data)

Black-box models97

In complex and large computational models, it may be challenging or even impossible to estimate98

themodel outputs analytically. Consequently, it is common to conduct calibration andoptimization99

studies by running several simulations and performing sensitivity analysis studies to identify how100

model outputs change in response to different input parameter values. This process is recognized101

as simulation-based optimization or black-box optimization (Alarie et al., 2021). PhysiCell models102

arewritten in C++ and have to be compiled to produce an executable file that can be run to produce103

simulation results. In order to test and characterize the response of these models, it is generally104

necessary to conduct three tasks:105

1. Update the PhysiCell configuration file with input parameters values;106

2. Run the PhysiCellmodel;107

3. Read the model outputs and compute a desired output metric.108

These tasks can be performed manually. Nonetheless, it is not feasible or productive to do so in109

large computational studies, specifically when trying to characterize the model response to a large110

number of input parameter values that can be inside a wide range and require multiple simulation111

runs. Hence, PhysiCOOL allows users to create black-box models using the PhysiCellBlackBox class112

and automatically perform the aforementioned tasks through Python.113

These black-boxmodels aremodular in the sense that the users can selectwhat functions to use114

to update the configuration file (i) and to process the results (iii). For instance, users can decide to115

change the cells’ motility parameters and evaluate the effect on the distance travelled by cells over116

time. Alternatively, the cell cycling rates could be varied to analyze the evolution of the number of117

cells. Furthermore, (i) and (iii) do not have to be defined in the black-box model. In fact, users can118

also create black-box models composed only of the PhysiCell executable and use our approach to119

run multiple simulation replicates.120

PhysiCOOL offers some built-in data quantification methods that can be used to extract and121

process data in step (iii). For example, functions are provided to obtain the final number of cells122

in a simulation, the final cell coordinates and the concentration of a given substance over the123

simulation domain. Furthermore, these methods can be employed by users to process simulation124

results and generate 2D and 3D plots of the cells and the microenvironment.125

Multilevel parameter sweeps126

Parameter optimization studies require the definition of a search space, which defines the range of127

the parameter values that will be studied. There aremultiple approaches to defining this space and128

how to explore it. For example, random search algorithms can be employed to randomly sample129

points within a defined bounded parameter space. Alternatively, a grid search, while a more com-130

putationally expensive option, systematically samples every point within a defined parameter grid131

space providing a more comprehensive overview of the model’s response than that offered by a132

random search. Grid-based approaches have advantages for stochastic frameworks such as Physi-133

Cell, as gradient-based approaches may struggle to accurately calculate the gradient and change134

the parameter set to minimize the error between the model and the target data.135

PhysiCOOL implements a multilevel parameter sweep class (MultiLevelSweep) that is aimed at136

identifying the parameters that best fit a target data set through a grid search. In this example,137

the parameter sweep considers two PhysiCell parameters for which the user should provide initial138

values. At each level,MultiLevelSweep creates a search grid based on these two values, the number139

of points per direction and the percentage per direction. These values should be configured by140

the user and optimized for a given problem. Furthermore, the number of levels and grid spacing141

parameters are related to the precision and sensitivity of each model parameter. That is, for less142
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Figure 1. Model and optimization results for the logistic growth example. (a) Growth curves obtained fordifferent parameter sets (carrying capacity, 𝐾 , and proliferation rate, 𝑟). (b) Optimization results after thecompletion of the first level of the multilevel optimization algorithm. The heatmap shows the difference, asgiven by the summed squared error, between the target data and the data produced by each cell’s inputparameters. (c) Optimization results after 7 levels of the multilevel optimization algorithm. Results convergedto the parameters that originated the target data.

sensitivity or less precisemodels, a single-level coarse grid searchmay suffice. However, for param-143

eters that require a high level of precision and significantly affect the model outcomes, multiple144

levels may be beneficial.145

The results for each simulation are compared to the target data and the error between both146

datasets is computed and stored. At the end of the level, the parameters that provided the min-147

imum error value are selected as the centre of the parameter exploration grid for the next level148

and the parameter bounds are updated accordingly.149

Examples150

Simple model of logistic growth151

The first example was implemented to calibrate two parameters of a simple model of logistic152

growth based on some target data that defines a generated growth curve. Therefore, it serves153

as an introduction to this PhysiCOOL feature, as users are able to fully understand the behaviour of154

this simplemodel. It must be remarked that this model was not implemented in PhysiCell. Wemod-155

elled the number of agents in a population, 𝑁 , over a period of time 𝑡 through a logistic function156

given by Eq 1:157

𝑁(𝑡) =
𝐾𝑁0

𝑁0 + (𝐾 −𝑁0) exp (−𝑟𝑡)
(1)

where 𝐾 represents the carrying capacity, i.e., the maximum population size, 𝑁0 represents the158

number of initial agents and 𝑟 is the proliferation rate. In this study, we fixed the initial number159

of agents and evaluated how the carrying capacity and the proliferation rate regulated the growth160

curve of a population. An example of two growth curves obtained for different model parameters161

is shown in Fig 1(a).162
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Table 1. Parameter values used in the multilevel optimization examples.
Example Initial point Points % Levels Estimated point Target point
Logistic growth (0.15, 1000.0) 8 50 % 7 (0.10, 994.7) (0.10, 1000.0)
Chemotaxis (2.5, 0.7) 5 30 % 4 (1.7, 0.8) (2.0, 0.9)

