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Summary

- Environmental changes can trigger phenotypic variation in plants through 

epigenetic mechanisms, but strong genetic influences make it difficult to isolate 

and study epigenetic effects. Clonal trees with low genetic variation, such as the 

Lombardy poplar (Populus nigra cv. ‘Italica‘ Duroi), offer a unique system to 

study epigenetic variation associated with the environment. 

- We collected cuttings (ramets) of Lombardy poplar along a wide geographical 

range in Europe. We performed whole-genome-bisulfite sequencing of 164 

ramets grown in a common garden and of a subset of 35 of the original parental 

individuals. Using historical bioclimatic data, we tested the relationship between 

DNA methylation and climatic gradients.

- We found that average methylation levels in TEs and promoter regions correlate 

with biologically relevant climatic variables. Furthermore, we observed that DNA 

methylation was transmitted to the next clonal generation, but a fraction of the 

methylome changed relatively fast when comparing the parental individuals with 

the clonal offspring.

- Our results suggest that the poplar methylome is a dynamic layer of information 

that can be transmitted to the clonal offspring and potentially affect how poplars 

acclimate to new environmental conditions.
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Introduction

In the last couple of decades, extreme weather events have been increasing, often 

exceeding plants’ and animals’ tolerance thresholds, and driving mass mortalities in 

many species (IPCC, 2022). Understanding how plants respond to such weather events

and other environmental conditions has thus become crucial for conservation policies 

and forest management programs. In studies on plant natural populations, intraspecific 

genetic diversity has been shown to contribute to the resistance and resilience of 

populations (Hughes et al., 2008). Genetic variation provides the baseline for 

phenotypic variation on which evolutionary processes can act, and plays an important 

role in plant adaptation (Fisher, 1958; Hughes et al., 2008). However, advances in 

molecular biology and genomics have shown that phenotypic variation among 

individuals is not only determined by genetic variation (Rapp & Wendel, 2005). One 

additional cause of phenotypic variation is epigenetic variation (Cubas et al., 1999; 

Manning et al., 2006; Xie et al., 2015). Several studies have shown that epigenetic 

variation can be spatially structured among and within plant populations, and that such 

a structure can be associated with environmental variation and phenotypic 

differentiation (Lira-Medeiros et al., 2010; Medrano et al., 2014; Avramidou et al., 2015; 

Kawakatsu et al., 2016; de Kort et al., 2020; Boquete et al., 2021; Galanti et al., 2022, 

Sammarco et al., 2022). Although causal relationships remain to be studied, such 

observations suggest that epigenetic variation could contribute to the acclimation of 

plants to changes in environmental conditions.

There are several molecular mechanisms involved in epigenetic variation, such as 
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histone modifications, DNA methylation and small RNA-mediated processes (reviewed 

in Lloyd and Lister, 2022). Among these, DNA cytosine methylation (mC), is currently 

the most widely studied and best characterized modification (Zemach et al., 2013; 

Matzke & Mosher, 2014; Zhang et al., 2018; Lloyd & Lister, 2022) and consists of a 

base alteration in which a methyl group is added to the 5th carbon of a cytosine  (Moore

et al., 2012). In plants, cytosine methylation occurs at three different sequence contexts:

CG, CHG and CHH, where H = A, T or C. Methylation at the CG and CHG contexts is 

usually symmetrical across both DNA strands, whereas methylation at CHH sites is 

asymmetrical (Meyer et al., 1994; Finnegan et al., 2003; Zhang et al., 2006; Lister et al.,

2008). As a result of different mechanisms involved in DNA methylation maintenance, 

different sequence contexts differ in their degrees of mitotic stability, which are mainly 

dictated by their symmetry. In the symmetrical contexts, methylation maintenance is 

guided by the complementary DNA strand, and thus stably inherited across mitotic 

divisions (Niederhuth & Schmitz 2014). On the other hand, methylation in the 

asymmetrical context is maintained mainly by de novo establishment and thus less 

stable across cell divisions (Peter Meyer & Lohuis, 1994). In addition, depending on the 

genomic feature context, DNA methylation has different roles. For example, methylation

in all sequence contexts is associated with silencing of transposable elements (TEs), 

while CG methylation is found in promoters of transcriptionally inactive genes and in the

gene body of active genes (reviewed in Niederhuth & Schmitz, 2017). Variation in DNA 

methylation can be under genetic control (Zhang et al., 2018; Johannes & Schmitz, 

2019) and arise stochastically as a result of imperfect DNA methylation maintenance 

(Becker et al., 2011; Schmitz et al., 2011; Johannes & Schmitz, 2019), or be induced by

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.17.516862doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.17.516862
http://creativecommons.org/licenses/by-nc/4.0/


environmental conditions (Raj et al., 2011; Bräutigam et al., 2013; Lämke & Bäurle, 

2017). Furthermore, some of these methylation marks can be transmitted from parental 

individuals to offspring (Johannes et al., 2009; Becker & Weigel, 2012; Herman & 

Sultan, 2016; Gáspár et al., 2019; Boquete et al., 2021). If DNA methylation can be 

induced by environmental conditions, we would expect patterns of DNA methylation to 

be associated with geographic or climatic gradients beyond what can be explained by 

the underlying genetic structure of the studied population. Several studies indeed found 

correlations between methylation patterns and habitat or climate in different plant 

species. However, almost all these studies were conducted on sexually reproducing 

plant species, were constrained to small-scale geographic gradients, or used low-

resolution molecular methods (Lira-Medeiros et al., 2010; Nicotra et al., 2015; 

Avramidou et al., 2015; Gugger et al., 2016; Herrera et al., 2017; Gáspár et al., 2019). 

With the continuous decrease of sequencing costs, recent studies based on whole 

genome bisulfite sequencing (WGBS) have provided more detailed methylation data 

(Dubin et al., 2015; Kawakatsu et al., 2016; de Kort et al., 2020; Galanti et al., 2022). 

With WGBS we can now quantify methylation at the scale of whole genomes and 

accurately map methylated cytosines at a single-base resolution (Lister and Ecker, 

2009). Nevertheless, the extent to which genetic variation influences epigenetic 

variation is still not clear (Richards et al., 2010, 2017). Studing epigenetic variation in  

asexually (i.e. clonally) reproducing species allows focusing on epigenetic variation in 

the absence of confounding genetic variation. Moreover, during sexual reproduction, 

some proportion of the methylation patterns might be reset (Wibowo et al., 2016), 

whereas we assume that they are faithfully transmitted during clonal propagation. Thus 
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epigenetic marks have therefore the potential to be stably transmitted across clonal 

generations and may thus create heritable phenotypic variation (Verhoeven & Preite, 

2014).

Since the first assembly of the P. trichocarpa genome in 2006, the amount of available 

genetic, genomic, and biochemical resources have increased considerably, and 

Populus species have become a model for studying plant adaptation (Taylor, 2002; 

Tuskan et al., 2006; Jansson & Douglas, 2007). The Lombardy poplar (Populus nigra 

cv. ‘Italica’ Duroi) is a widely distributed tree clone. This variety likely originated in the 

18th century from one single male tree of P. nigra, located in central Asia (Elwes & 

Henry, 1913), and was spread by cuttings worldwide from Italy. It is assumed that most 

Lombardy poplars originate from artificial propagation performed by humans (CABI, 

2022). 

Here, we present the first study investigating DNA methylation variation in a clonal tree 

species. We collected poplar cuttings from a wide climatic and geographic gradient 

across Europe and planted them in a common garden in Central Germany. We 

analyzed methylation variation among trees in the field and in  the common garden. 

Thus we were able to address two questions: (1) given a uniform genetic background, 

do different environmental conditions result in differences in DNA methylation in 

Lombardy poplar? If so, (2) do these differences persist over time after clonal 

propagation in a common environment? 
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Materials and Methods

Plant material and common garden design

Between February and March 2018, we sampled cuttings from Populus nigra cv ‘Italica’ 

clones in Europe across geographical gradients that spanned from 41° to 60° N and -5° 

to 25° E approximately, at twelve sampling sites that covered seven different Köppen-

Geiger climate subtypes (Peel et al., 2007). We tagged and georeferenced the source 

trees (hereafter referred to as “ortets”). During the first week of May 2018, we planted 

the cuttings (hereafter referred to as “ramets”) in a common garden in the Marburg 

Botanical Garden (Germany) under a random block design. The common garden area 

was not shaded in any way, allowing the ramets to grow under direct sunlight. No 

herbicides, pesticides, or fertilizers were used in the common garden. We planted the 

ramets with 1 m between trees and watered them frequently for a period of five months 

until the end of summer. A more detailed description of sampling and the common 

garden set-up can be found in Díez Rodríguez et al., (2022). 