We generated some target data using this model (𝐾 = 1000, 𝑟 = 0.1) and, subsequently, we used163

PhysiCOOL’s multilevel sweep algorithm to evaluate if we could estimate these model parameters164

based on their resulting growth curve. To do so, we first created a search grid based on a set of165

user-defined values: an initial estimate for both parameters, the number of points to search in166

each direction of the search grid, the percentage to vary in each direction and the number of levels167

to search. These values can be found in Table 1.168

Fig 1(b) shows the error between the target and simulated datasets for every cell of the parame-169

ter space after one level of themultilevel search. At this point, a new point estimate was calculated170

based on the parameter values that minimized the error between the two datasets. Likewise, the171

parameter space was adjusted to the area of interest and the process was repeated in the new172

parameter grid. This process was repeated for each level of the search and the results are shown173

in Fig 1(c).174

PhysiCell chemotaxis model175

The second example can be classified as a more complex problem since it was developed to cali-176

brate a chemotaxis model written in PhysiCell. In this modelling framework, the cells’ chemotactic177

response, i.e., the ability to migrate along a substance gradient, is dictated by a bias value defined178

between 0 and 1 (Ghaffarizadeh et al., 2018). When cells have a migration bias of 0, they move in a179

random walk. Conversely, if the value is set to 1, cells follow the substance gradient in a determin-180

istic manner. Therefore, we developed a model to estimate the cells’ speed and migration bias in181

response to an oxygen gradient based on their travelled distances.182

We implemented a 2D simulation with an oxygen source on one of the domain walls, as defined183

by the model’s boundary conditions, and a group of cells placed on the opposite wall, as shown in184

Fig 2(a). We expected that the cells’ final position would bemodulated by the cells’ sensitivity to the185

oxygen chemotactic gradient. On the one hand, if a cell population had low sensitivity and, thus,186

moved randomly, they would likely remain close to their initial position as theywouldmove around187

without following any specific direction. On the other hand, cells that followed oxygen wouldmove188

towards the opposite wall, as seen in panel 2(b).189

We generated some target data by running a simulation with a migration bias of 0.9 and a190

speed value of 2.0 𝜇m/min and storing the final y coordinates of the cells. Subsequently, we ran191

our multilevel sweep pipeline to evaluate whether we could estimate the parameter values that192

originated this data with a set of initial points different from the target parameter values. The193

results for this study are shown in Fig 2(c).194

Connecting to third-party libraries195

Given that PhysiCOOLmakes it possible for users to turn their PhysiCell models into black-box mod-196

els that receive some input parameters and return an output metric, it is straightforward to cou-197

ple them with third-party Python libraries that accept this kind of models. For example, psweep198

(Schmerler, 2022) is a Python library developed to run parameter studies and save the input pa-199

rameters values and the returned output metrics into a database. Users must define a set of pa-200

rameters and, for each of the defined values, psweep will (i) run a given user-defined function that201

takes these parameters as input and (ii) save the input and output values returned by this function202

into the database. Therefore, a PhysiCOOL black-box model could seamlessly be integrated into203

step (i).204
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Figure 2. Model and optimization results for the chemotaxis example. (a) Initial model configuration design.Cells (represented as grey circles) were placed close to a domain wall and an oxygen source (represented bythe blue arrows) was simulated on the opposite wall, creating a chemotactic gradient that cells could follow.This gradient is illustrated by the colour gradient shown in the figure. (b) Expected model results for cells withdifferent migration bias values. High migration bias populations were expected to migrate in a deterministicmanner and follow the oxygen gradient, crossing the domain and arriving at the opposite wall, as shown bytheir trajectories, shown as grey dashed lines. On the other hand, cells with low migration bias were expectedto move randomly and, thus, present low net displacement values. (c) Optimization results after 4 levels ofthe multilevel optimization algorithm. Results converged to the parameters that originated the target data.The colormap was updated for each level, describing the minimum and maximum error values at the currentlevel.

In addition, more sophisticated libraries could be considered to perform advanced optimiza-205

tion studies such as Approximate Bayesian Computation (ABC) and Bayesian Optimization for206

Likelihood-Free Inference (BOLFI) to sample parameter spaces ina more efficient manner (Lin-207

tusaari et al., 2018; Merino-Casallo et al., 2018; Lei et al., 2021; Movilla et al., 2023). Henceforth,208

although PhysiCOOL offers built-in optimization routines, it can be used in a modular way to take209

advantage of other libraries that may be more appropriate to a certain study or type of research,210

without the need to implement these optimization algorithms from scratch.211

Future directions212

At its current state of development, we believe that PhysiCOOLwill already improve PhysiCell’s acces-213

sibility as it provides an intuitive interface to run studies in Python, which is more popular among214

biology researchers than C++, in which PhysiCell was originally written. Additionally, this standard-215

ized approach provides a straightforward workflow for integrating target data (defined from sim-216

ulations or biological observations) to constrain parameter space for agent-based models. In the217

future, new features can be added to PhysiCOOL, such as the ability to generate non-linear parame-218

ter spaces, stopping criteria based on iteration or tolerance for themultilevel sweep and employing219

alternative optimization algorithms. Although future iterations of this library may include different220

optimization approaches, its modular design assures that advanced users are still able to build221

pipelines that suit their needs.222
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