 

Whole genome bisulfite sequencing

Of the 375 individuals considered to belong to the same genotype by Díez Rodríguez et

al. (2022), we selected a subset for WGBS. We chose 14 ramets from 12 sampling sites

from the common garden, except for those from Lithuania, of which only 10 ramets had 

survived in the garden, resulting in a total of 164 individuals. From the original set of 

ortets, we chose 5 individuals from seven out of the 12 sampling sites, with a total of 35 
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individuals. We collected leaf material from individuals, both in the field and in the 

common garden, at approximately the same time in July 2018.  We extracted DNA from 

leaf tissue obtained from mature, healthy leaves dried in silica gel using the PeqGOLD 

Plant DNA mini kit (PEQLAB Biotechnologie GmbH, Erlangen, Germany). We used the 

NEBNext Ultra II DNA Library Prep Kit for sequencing library preparation, combined 

with EZ-96 DNA Methylation-Gold MagPrep (ZYMO) for bisulfite libraries. The protocol 

involved: i) end repair and 3’ adenylation of sonicated DNA fragments, ii) NEBNext 

adaptor ligation and U excision, iii) size selection with AMPure XP Beads (Beckman 

Coulter, Brea, CA), iv) bisulfite treatment and cleanup of libraries, v) PCR enrichment 

and index ligation using Kapa HiFi Hot Start Uracil+ Ready Mix (Agilent) for bisulfite 

libraries (14 cycles), vi) final size selection and cleanup. Finally, we sequenced paired-

end for 150 cycles on a HiSeq X Ten instrument (Illumina, San Diego, CA). All 

sequenced raw fastq files are available at the European Nucleotide Archive (ENA) 

database, under project number PRJEB44879.

 

Methylation data and DMR calling

For the methylation analysis we used the EpiDiverse toolkit (version 1.0), a pipeline 

suite for WGBS data analysis in non-model plant species (Nunn et al., 2021). For 

alignment, quality control, and methylation extraction we used the WGBS pipeline. This 

pipeline uses FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to 

perform quality control, erne-bs5 (Prezza et al., 2012; http://erne.sourceforge.net/) to 

map raw reads, Picard MarkDuplicates (https://broadinstitute.github.io/picard/) to filter 

PCR duplicates and MethylDackel (https://github.com/dpryan79/MethylDackel) to 
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perform the methylation calling. We mapped the samples to the Populus nigra cv 

‘Italica’ reference genome, freely available at the European Nucleotide Archive (ENA) 

under project number PRJEB44889. We only retained uniquely-mapping reads longer 

than 36 bp. On average, around 80% of the total number of reads were mapped to the 

reference genome. We calculated the bisulfite non-conversion rate using the 

mitochondrial genome, and found a mean rate of 0.005. Mapping stats and conversion 

rates for each individual sample are shown in Supplementary Table 1. Methylation 

levels for each called position were calculated according to Schultz et al. (2012) and 

using the following formula (C = reads supporting methylated cytosine, T = reads 

supporting unmethylated cytosine, i = position of cytosine):

(Ci /(Ci + Ti)) * 100

We obtained individual bedGraph files for each sample and context. We filtered out 

positions with a coverage lower than 6. For five ramet samples, less than 60% of the 

initial positions remained after filtering, and were thus excluded from the data set. We 

then merged the individual files into multisample bed files using custom scripts based 

on the unionbedg command from the BEDTools suite (Quinlan & Hall, 2010), retaining 

positions that were called in at least 80% of the samples. To directly compare only 

positions with methylation calls common to all samples, we obtained three different files 

per context. The first file contained 35 ortet samples (as mentioned in the plant material 

section); the second file contained 158 ramet samples; and lastly, the third file 

contained 64 paired ortet and ramet samples (32 samples from ortets and 32 from their 

respective ramets). A summary of the number of samples and the number of positions 

retained in each file is shown in Table 1. To study the epigenetic structure of the poplar 
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clones, we ran Principal Component Analysis (PCA) per context using the prcomp 

function of the stats package (ver. 4.1.3; R Core Team, 2022).

 

Table 1. Summary of number of samples and positions included in each file used for 

methylation analysis

Type of file N Samples N positions per context

CpG CHG CHH

Ortet 35 8,318,522 13,678,685 76,501,469

Ramet 158 7,820,008 12,961,553 72,754,297

Paired 64 8,139,896 13,412,560 75,215,708

 

The EpiDiverse toolkit (Nunn et al., 2021) includes a DMR pipeline that uses metilene 

(Jühling et al., 2016) to call Differentially Methylated Regions (DMRs) between all 

possible pre-defined pairwise comparisons between sites for each sequence context. 

We used the default parameters of the DMR pipeline to define DMRs. In this study, 

each sampling site where the ramets were collected was considered as an individual 

group and compared to all the other sites. DMRs were called among three different 

group sets. First, we ran the DMR pipeline using only groups containing ortet samples in

each pairwise comparison; second, we compared groups containing only ramet 

samples; and third, we compared ortet samples with their paired ramet samples. We 
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then used custom scripts to summarize the results of the pipeline, and obtained a single

file for each context and each run with a list of all DMRs, their genomic coordinates, and

the specific pairwise comparison they belonged to. Supplementary Figure 1 shows a 

schematic description of the pairwise comparison design.

Variant calling, filtering and imputation

We used the EpiDiverse SNP pipeline (Nunn et al., 2021, 2022) with default parameters

to infer Single Nucleotide Polymorphisms (SNPs) from WGBS data. We combined the 

output of individual Variant Call Format (VCF) files from the ramet samples into a 

multisample VCF file using BCFtools (v1.9, Danecek et al., 2011). We filtered for 

variants successfully genotyped in at least 90% of individuals, with a minimum quality 

score of 30 and a minimum mean depth of 3. For the PCA analysis, we retained only 

biallelic SNPs and removed SNPs with more than 10% missing values and a Minor 

Allele Frequency (MAF) < 0.01. The remaining missing values were imputed with 

BEAGLE v 5.1 (Browning, Zhou, and Browning 2018). We also removed SNPs that 

were heterozygous in more than 95% of the samples. To reduce the number of SNPs 

for downstream analysis, we filtered redundant SNPs by pruning for Linkage 

Disequilibrium (LD) with a maximum LD of 0.8 between SNP pairs in a sliding window of

50 SNPs. After filtering and imputing, we were able to retain 343,977 SNPs. We 

performed the PCA analysis with PLINK (v1.90b6.12, Purcell et al., 2007) and plotted 

the results with custom scripts in R (https://github.com/EpiDiverse/scripts).
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Correlation between methylation and bioclims 

To assess correlations between methylome variation and climatic variables, we 

obtained bioclimatic data for each of the locations of the ortets from the CHELSA time-

series data set (Karger et al., 2017). The CHELSA data set covers the period between 

1979 and 2013 and provides gridded data at a resolution of 30 arcsec (~ 1km). We 

included all 19 bioclimatic variables, as described in the CHELSA web page: 

https://chelsa-climate.org/bioclim/.  Bioclimatic data for all sequenced individuals is 

available in Zenodo at https://doi.org/10.5281/zenodo.5995424. The methylation data 

for specific genomic regions used in the correlation analysis was obtained using the 

BEDTools intersect command (Quinlan and Hall, 2010) and a custom structural 

annotation. The annotations are available at the European Nucleotide Archive (ENA) 

under project number PRJEB44889. We correlated average global methylation levels 

with CHELSA bioclims using the Spearman method. The analysis was performed with 

the corr.test function of the psych package (ver. 2.2.5, Revelle, 2022) and plotted using 

the heatmap.2 function of the gplots package (ver. 3.1.3, Warnes et al., 2022).

Mantel tests

To investigate if epigenetic distance between individual ramets was correlated with 

geographic, climatic and/or genetic distance, we performed mantel tests, using the 

mantel function of the vegan package (ver. 2.5-7; Oksanen et al., 2013). As input for the

geographic and climatic distance matrices, we used the original geographic coordinates 

and the bioclimatic data of the ramets. We calculated two types of epigenetic distance 

matrices. The first matrix was based on the methylation levels of single methylated 
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positions (MPs). In the second matrix, we used the BEDTools suit to merge the DMRs 

called from multiple pairwise comparisons in order to obtain a union set of candidate 

regions, variable between two or more populations of ramets. We then calculated mean 

methylation levels (according to Schultz et al. 2012) in each region. For the genetic 

distance matrix we used the same SNPs that were used for the genetic structure 

analysis. To standardize the data and make it comparable, we then conducted a PCA 

and calculated the first three PCs for each type of input. We then created Euclidean 

distance matrices using the dist function of the R stats package (Version 4.2.1, R core 

team, 2022). Finally, we ran the mantel tests with the Pearson correlation method and 

9999 permutations.

Persistence of DNA methylation patterns

To study if methylation patterns were conserved across clonal generations, we focused 

on the seven sites for which we had collected samples from ortets and ramets. We 

called DMRs between sites for ortets, for ramets, and between ortets and ramets from 

each site. Supplementary Figure S2 shows the total number of DMRs for each pairwise 

comparison among ortets (A) and ramets (B), respectively, ordered according to latitude

of origin from South to North. If methylation patterns are conserved in the next clonal 

generation we assumed we would be able to find the same DMRs when comparing the 

same sampling-site pairs between ortets and between ramets. We therefore intersected

the bed files with all the DMRs called using the BEDTools intersect command. 

Specifically, we intersected a file containing DMRs called from group A vs group B 

ortets with a file containing DMRs called from ramets belonging to the same groups (i.e.

corresponding to the clonal offspring). We then repeated the analysis for each of the 21 
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possible pairwise comparisons between sites. Supplementary Figure S4 shows a 

detailed count of hypermethylated and hypomethylated DMRs for each pairwise 

comparison. After running the intersections, we created individual files containing all the

regions found among ramets that overlap with regions found among ortets.

Results 

Methylation profiles in the Lombardy poplar

Average global methylation in ramets of the Lombardy poplar from 12 different sampling

sites ranged from 30 to 40% in the CG context, 15-25% in the CHG context and 1-3% in

the CHH context (Figure 1A). We did not find any statistically significant differences 

among methylation levels from different sites in any of the contexts, and variation within 

each group seemed to be higher than the variation among groups. We found the 

highest number of DMRs in the CHG context (~130,000 DMRs), followed by the CG 

context (~ 70,000 DMRs) and the CHH context, where only ~ 9,100 DMRs were called 

among all pairwise comparisons among sites (Figure 1B). However, most of these 

DMRs were common to two or more comparisons. When common DMRs were merged 

into unique regions, we found around 11,400 CG-DMRs, 14,400 CHG-DMRs and 4,100 

CHH-DMRs. The length of the merged DMRs ranged from 10 to around 5,000 bases 

(Supplementary figure S3). Of these DMRs, a considerable fraction overlapped with 

annotated transposable elements (TEs) in all sequence contexts (~4,600; ~ 10,500 and 

4,200, respectively for CG, CHG and CHH). Interestingly, only 31 DMRs in the CHH 

context overlapped with coding sequences (CDS), while around 4,600 CG- and 3,100 

CHG-DMRs overlapped with these regions (Figure 2c). 
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Figure 1. Methylation profiles in the Lombardy poplar (ramets). a. Variation in 

methylation levels among ramets across geographical gradients in all sequence 

contexts. Sites are ordered from South to North according to their geographic 

coordinates and labeled by the sample site code (ISO 3166 standard country code): ES:

Spain, n = 14 ; IT1: Italy 1, n = 13; FR2: France 2, n = 13; IT2: Italy 2, n = 14; FR1: 

France 1, n = 14; FR3: France 3, n = 14; DE1: Germany 1, n = 13; CZ: Czech Republic, 

n = 14; PL: Poland, n = 14; DE2: Germany 2, n = 14; LT: Lithuania, n = 9; NO: Norway, 

n = 12. Note the different scales in the Y axes (n = 158). b. Total number of DMRs in 
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each sequence context, called from all pairwise comparisons (n = 158). Number of 

individual DMRs is the sum of DMRs obtained from all pairwise comparisons. Total 

number of merged DMRs corresponds to regions that were merged into unique DMRs 

c. Total number of merged DMRs overlapping specific genomic features in each 

sequence context (n = 158). 

Genetic and epigenetic structure

To investigate a potential relationship between genetic and epigenetic structure in the 

Lombardy poplar, we conducted a Principal Component Analysis (PCA) based on 

methylated positions (MPs) and SNPs inferred from WGBS of the ramet samples. 

Among the sequenced ‘Italica’ clones, we did not find any clear genetic structure that 

could be associated with the geographic origin of the ramets (Figure 2a). As explained 

in Díez Rodríguez et al. (2022), the ramets that belonged to the ‘Italica’ cluster had a 

mean number of pairwise differences among individual ramets of around 96 SNPs out 

of the 4.906 investigated remaining positions. We targeted 4,906 loci equally distributed 

across the 19 P. nigra chromosomes selected from a larger set identified in Scaglione 

et. al (2019), which should allow for accurate and effective genotyping of population 

groups. To further assess if the loci targeted were actually sufficient for genotyping the 

populations analyzed, we called SNPs from the WGBS data. In this way, we increased 

the number of SNPs available for the study to 986,948 SNPs, mostly reflecting 

heterozygosity of the clonal genotype, not genetic differences between samples. After 

we removed SNPs heterozygous in > 95% of the samples and performed the pruning 

step, 343,977 SNPs remained for the analysis. Still, we did not find any genetic 
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structure that could be associated with geographic patterns. On the other hand, despite 

the lack of genetic structure, some individuals with the same site of origin seemed to 

group together (Figures 2b and S5), indicating similar methylation profiles, specially in 

the CG context. Furthermore, when running PCA with MPs inside CDS (Figure S4), we 

observed some grouping, but this was not explained by any of the environmental 

variables that we tested (such as habitat type, elevation or habitat disturbance level). 
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Figure 2. Genetic and epigenetic structure of the poplar ramets, colored according to latitude of 

origin. a: Genetic structure based on the SNPs called from WGBS data. b-d: Epigenetic 

structure for the CG (b), CHG (c) and CHH (d) sequence contexts.

Relationship between methylation, geographic origin, and climate

To assess if there was any relationship between epigenetic variation, genetic variation, 

geographic origin, and climatic conditions, we analyzed the correlation between 

epigenetic distance and genetic, geographic, and climatic distance in ramets using 

mantel tests. We first correlated geographic with climatic distance, and genetic with both

geographic and climatic distance. We found that climatic distance correlated with 

geographic distance (R = 0.7, p = 0.001), but genetic distance was not correlated with 

geographic distance or climatic distance (R = -0.03, p = ns, in both tests). We created 

epigenetic distance matrices based on MPs and DMRs. We did not find any correlation 

between epigenetic and genetic distance in any case, except for the MPs in the CHH 

context (Table 2). However, epigenetic distance significantly correlated with geographic 

and climatic distance in almost all cases. The highest correlation coefficients were found

in the CG context between DMR-based epigenetic distance and both geographic and 

climatic distance (R=0.164 and p < 0.001, and R=0.141 and p < 0.001, respectively). 

Because geographic distance and climatic distance were strongly correlated, we ran 

partial mantel tests between epigenetic distance and climatic distance accounting for 

the geographic distance. In this case, most of the significant correlations disappeared, 

except for MPs in the CHH context.
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Table 2. Mantel test coefficients for the correlation between epigenetic distance and 

genetic, geographic, and climatic distance in ramets. Epigenetic distance was tested 

both as individual methylated positions (MPs) and differentially methylated regions 

(DMRs). Significant correlations are highlighted in bold font.

To study the association between methylation patterns and climate of origin in more 

detail, we conducted a correlation analysis between global methylation levels in specific 

genomic features (i.e., promoters, coding sequences (CDS) and TEs) and bioclimatic 

variables (Figure 3). We found significant correlations in all sequence contexts, with the 

highest number of correlations observed in the CHH context. In fact, for the CHH 

context, we found correlations between all three genomic features and most 

temperature-related bioclimatic variables, such as maximum temperature and mean 

temperature related variables. Additionally, methylation levels in promoters and TEs in 

this context were negatively correlated with both latitude and longitude. On the other 

hand, methylation levels in the CG and CHG contexts showed no correlation with 
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climatic variables, except for methylation in promoter and CDS regions and three 

precipitation variables (precipitation in the wettest month and wettest quarter, and 

precipitation in the warmest quarter). Furthermore, variables in CHH were grouped in a 

separate cluster while CG and CHG variables grouped mainly by genomic features.
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Figure 3. Spearman correlation analysis between global methylation levels in different 

genomic features and bioclimatic variables extracted from the CHELSA database. P = 

precipitation, T = temperature. P-values are adjusted for multiple pairwise comparisons 

using the “BH” method. Statistically significant correlations are labeled with the following

code: p < 0.001 = ***; p < 0.01 = **; p < 0.05 = *. Variables are grouped by hierarchical 

clustering based on correlation coefficients.

Persistence of DNA methylation patterns across clonal generations

To investigate if methylation patterns can be transmitted to the next clonal generation, 

we first compared average global methylation levels between ortets (parental 

individuals) and ramets (clonal offspring). In the ortets,  methylation levels were 

consistently higher in all contexts (Figure 4A). The difference in global methylation 

levels between ortets and ramets was further evidenced by the number of 

hypermethylated ortet-vs-ramet DMRs (Figure 4B). When comparing ortets with their 

ramets, the number of DMRs in the CG context was considerably low for some groups 

(e.g. ES, IT2, FR1, CZ, NO), and the lowest of all contexts (10,180 total DMRs vs. 

31,600 and 13,601 for CHG and CHH, respectively). On the other hand, the number of 

DMRs in the CHG and CHH contexts was more variable among different sites. 

Additionally, we conducted a PCA analysis using the paired clones (Figure S6) and 

found that pairs tended to group together, especially in the CG context.

To further assess if methylation patterns persisted across clonal generations, we then 

intersected the DMRs found between pairwise comparisons in the ortets and the DMRs 

found between the ramets (Figure 4C). Between 25% and 50% of the ortet DMRs in CG
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and CHG overlapped with ramet DMRs. This percentage was considerably lower in the 

case of the CHH context, where less than 10% of the DMRs were also found in the 

ramets.
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Figure 4. Differences in methylation profiles between ortets and ramets. a. Differences 

in global methylation levels between ortets (green) and their paired ramets (orange), for 

each sequence context. Statistically significant correlations are labeled with the 

following code: p < 0.001 = ***; p < 0.01 = **; p < 0.05 = *. P values were adjusted for 

multiple pairwise testing using the “BH” method. b. Total number of hypermethylated 

(above the 0 line) and hypomethylated (below the 0 line) DMRs between ortets and their

paired ramets. c. Percentage of DMRs among ramet pairwise comparisons that overlap 

with DMRs among ortet pairwise comparisons. Each bar represents a pairwise 

comparison between ortets from each sampled site in Europe and the ramets of the 

same individuals. The dashed line indicates the threshold for 50% of ramet DMRs that 

overlap with ortet DMRs.

Discussion

So far only few studies have used epigenomics to investigate the effects of 

environmentally induced epigenetic variation at a landscape level. Here, we present the 

first landscape-scale investigation of DNA methylation patterns in a system that has 

been almost exclusively clonally propagated. We found that average methylation levels 

were significantly correlated with climatic variables, specifically in TEs and gene 

promoter regions, and persisted across at least one clonal generation, despite the lack 

of evident genetic or epigenetic structure.  

The lack of genetic structure can be explained by the very low genetic diversity found by
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genotyping the poplar clones (ramets) established in our common garden (Figure  2a). 

This was expected, given the clonal history of the ‘Italica’ cultivar. The ‘Italica’ cultivar 

likely originated from a single male clone in Central Asia, from where it spread to 

Europe. It is widely accepted that this clone was further artificially propagated from an 

individual or group of individuals found in Lombardy, Italy (Elwes and Henry, 1913). Our 

results suggest that a major fraction of the clones across Europe do indeed share a 

common line.

In a similar fashion, we did not find any clear epigenetic population structure but there 

appears to be some grouping in the CG context (Figure 2b) and epigenetic distance 

was positively correlated with geographic distance (Table 2). Furthermore, MPs inside 

CDS regions do show a pattern, but it was not explained by any of the environmental 

variables used in the analysis. This evidence points to the importance of other sources 

of epigenetic variation, such as genetic somatic mutations or stochastic epimutations. 

Several studies have reported age-related changes in the levels of cytosine methylation 

due to spontaneous methylation changes (Fraga et al., 2002; Dubrovina & Kiselev, 

2016). Furthermore, Hofmeister et al. (2020) found evidence that spontaneous 

methylation changes are cumulative across somatic development in the close relative 

Populus trichocarpa, and that they have a higher rate than genetic mutations. 

Considering that the ‘Italica’ cultivar has been artificially propagated for the last two 

centuries, stochastic epimutations have likely accumulated across several clonal 

generations, confounding any environmentally induced epigenetic population structure. 

Previous studies on population epigenomics have found that epigenetic variation is 

associated with genetic variation in Brassicaceae (Dubin et al, 2015, Kawakatsu et al., 
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2016; Galanti et al., 2022), thus hindering the study of the relationship between 

environmental epigenetic variation and climatic conditions. The use of a clonal cultivar 

circumvents this problem. We used mantel tests to investigate if epigenetic distance, 

measured as the distance between both single methylated variants (MPs) and 

differentially methylated regions (DMRs), was correlated with genetic, geographic 

and/or climatic distance (Table 2). We found that epigenetic distance did not correlate 

with genetic distance in all cases except one (MPs in the CHH context) but correlated 

with both geographic distance and climatic distance in almost all cases (see also Figure 

S2). However, when accounting for geographic distance, the correlations with climatic 

distance disappeared, except for MPs in the CHH context. As suggested above, if 

stochastic epimutations are contributing to a major fraction of the epigenetic variation, 

the correlation between epigenetic distance and geographic distance could be 

explained by isolation-by-distance processes, since this cultivar was gradually 

propagated across Europe (Slatkin, 1993). This evidence thus suggests that epigenetic 

variation of the individuals analyzed might be both under environmental and stochastic 

control.

To assess whether the methylation profiles under climatic control could potentially have 

a functional role, we extracted the methylation levels of specific genomic features (gene 

promoters, gene body and transposable elements, specifically). We then correlated 

methylation levels with individual bioclimatic variables (Figure 3). Methylation levels 

were strongly correlated with most temperature variables, particularly in the case of 

gene promoters and TEs in the CHH context, which would also explain the correlation 

with latitude and longitude. Our results are in line with previous studies that have 
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reported the potential effects of temperature on DNA methylation in several plant 

organisms (Dubin et al., 2015; Conde et al., 2017; Zhang et al., 2018; Galanti et al., 

2022; Sammarco et al., 2022). On the other hand, methylation levels correlated with 

very few precipitation variables but, as opposed to temperature variables, we observed 

more significant correlations in the CG and CHG context. It is conceivable that a certain 

degree of environmental information regarding water availability might be encoded in 

more stable methylation contexts and transmitted to the clonal offspring, since Populus 

nigra is a riparian species that depends on river flooding regimes for successful seed 

and cutting dispersal (Smulders et al., 2008). Nevertheless, our results indicate that 

methylation patterns in CHH might be highly dynamic and rapidly respond to new 

environmental cues. This assumption is further supported by the changes in global 

methylation levels observed between ortet-ramet pairs (Figure 4A). Although there were

almost no differences in methylation levels between individuals from different 

geographic origins in any of the contexts, methylation levels were significantly higher in 

the ortets than in the corresponding ramets for many locations. In poplar, methylation 

levels have been shown to increase under drought conditions (Raj et al., 2011; Peña 

Pontón et al, 2022). Given that 2018 was a year characterized by particularly extreme 

drought events in Europe, and the ramets were well watered during the whole summer, 

it is possible that the differences in methylation levels between ortets and ramets are 

the result of differences in water availability. Furthermore, we observed a considerable 

decrease in the number of DMRs found among ramets (Supplementary Figure 2), 

suggesting that methylation profiles in leaves in the CHH context might have already 

adjusted to the new conditions of the common garden.
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Despite these dynamic changes in CHH methylation, a considerable fraction of the 

methylation patterns appeared to be transmitted to the clonal offspring, particularly in 

the CG and CHG contexts. We found that approximately 25% of the DMRs in CG and 

CHG called from pairwise comparisons among the ramets of different sampled sites 

overlapped with the DMRs found among the ramets of the same pairwise comparison 

(Figure 4C). The fact that we could find these specific regions both in the ortets and the 

ramets provides further evidence that methylation patterns in the CG and CHG contexts

can potentially be transmitted to the clonal offspring. Conversely, less than 10% of the 

DMRs found in the CHH context were transmitted to the next clonal generation. This 

further supports our conclusion that methylation in the CHH context is highly dynamic.. 

It is, however, challenging to determine if there was an active change in the methylome 

as a result of new environmental cues, or if these patterns are established de novo 

every year in leaf tissue. If in fact leaf CHH methylation patterns are determined in every

new season, this could possibly explain the low number of DMRs observed in the CHH 

context, both among the ortets and the ramets (Supplementary Figure S2). If the 

environmental conditions in the common garden resemble those of the original sites, 

then the methylome in CHH in the ramets would also resemble the methylome of the 

ortets. If the conditions are nothing alike, then a higher number of DMRs would be 

expected. Based on the total number of DMRs, the latter might be true. The number of 

DMRs was considerably higher when comparing ortets sampled in Spain with ortets 

sampled in Northern European sites (Figure S2), while only a few DMRs were found 

between sites that belong to similar Köppen climatic areas (e.g., FR1 vs FR2). In the 

common garden, however, where the environmental conditions were the same for all 
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the individuals, the number of total DMRs between ramets from different sites was very 

low, suggesting that the ramets might have rapidly adjusted to common garden 

conditions. As proposed by Ito and colleagues (2019), DNA methylation in natural 

environments might have two components, genomic regions that might change 

dynamically and epigenetic marks for stable gene expression that are rather fixed. If this

is the case, it opens interesting new research possibilities, if a certain fraction of 

epigenetic information is stored in symmetrical stable contexts, but some of it can 

rapidly shift to reflect new environments. In practical terms, this would imply that 

methylation variation is partitioned in distinct “modules”, and further experiments should 

target individual sources of environmentally induced epigenetic variation.

In summary, our study is the first landscape-scale investigation of DNA methylation 

patterns in a system that has been almost exclusively clonally propagated. We found 

that methylation patterns in the Lombardy poplar are independent of genetic structure, 

but that methylation profiles are associated with climatic conditions. Furthermore, we 

have shown that a fraction of DMRs is transmitted to the next clonal generation, and 

that methylation in the CHH levels is highly dynamic and might rapidly adjust to new 

environmental conditions. Our results suggest that the CHH context is the most 

responsive to changing environments and that the stability of induced changes across 

clonal generations is stronger in CG and CHG. We have shown that the Lombardy 

poplar is a valuable system to study environmentally induced epigenetic variation in a 

naturally occurring near-isogenic population, with limited confounding genetic variation. 

Our study provides further insight into how methylation patterns in natural populations 

might vary along geographic and climatic gradients. However, further research is 

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.17.516862doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.17.516862
http://creativecommons.org/licenses/by-nc/4.0/


necessary to assess whether DNA methylation can have an effect on phenotypic 

plasticity. The high resolution methylome data generated in our experiment is a 

significant resource for Epigenome Wide Association Studies (EWAS), and can 

considerably contribute to our understanding of how methylation variation affects plant 

acclimation and adaptation.
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